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Background: Chemokines are implicated in tumor microenvironment (TME) cell
infiltration. Development of ovarian cancer involves heterologous cells together with the
adjacent microenvironment. Nonetheless, our understanding of the chemokine-related
TME characteristics in ovarian cancer remains obscure.

Methods: In this large-scale multi-platform study of 10 microarray datasets consisting
of 1,673 ovarian cancer patients, we comprehensively evaluated CXCL10 and CXCL9
expression risk classifications for predicting overall survival (OS) and TME immune
characteristics. The cross-validation between a standard cohort (TCGA: The Cancer
Genome Atlas) and three test cohorts (GEO: Gene-Expression Omnibus) was applied.
We investigated differences in the biological functions and the underlying mechanisms
between high- and low-risk classifications.

Results: We identified that evaluation of CXCL10 expression could predict the tumor
development, immune cell infiltration, TME signature, genetic alteration, and patient
prognosis in ovarian cancer. Low-risk classification was characterized by high CXCL10
expression and prolonged prognosis, which was positively associated with specific
immune cell infiltration (i.e., T cells, DCs, aDC, and Th2 cells) and TME immune-relevant
signatures. Meanwhile, the high-risk classification was defined by lower CXCL10/CXCL9
expression and relevant poor prognosis and immune infiltrations. The CXCL10-based
low-risk classification was also linked to antitumor biological function of specific immune
gene sets, such as IL2-STAT5 signaling. Additionally, a mutational pattern featured by
enrichment of C > T transition was further identified to be associated with immune
cell infiltration.

Conclusions: This work proposed a promising biomarker for evaluating TME immune
characteristics and clinical outcomes in patients with ovarian cancer. Estimation
of CXCL10 risk pattern sheds a novel insight on ovarian cancer TME immune
characteristics and provides strategies for ovarian cancer immunotherapy.
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INTRODUCTION

Ovarian cancer is one of the most lethal gynecological tumors
with complex mechanisms, and more than 295,000 new cases
and 184,000 deaths were estimated to be reported in 2018
(Longacre et al., 2016; Bray et al., 2018). Generally, the majority of
females with ovarian cancer are diagnosed at an advanced stage,
because there are no early-stage symptoms and reliable screening
strategies for early monitoring (Levanon et al., 2008; Wei et al.,
2013). Genomic investigation has been the primary methodology
used in modern efforts to discover relevant biological targets
of ovarian cancer (Wei et al., 2013; Hillman et al., 2018). It
also provides a powerful scientific basis for solid molecular
functions in different clinical parameters, such as overall survival
(OS), tumor pathobiology, and grades (Fehniger et al., 2019).
Notably, the tumor microenvironment (TME) plays an important
role in tumor progress and therapy (Nwani et al., 2018; Zhang
et al., 2018; Greppi et al., 2019). Moreover, accumulating
evidences suggested the significance of TME-related molecular
and dysregulated signaling pathways in both ovarian cancer
cells and immune cells (Browning et al., 2018; Drakes and
Stiff, 2018) and revealed that the interrelated gene signatures
are more important than genomic factors at the single-cell
level (Au et al., 2017; Curtis et al., 2018). High-throughput
technologies paved a way for us to evaluate multiple targets
and predict clinical patients’ TME (Singer and Anderson, 2019).
Genomic alteration in genes is involved in expression change
and associated with resident cell type composition within the
disordered TME (Porpiglia et al., 2004; Fridman et al., 2017;
Desrichard et al., 2018). The identification of multiple TME
characteristics might be a hopeful strategy to predict the progress
of patients with ovarian cancer.

The immune system has been deemed a decisive factor during
ovarian cancer initiation and development (Knutson et al., 2015).
Ovarian cancer is characterized by deregulation of immune
surveillance (Greppi et al., 2019), and immunotherapy can
strongly benefit from the intervention of the immune checkpoint
(Topalian et al., 2015; Nagarsheth et al., 2017). Regulating the
transport of immune cells by chemokines in the tumor is
implicated in shaping immune regulatory cell presentation in
TME (Knutson et al., 2015; Dangaj et al., 2019). Recently, several
studies have analyzed the involvement of chemokine function in
ovarian cancer TME. The CXCR3+ T effectors were observed to
have been abolished in ovarian cancers, resulting in the collateral
limitation of efficient antitumor immunity (Redjimi et al.,
2012). The CXCL9 or CXCL10/CXCR3 axis regulates immune
cell migration, differentiation, and activation, leading to tumor
suppression, and a better understanding of potential mechanisms
is necessary to develop effective cancer control (Tokunaga et al.,
2018). CXCL10 expression is correlated with antigen processing
and tumor-infiltrating lymphocyte (TIL) infiltration in ovarian
cancer and positively associated with patient’s OS (Bronger et al.,
2016; Au et al., 2017). However, CXCL10 can also mediate
worse prognosis in some entities and chemotaxis of tumor-
promoting cells, such as regulatory T cells (Tregs) (Redjimi et al.,
2012). The chemokine-related TME immunological signature
remains a potential to be applied in ovarian cancer. To date,

the comprehensive landscape of CXCL10-related immune cell
infiltration and TME characteristics in ovarian cancer have not
been elucidated.

In this study, based on visual inspection curves of estimated
survival dependent on CXCL10 and CXCL9 expression, we
integrated multiple datasets with gene expression, which
contained 1,673 cases in total to explore ovarian cancer TME
immunological characteristics from immune signature gene
sets. Two proposed computational algorithms were applied to
estimate the fraction of 23 immune cell types and quantify
TME infiltration patterns (TME score) through four independent
datasets. CXCL10 was found to be a robust prognostic biomarker
and verified to have a high predictive power for ovarian cancer
TME immunological characteristics.

RESULTS

Landscape of Ovarian Cancer Survival
and Clinicopathological Characteristics
of CXCL10 and CXCL9 Expression
CXCL10 and CXCL9 differential expression profiles of 1,673
patients [mean months ± SD, 42.1 ± 34.2; 8% early stage
(I, II), 92% late stage (III, IV)] in four independent cohorts
were analyzed (Table 1). The patients in different cohorts were
stratified according to CXCL10 and CXCL9 expression-related
OS, and the cutoff value was determined by the survminer
package. Overall, in four independent cohorts, we found that
a lower CXCL10 expression was significantly associated with
poorer prognosis (high risk) [standard cohort HR range: 0.69
(95% CI: 0.55–0.86; P = 0.003)]. Thus, we stratified the standard
cohort and three test cohort patients into high-risk (lower
CXCL10 expression) and low-risk groups (higher CXCL10
expression), respectively, by visually inspecting the curves of
estimated survival (Figure 1A). Meanwhile, the lower CXCL9
expression was significantly associated with poorer prognosis
in the standard (P = 0.002) and Test 3 groups (P < 0.001)
(Figure 1B). The CXCL10 and CXCL9 expression levels showed
a positive correlation in four independent groups of ovarian
cancer (Figure 1C). Not surprisingly, combination group survival
analysis revealed that patients with a high expression of CXCL10
and CXCL9 showed better prognosis (Figure 1D). Next, we
verified the consistency of the three independent cohorts and

TABLE 1 | Summary of the four cohorts included in the study.

Cohorts Platform Samples Datasets

Standard Affymetrix Human Genome
U133A Array

568 TCGA

Test 1 Affymetrix Human Genome
U133A Array

261 GSE3149, GSE14764,
GSE23554, and GSE26712

Test 2 ABI Human Genome
Survey Microarray Version 2

194 GSE49997

Test 3 Agilent-014850 Whole
Human Genome Microarray
4 K × 44 K G4112F

650 GSE17260, GSE32062,
GSE53963, and GSE73614
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the standard cohort by the multivariable Cox model (HR = high
vs low risk) after adjusting the datasets, stages, and grades. The
prognostic index of CXCL10-based high-risk classification in
three test cohorts was obviously higher than that of The Cancer
Genome Atlas (TCGA) standard cohort (Figure 1E). Although
the results of subgroup analysis were heterogeneous, high-risk
classification was positively associated with malignant neoplastic
grades (G2 to G4) and pathological stages (II to III) in the
merged group (standard plus three test cohort patients). We also
observed that tumor invasion, residual status, and grades in the
standard cohort were positively associated with the high-risk
classification (Figure 1F).

In order to further characterize and understand the tumor
immunobiology with CXCL10 expression, the construction
scheme of the ovarian TME cell infiltration pattern was
systematically evaluated. We evaluated the association between
CXCL10 expression and immune cell populations from
transcriptomic data (Figure 1G). Unsupervised hierarchical
clustering of 568 samples with matched TME cell microarray
probes in the standard cohort was presented. The heatmap
depicted a strong correlation between high CXCL10 expression
and T cells, cytotoxic cells, T helper 1 (Th1) cells, and different
DCs. Likewise, tumor with low CXCL10 expression displayed
a general lack of immune infiltration. Moreover, the same
observation made across all test cohorts was also examined
(Supplementary Figure 1).

CXCL10/CXCL9 Traits and Infiltrating
Patterns of TME
Through the pROC package analysis (Robin et al., 2011), we
observed that CXCL10 showed a predictive advantage in the
infiltration group when compared to CXCL9 in four independent
groups of ovarian cancer (Figure 2A, left). In addition,
combining CXCL10 and CXCL9 improved the predictive value
compared with that of CXCL10 or CXCL9 alone in merged
samples (Figure 2A, right). Of note, the CXCL10/CXCL9 showed
a robust prediction in the standard group compared with the
other two groups (likelihood ratio test, P < 0.0001). Thus,
CXCL10 presented a prior role in ovarian cancer when compared
to CXCL9. To determine the optimal cluster immune cell types,
the TME cell network depicted a comprehensive landscape of
high-risk and low-risk classifications, including TME immune
cell interactions and cell lineages of patients with ovarian cancer
(Figure 2B). Four TME cell infiltration subtypes were shown
in schematics (immune clusters A, B, C, and D). Moreover,
cluster A was characterized by correlating with the infiltration
of CXCL10-related immune cells in both standard and merged
groups. However, the patients showed inconsistent survival with
two intrinsic phenotypes of CXCL10/CXCL9-related risk and
immune cell infiltration (log-rank P < 0.001), which might be
attributed to the incongruous function of immune cells in TME
(Figure 2C). Given that the key role of individual immune cells
in TME can mediate tumor development and predict clinical
outcome, we presented 23 types of TME immune cell infiltration
as another survival marker in different cohorts of ovarian cancer
(Figure 2D). As CXCL10-related risk was correlated with TME

immune cell infiltration, we also explored the prognostic value of
the merged group. Notably, patients with high-infiltration TME
immune cells [DCs, Th1, T helper 2 (Th2), and T cells] and
low-risk groups showed a synergistic function in improving OS
(log-rank P < 0.01) (Figure 2E).

In addition to patient OS, TME immune cell infiltration
tendency, intergenic relationship, and enriched biological
processes were also associated with CXCL10 expression. In
the standard cohort, as a whole, cytotoxic cells, INF γ-DC
(aDC), DCs, Th1, Th2, and T-cell infiltration degrees were
positively associated with CXCL10 expression (Figure 3A), and
significantly positive correlations were revealed between CXCL10
expression and aDC, DCs, Th2, and T-cell infiltration values
(Figure 3B). Furthermore, through overlapping of the immune
cells in cluster A and the positive correlation group (Figure 3C),
CXCL10 expression was mostly correlated with six of these cells’
infiltration, namely, aDC, DCs, Th1 cells, Th2 cells, T cells,
and cytotoxic cells. When taking into account these selected
immune cell probes, we utilized a PCA plot to show that samples
were clustered primarily by transcription profile in different
groups. A closer inspection revealed that the probe expression
pattern possessed an obvious separation between high- and
low-risk classifications in the standard cohort (Figure 3D).
Despite individual variability, the graphics showed appreciable
immune cell genetic dysregulation in different risk classifications
of ovarian cancer.

Furthermore, we evaluated the enrichment of these selected
immune probes in tumor biological function. Gene set variation
analysis with two different groups (high risk and low risk) were
analyzed by the GSVA package of R software (Hanzelmann et al.,
2013), based on the KEGG and Gene Ontology (GO). A direct
comparison of these immune probes in high-risk and low-risk
classifications revealed that KRAS signaling upregulation (| log
fold change| = 0.297, adjusted P-value < 0.0001) was the
top enriched signature in high-risk ovarian cancer (Figure 3E).
Meanwhile, low-risk-group immune cell signature genes were
significantly associated with allograft rejection and IL2-STAT5
hallmark signaling (| log fold change| = 0.346, adjusted
P-value < 0.0001). Furthermore, we used gene set enrichment
analysis (GSEA) to perform all ovarian cancer transcription
analyses from low risk to high risk and high infiltration to low
infiltration (Figure 3F). We found that both the low-risk group
with a higher CXCL10 expression and the high-infiltration group
were closely connected to immune cell function [chemokine
signal (ES > 0.62, P-value = 0.001), cytokine receptor interaction
(ES > 0.5, P-value < 0.001), Th1/2 differentiation (ES > 0.69,
P-value = 0.001), and cytosolic DNA-sensing pathway (ES > 0.7,
P-value = 0.001)].

Tumor Genomic Characteristics
Associated With Immune Cell Infiltration
In terms of underlying mechanisms, we tried to investigate
genetic instability on transcription. Based on genomic data in
the standard cohort, we comprehensively analyzed the genetic
alteration and single-nucleotide polymorphism (SNP) in ovarian
cancer. We compared copy-number variations (CNVs) between
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FIGURE 1 | Landscape of the CXCL10 and CXCL9 expression and TME cells-infiltration in ovarian cancer. (A) Kaplan-Meier survival analysis of CXCL10 expression
in four independent cohorts of ovarian cancer. Patients were stratified into low- (blue; CXCL10 high expression) and high- risk (gray; CXCL10 low expression)
classifications with a cutoff value of OS by survminer. Log-rank P < 0.05 showed a significant survival difference. (B) Kaplan-Meier survival analysis of CXCL9
expression in four independent cohorts of ovarian cancer. (C) Correlation analysis between CXCL10 and CXCL9 expression in four independent cohort. The r values
were verified by the Pearson test (P < 0.0001). (D) Survival analyses for subgroup patients stratified by both CXCL10 and CXCL9 expression with Kaplan-Meier
curves (P < 0.0001, Log-rank test). (E) Forest plot representation of the clinical prognostic value between high/low risk classification in independent cohorts and
clinical parameters. Hazard ratios (HR) > 1.0 indicated that CXCL10 expression is a favorable prognostic biomarker. (F) Subgroup analyses estimated prognostic
value of tumor pathology in standard cohort. (G) Heat map showed the scoring of TME immune cell infiltration in the standard cohort according to CXCL10 and
CXCL9 expression subgroups. The thick line represented the unsupervised clustering of positive correlation. The risk classifications, immune cluster subgroups,
Copy-number alteration (CNA), survival status and stages were used as patient annotations.

high-risk and low-risk groups’ whole-genome sequencing data
from TCGA tumor samples. In general, we observed that low-
risk groups showed higher CNV in coverage (Figure 4A). Next,
somatic alteration distributions of six immune cell signature

genes from the high-risk group and low-risk group were analyzed
(Figures 4B and Supplementary Figure 2B). A median of
162 alterations per sample (ranging from 20 to 1,922) in
a total of 40,924 coding somatic alterations from 165 valid
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FIGURE 2 | Kaplan-Meier survival analyses of TME cell infiltration and in distinct risk classification. (A) ROC curves measuring the predictive value of the CXCL10
and CXCL9 in high/low risk of immune infiltration of ovarian cancer. In four independent groups (Left), blue line represented the CXCL10 and green lines represented
the CXCL9. Comparison of ROC curves for the ability of the combined-CXCL10/CXCL9 to estimate infiltration level of four group of ovarian cancer datasets (Right).
(B) The interaction between TME immune cell types in standard cohort (left) and merged sample (right). The strength of correlation was presented with thickness of
lines, and positive correlation is marked with orange and negative correlation with light-blue. Red dot represented favor for OS, and black dots represented risk for
OS. Four immune clusters were presented, namely, clusters (A–D). (C) Kaplan-Meier curves for the merged patients with complete information in ovarian cancer
were stratified by both CXCL10/CXCL9 risk classification (high/low) and TME infiltration cluster (high/low) (Log-rank test, P < 0.0001). (D) Prognosis analyses of
difference TME immune cells in ovarian cancer. Estimated survival-cut point in each subset of five groups was plotted with 95% confidence intervals (CI) lines.
(E) Kaplan-Meier curves based on the prognosis of infiltration (high/low) and CXCL10 risk classification (high/low), infiltration impact was defined in panel (D) in all
tumor samples. Six types of immune cells (T cells, DCs, aDC, Th1, Th2, and Cytotoxic cells) were selected. P values were indicated in the graphs.

patient profiles was employed. We found that higher somatic
tumor alteration load was obviously associated with high-risk
classification patients. In addition, through the comparison
between high- and low-risk classifications’ genetic alteration
frequency, cytotoxic cell (RORA: 5.2 vs 0%; DUSP2: 3.4 vs 2%;
CTSW: 2.6 vs 0%), DCs (PPFIBP2: 4.3 vs 0%), T cells (CD3G: 2.6

vs 0%; CD94: 2.6 vs 0%; CD6: 3.4 vs 0%), Th1 cells (IL12RB2:
6.0 vs 2.0%; ATP9A: 5.2 vs 3.9%; DGKI: 5.2 vs 0%; DPP4: 4.3
vs 2.0%; HBEGF: 2.6 vs 0%) and Th2 cell (CENPF: 5.2 vs 3.9%;
CDC7: 3.4 vs 0%; CD3G: 2.6 vs 0%) infiltrations were most
probably accompanied with altered genetic functions in high-risk
classifications.

Frontiers in Genetics | www.frontiersin.org 5 July 2021 | Volume 12 | Article 678747

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-678747 July 27, 2021 Time: 14:35 # 6

Jin et al. CXCL10 Relevant Ovarian Cancer TME

FIGURE 3 | TME immune cells transcriptome traits in TCGA-Ovarian Cancer. (A) Correlation between CXCL10 and known TME immune cell infiltration in standard
cohort was analyzed by Spearman. Positive correlation was marked with right arms (blue), and negative correlation was marked with left arms (gray). The circles size
and color were represented the R score and P value. (B) Scatter plots depicted the positive correlation between CXCL10 expression and four particularly interested
immune cells. (C) Venn diagram showed the overlap of immune cells between immune cluster-A and CXCL10 positive correlation group. We filtered six cells to
further analysis CXCL10-related underlying mechanism. (D) PCA was used for the expression profiles of high- and low-risk classifications to distinguish selected
immune signature gene sets. These signature genes expression was well distinguished based on the different risk classifications. High risk classification marked with
blue, and low risk classification marked with green. (E) Differences in pathway activities. The 135 selected immune signature genes expression between high-risk
and low-risk classifications were analyzed by GSVA. T values are from a linear model, ultimately correcting the effects from the patient of origin. The KRAS
signaling-up was marked in high-risk classification, and IL2-STAT5 signaling was marked in low-risk classification. (F) GSEA of the whole genome expression data
from TCGA ovarian cancer in low- to high-risk classification and high- to low-infiltration patients. The enrichment results with immune associations between low-risk
classification and high TME cells-infiltration are shown. P values were determined by using the Kolmogorov–Smirnov test.
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FIGURE 4 | Genetic alteration extracted from the aggregated ovarian cancer samples. (A) The Copy number profiles of high (blue)- and low (gray)-risk classification
showed different pattern of gains and losses. Frequency of copy number alterations were plotted on Y-axis, and corresponding chromosome was plotted on X-axis
(chr 1–22). (B) Mutational landscape of specific immune-cell genetic alterations in high-risk classification (left) and low risk classification (right). The middle panel
depicted 45 valid signature genes alteration across analyzed TCGA dataset, and different alteration types were coded with different color. The number on the right
indicated the mutation frequency of each gene. The right panel indicated the proportion of each variant type. Each column represented individual patients, and
displayed with survival status, stages, and immune cluster. (C) Legoplot representation of mutation patterns in two classifications. Single-nucleotide substitutions are
divided into six categories with 16 surrounding flanking bases (each category represented by a different color). Inset pie showed the proportion of six categories of
mutation patterns.

Moreover, the overall mutational pattern of these selected
samples was dominated by C > T, and alteration patterns
were similar between the high-risk and low-risk classifications
Figure 4C). Meanwhile, the C > T and T > G average

alteration frequency was higher in high-risk patients than in
low-risk patients (Supplementary Figure 2C). We extracted five
mutational signatures (i.e., signatures 1, 3, 5, 8, and 25) from the
above data (Supplementary Figure 2A). The five signatures were
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annotated against the COSMIC signature version 2 (Alexandrov
et al., 2013). Signature 1, featured by C > T transitions at
CpG dinucleotides, is thought to be connected with age-related
accumulation of spontaneous deamination of 5-methylcytosine.
Notably, signature 1 was negatively associated with patient
outcomes in human cancer, including ovarian cancer (Essers
et al., 2020). The identification of this mutational signature
might provide a new perspective to study the mechanism of
chemokine-related TME formation and explanation of rising
tumor incidence, as well as exploring individual mutations and
their roles in cancer immunity and immunotherapy (Table 2).

Construction of the TME Phenotypes
and Clinical Functional Annotation
To better clarify the functionality of the TME signature of
CXCL10-mediated risk in ovarian cancer, we tested known TME
signatures (Mariathasan et al., 2018) in four independent cohorts
(Supplementary Figure 3A). These analyses confirmed that
low-risk ovarian cancer patients were positively associated with
immune-relevant signatures (antigen-processing machinery,
immune checkpoint, and CD8+ T effector) (Figure 5A
and Supplementary Figure 3A). Consistent with these
results, low-risk ovarian cancer was notably linked to higher
TME scores (Figure 5B). The Sankey diagram showed the
comprehensive correlation of the different clinical parameters,
TME characteristics, and ovarian cancer risk (Figure 5C). When
examining the association between TME score and survival
in four different cohorts, we found that a higher TME score
was significantly associated with prolonged OS (Figure 5D and
Supplementary Figure 3B). Moreover, in the standard cohort,
TME scores remained statistically significant after taking into
account CXCL10-related risk classification and pathological
stages. As expected, consistent with the outcomes of CXCL10-
related infiltrating patterns, the patients with higher immune cell
infiltration and CXCL10 expression were positively associated
with TME score (Figure 5E and Supplementary Figure 4A).
The predictive value of TME score to tumor development was
also confirmed in the standard (n = 568) and merged cohorts
(n = 1,486) with valid pathological stage data, and we found that
a decreased TME score was associated with tumor deterioration
(Figure 5F and Supplementary Figures 4B,C).

DISCUSSION

In this study, we carried out an analysis of 1,673 ovarian cancer
patients from 10 valid studies and identified the expression

TABLE 2 | Summary of CXCL10-based subgroups.

Characteristics High-risk Low-risk

Expression − +

Overall survival − +

Immune infiltration + −

TME signature − +

Genetic alteration + −

patterns of CXCL10 and CXCL9 together with their related TME
immune characteristics. We revealed that CXCL10 expression
tended to be positively associated with prognosis and play a
prior role in TME immune characteristics in certain stages and
most samples of ovarian cancer. Based on functional analysis
of specific immune signature genes, our observation suggested
that different risk classifications were accompanied with distinct
gene expression patterns and biological function. Mechanically,
the CXCL10-based high-risk group was independently associated
with elevated immune genetic alteration and C > T transversions.

Chemokine-related responses to favor or suppress antitumor
immunity were involved in various TMEs (Viola et al., 2012),
including ovarian cancer (Rainczuk et al., 2012; Knutson et al.,
2015). The establishment of predictive biomarkers for TME is
essential to maximize the immunotherapy benefit (Duan et al.,
2018). Recently, therapeutic modulators that induce CXCL10
and CXCL9 expression were reported to improve immune cell
responses and TME in ovarian cancer (Bronger et al., 2016;
Au et al., 2017). Accumulating evidence indicated that CXCL10
plays a crucial role in ovarian cancer, such as regulating tumor
progression, TIL infiltration, and associated gene expression
(Yang et al., 2012; Bronger et al., 2016; Au et al., 2017; Santos
et al., 2020). Despite existing data having greatly increased our
understanding of CXCL10, sufficient validation of this biomarker
is still limited. Therefore, we generated four independent cohorts
that covered the most common microarray platforms, ultimately
elucidating the comprehensive landscape of CXCL10 in ovarian
cancer clinical outcomes, TME characteristics, and underlying
mechanisms. With the help of several computational algorithms,
we quantified the population-specific TME cell infiltration
and TME signatures based on relevant gene sets, both of
which were significantly associated with CXCL10-related risk
in ovarian cancer.

Current studies have indicated that some types of chemokine
accumulation were associated with good prognosis, including
CXCL10 and CXCL9 (Peng et al., 2010; Muralidhar and
Barbolina, 2013; Bronger et al., 2016). Moreover, CXCL10 has
been reported to be an antitumorigenic chemokine (Tanese
et al., 2012). This finding is consistent with prior studies that
demonstrate better outcomes related to CXCL10 expression and
support the hypothesis of inhibiting the tumor progression,
where individuals with high CXCL10 levels have a low risk
for ovarian cancer progression (Bronger et al., 2016; Au et al.,
2017). In line with this, our results observed that CXCL10
played a prior role in ovarian cancer immune characteristics
and progress when compared to CXCL9. CXCL10 expression
was regarded as a favorable prognostic biomarker and verified to
have high predictive power for this risk classification. Meanwhile,
the chemokine landscape of ovarian cancer was found to be
quite heterogeneous, because of different functions of known
lymphocyte-recruiting chemokines in TME, such as CCL2,
CXCL9, CXCL10, CXCL12, and CXCL16 (Arnold et al., 2005;
Zsiros et al., 2015; Lieber et al., 2018). Notably, CXCL10
is an important lymphocyte chemoattractant to mediate the
cross-talk between cancer and immune cells (Zsiros et al.,
2015; Mlynska et al., 2019). Consistent with the previous
studies, CXCL10-positive tumors had higher antigen processing,
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FIGURE 5 | TME characteristics with risk classification and tumor development. (A) TME different signatures (immune-relevant signature, mismatch-relevant
signature and stromal-relevant signature) score between high- and low-risk classification. The lines in the boxes represented median value. The asterisks represented
the statistical P value (*P < 0.05; **P < 0.01; ***P < 0.001). (B) Differences of TME score in high- and low-risk classification from four independent cohorts.
(C) Sankey diagram showed the link of high- and low-risk classifications, grades, stages, immune cell infiltration, TME scores, and survival outcomes.
(D) Kaplan-Meier curves indicated that higher TME score was significantly associated with better OS in standard cohort (P = 0.009, Log-rank test). (E) Differences in
TME scores were positively associated with CXCL10-related immune cell infiltration. Patients with different TME score were stratified by both CXCL10 risk
classification (high/low) and TME infiltration cluster (high/low). The Kruskal-Wallis test was applied to compare the differences between every two groups
(p < 0.0001). (F) Differences in TME scores among different pathological stages of ovarian cancer. The thick line represented the median value. The differences
between every two groups were analyzed by Kruskal-Wallis test. (p < 0.05).

antitumor immune response, and TIL accumulation (Au et al.,
2017; Theodoraki et al., 2018; Unger et al., 2018), thereby
suggesting that CXCL10 expression is a predictive biomarker
to evaluate immune cell infiltration in ovarian cancer TME.

According to our results, most high-risk individuals with low
CXCL10 expression was negatively associated with immune cell
infiltration degree. Moreover, compared with TME mismatch
and stromal relevant signatures, integrated analysis revealed
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that TME immune-relevant signatures in four independent
cohorts was significantly associated with CXCL10-related risk
classification. Immune-relevant signatures (antigen-processing
machinery, immune checkpoint, and T effector cells) presented
in different risk classifications implicated that a higher CXCL10
expression was conducive to multiple TME immune regulation,
especially the immune cell functions (Biragyn et al., 2004;
Tokunaga et al., 2018). Furthermore, our data indicated that
low-risk classification exhibited higher TME scores in all groups,
which emphasized that CXCL10 activity is a core mechanism
of TME immune regulation. Patients with advanced stage and
poor OS were well characterized by the downregulation of
the TME score. In line with our findings, some studies have
indicated that the TME score possessed great value in predicting
immunotherapeutic outcomes (Curtis et al., 2018; Ghisoni et al.,
2019; Zeng et al., 2019).

In addition, through screening transcriptomic data, we
depicted the prediction between CXCL10 and immune cell
populations. We found a strong correlation between CXCL10
and antitumor immune cells, especially T cells, aDC, DCs,
and Th2 cells (Eftimie et al., 2010; Drakes and Stiff, 2016;
Singel et al., 2019; Yang et al., 2019). Moreover, there are
multiple distinct immune TMEs that coexist within the patients
and present heterogeneous fates in the clinical outcomes
(Jimenez-Sanchez et al., 2017). The synergistic effect between
CXCL10 and specific TME immune cells is one of the most
important factors to prolong patient survival of ovarian cancer.
Consistent with our finding, previous studies involved clinical
specimens of ovarian cancer with TME antitumor immune
cell recruitment and immunomodulatory molecule activity and
revealed that immune cell accumulation was associated with good
prognosis and therapy potential in ovarian cancer (Hatziveis
et al., 2012; Coukos et al., 2016; Santoiemma et al., 2016;
Au et al., 2017). Interestingly, CXCL10 not merely influences
the immune cell infiltration but also is positively connected
with antigen processing and T-cell metagene expression in
TME (Au et al., 2017). Furthermore, we investigated the
TME immune-cell signature gene statue between two CXCL10-
related risk classifications. In our results, there are significantly
distinct expression patterns and pathway enrichment in the two
classifications. The high-risk group immune signature genes
were mostly conducted through oncogenic KRAS signaling
upregulation (Yang et al., 2018). However, the low-risk group
was more likely to participate in IL2-STAT5 signaling, which
showed the ability to initiate T-cell growth and differentiation
(Kryworuchko et al., 2004). This observation may also help to
facilitate the understanding of CXCL10 function in TME and
development of precision immunotherapy.

Furthermore, the exact mechanisms of immune signature gene
regulation are not well understood. Besides gene expression,
some data indicated that tumor mutation burden (TMB) and
SNP were closely associated with immune infiltration and
immunotherapy effects (Bigley et al., 2018; Zhang et al., 2019;
Jones et al., 2020). Through genomic alteration analysis, we
provided insights into the somatically altered genes between two
risk classifications. In our analysis, the low-risk group showed a
different CNV compared to the high-risk group. As in a previous

report, CNV is considered to be associated with various human
cancers and caused by genomic rearrangement, such as deletion
and duplication (Du et al., 2011; Zhang et al., 2016). In line
with this theory, we observed that CXCL10-related immune
signature gene alteration was obvious higher in the high-risk
group. Consistent with previous studies on genomic instability in
ovarian cancer (Vollebergh et al., 2012; Alkema et al., 2016; You
et al., 2017; Tian et al., 2020), we observed that CXCL10-related
immune signature genomic alteration was obviously higher in
the high-risk classification. Another key finding from our study
was that C > T transversions showed a higher spectrum in
the high-risk classification compared with the low-risk one. Our
result indicated that total alteration of ovarian cancers C > T
transversion was associated with mutational signature 1, which is
known as ultra-hypermutators involved in tumor (Essers et al.,
2020). Previous reports (Spurdle et al., 2000; Goodman et al.,
2005; Tan et al., 2018) and our data indicated that C > T
transversion might increase genetic alteration, leading to ovarian
cancer development owing to decreased TME immune cells.
The identification of this mutational pattern may provide a
new perspective to study the mechanism of chemokine-related
TME formation and explanation of rising tumor incidence, as
well as exploring individual mutations and their roles in cancer
immunity and immunotherapy.

Our study has several limitations. Further verifying the
prospective cohort of patients who received chemokine-based
immunotherapy is necessary to conquer the deficiency of data.
Moreover, the gene expression value is subjected to sampling bias
due to the different platforms and individuals. In our study, not
all patients with a high TME score and immune infiltration have
better outcomes, and more TME factors should be incorporated
into the methodology for improvement of accuracy.

In summary, our current study suggested the biological
process and prognostic roles of CXCL10 in more than 1,000
cases of ovarian cancer. The difference of CXCL10 expression
patterns could not be ignored as a factor that causes the
heterogeneity and complexity of individual immune TME. The
comprehensive evaluation of CXCL10 in TME may help to
expand our understanding of chemokine-related TME immune
characteristics and obtain more effective immunotherapy
strategies in ovarian cancer.

MATERIALS AND METHODS

Ovarian Cancer Datasets and
Preprocessing
We retrospectively collected the ovarian cancer gene expression
from the Gene-Expression Omnibus (GEO) and The Cancer
Genome Atlas (TCGA) databases. In total, we gathered
four cohorts with 1,673 samples from 10 public microarray
datasets, including available follow-up time, survival status and
international federation of gynecology and obstetrics (FIGO)
stages. Patients without survival information were removed from
further evaluation. For microarray data, we downloaded the
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raw data and clinical information from GEO repository1 by the
GEOquery package (Davis and Meltzer, 2007), then normalizing
(Affy package) expression values of all probes and combined the
datasets with the same microarray platform. As for the datasets
in TCGA, Affymetrix Human Genome U133A Array microarray
data of gene expression was downloaded from the Genomic Data
Commons (GDC,2) by using the R package TCGAbiolinks, which
was specifically developed for integrative analysis with GDC data
(Colaprico et al., 2016). The non-biological technical biases batch
effects between different datasets within the same platform were
adjusted by ComBat algorithm (Johnson et al., 2007). The somatic
mutation data was acquired from TCGA database by using the
maftools package (Mayakonda et al., 2018). The TCGA ovarian
cancer dataset from Affymetrix SNP 6.0 at Genome Analysis
Platform of the Broad Institute was downloaded for individual
Copy Number Variation (CNV) analysis. Data was analyzed with
the R (version 3.6.1) and R Bioconductor packages.

TME Immune Signature Genes Definition
We used Bindea’s immune cells genes signature (Bindea et al.,
2013), which is well known as a highly sensitive and specific
discrimination of 23 human immune cells phenotypes, including
mast cells, DCs, aDC, Natural killer cells (NKs), Macrophages,
and T cells subsets, etc. Moreover, we constructed TME signature
gene sets from the study of Mariathasan (Mariathasan et al.,
2018), and it includes 14 TME categories according to different
molecular and signaling pathway functions, such as immune-
relevant signatures, mismatch-relevant signatures and stromal-
relevant signatures.

Estimation of Cell Infiltration in TME
To quantify the relative abundance of immune cell infiltration
in ovarian cancer TME, we employed single-sample gene-
set enrichment analysis (ssGSEA) algorithm that defined the
enrichment score of immune cells genes set in each patient
within a given dataset. In order to identify the immune cells
were associated with CXCL10-determined risk classification, we
grouped the cells into four distinct groups, such as Immune
cluster-A, Immune cluster-B, Immune cluster-C, and Immune
cluster-D. Immune cells differentially enriched scores were
determined by using the limma R package (Ritchie et al., 2015),
which implemented an empirical Bayesian approach to estimate
score changes by using moderated t-tests.

Generation of TME Signatures
To estimate the risk classification related ovarian cancer TME
signature, we constructed a set of scoring system between two risk
classifications of patients with ovarian cancer. The construction
of TME signature was performed as follows: Two different risk
classifications and all samples gene were extracted. Then, a
consensus clustering algorithm was used to define TME-relevant
genes signature, and principal component analysis (PCA) was
conducted. Principal component 1 was extracted to serve as the
genes signature score. After that, we evaluated the TME score by

1https://www.ncbi.nlm.nih.gov/geo/
2https://portal.gdc.cancer.gov/

using a method similar to GGI (Sotiriou et al., 2006; Zeng et al.,
2019).

TME score = 6PC1i −6PC1j
where i is the signature score of the low-risk classification, and j
is the signature score of the high-risk classification.

Pathway Enrichment Analysis for the
Molecular Function
To further understand the genes function between two risk
classification patterns, we performed a Gene set variation analysis
(GSVA) with six immune cells gene sets. GSVA is a non-
parametric and unsupervised method, which is generally used
to evaluate the variation in pathway (KEGG) and biological
process activity (GO) (Hanzelmann et al., 2013). Furthermore,
we employed ClusterProfiler R package (Yu et al., 2012) to
perform the risk classification associated pathways and biological
processes, basing on adjusted expression data of all transcripts.
We identified hallmark pathways among low to high risk and
high to low infiltration individuals by using gene set enrichment
analysis (GSEA) (Subramanian et al., 2005). The gene sets
examined in pathway and biological process were obtained from
MSigDB database of Broad Institute. Adjusted P-value < 0.05 was
considered as statistically significance.

Deciphering Alteration Pattern Operative
in the Genome
The investigation of CNV was presented based on DNA profiling
of individuals on Affymetrix SNP 6.0 Platform. We divided
the segment file into two risk classifications and performed
with the GISTIC 2.0 algorithm (Mermel et al., 2011). The
somatic point, missense, insertion, and deletion mutations were
annotated by using information from TCGA somatic mutation
dataset. For the two classification mutation plots, we compared 45
immune-cell signature genes alteration levels of selected patients.
Then, we employed the framework proposed by Kim et al.
(2016) to extract mutational signature. This framework based
on Bayesian variant non-negative matrix factorization and it
can automatically determine the optimal number of mutational
signatures. The mutation portrait matrix was factorized into non-
negative matrices and corresponding mutational activities. The
columns of non-negative matrix demonstrated the number of
extracted alteration, and the rows indicated the 96 mutational
contexts, which derived from a combination of six mutational
types (i.e., C > A, C > G, C > T, T > A, T > C, and T > G) and
their 5′ and 3′ adjacent bases (Dulak et al., 2013; Li et al., 2018).
The corresponding mutational matrix revealed the individual
mutation activities and the corresponding mutational signatures
1, 3, 6, 8, and 25. These mutational signatures were curated by
the Catalog of Somatic Mutations in Cancer (COSMIC) Version
2 (COSMIC, 3).

Statistical Analysis
In this study, statistical analysis was mainly performed by
using R software and SPSS software (version 24.0). For the

3http://cancer.sanger.ac.uk/cosmic/signatures
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two groups comparison, statistical significance was evaluated
by unpaired t tests. The Kruskal–Wallis tests were used to
conduct difference comparisons of three or more groups. In
the survival analysis, survival curves were generated via the
Kaplan-Meier in each data set, and log-rank tests were utilized to
determine significance of differences. The cut-off values for risk
classification were evaluated based on the association between
patient survival and CXCL10 expression in each cohort by using
the survminer R package. The survminer can uninterruptedly
screen all possible cut points to identify the maximum rank
statistic. The associations between characteristics and OS were
evaluated by Cox proportional hazard models. Correlation
coefficients between TME infiltration score and expression of
CXCL10 were computed by Spearman and distance correlation
analyses. The waterfall plot of maftools package (Mayakonda
et al., 2018) was applied to present the mutation landscape
in patients with high and low risk ovarian cancer subtypes
in standard cohort. All statistical P value were two-side, with
P < 0.05 as statistically significance.
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Supplementary Figure 1 | Clustering of TME cells-infiltration in the Test cohorts.
Unsupervised clustering of 23 TME immune types for ovarian cancer patients in
the three independent test cohorts. CXCL10 expression, immune cluster, stages,
grades and survival status are displayed as patient annotations. Hierarchical
clustering was performed with Euclidean distance and Ward linkage.

Supplementary Figure 2 | The mutational signatures selected immune signature
genes. (A) The mutational activities of corresponding mutational signatures. (B)
Alteration frequency ranked between high-risk classification (gray) and low risk
classification (blue). The immune cells signature genes were showed under the
X-axis. c Mutation frequencies were calculated based on average of each
category (i.e., C > A, C > G, C > T, T > A, T > C, and T > G). We dichotomized
the scores into low-and high-risk classification.

Supplementary Figure 3 | TME signature characteristics with CXCL10-related
risk classification and prognostic value. (A) Distribution of TME signatures in two
different risk classifications of three independent test cohorts. (B) Kaplan–Meier
curves of prognosis of TME scores in three independent test cohorts.

Supplementary Figure 4 | TME scores related clinical parameters and immune
cell infiltration in ovarian cancer. (A) Merged data of all four cohorts. And it showed
that the distribution of TME scores were stratified by both CXCL10 risk
classification (high/low) and TME infiltration cluster (high/low). The Kruskal-Wallis
test was used to compare every two groups significantly. (B) Merged data of all
four cohorts. Differences in TME scores among different pathological stages of
ovarian cancer. The Kruskal-Wallis test was used to compare every two groups
significantly. (C) Distribution of TME scores in different clinical outcomes of
standard cohort, such as neoplasm grades, recurrence, invasion and copy
number alteration (CNA).

REFERENCES
Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A., Behjati, S., Biankin,

A. V., et al. (2013). Signatures of mutational processes in human cancer. Nature
500, 415–421.

Alkema, N. G., Wisman, G. B., van der Zee, A. G., van Vugt, M. A., and de Jong,
S. (2016). Studying platinum sensitivity and resistance in high-grade serous
ovarian cancer: different models for different questions. Drug Resist. Updat. 24,
55–69. doi: 10.1016/j.drup.2015.11.005

Arnold, J. M., Huggard, P. R., Cummings, M., Ramm, G. A., and Chenevix-Trench,
G. (2005). Reduced expression of chemokine (C-C motif) ligand-2 (CCL2)
in ovarian adenocarcinoma. Br. J. Cancer 92, 2024–2031. doi: 10.1038/sj.bjc.
6602596

Au, K. K., Peterson, N., Truesdell, P., Reid-Schachter, G., Khalaj, K., Ren, R., et al.
(2017). CXCL10 alters the tumour immune microenvironment and disease
progression in a syngeneic murine model of high-grade serous ovarian cancer.
Gynecol. Oncol. 145, 436–445. doi: 10.1016/j.ygyno.2017.03.007

Bigley, V., Maisuria, S., Cytlak, U., Jardine, L., Care, M. A., Green, K.,
et al. (2018). Biallelic interferon regulatory factor 8 mutation: a complex
immunodeficiency syndrome with dendritic cell deficiency, monocytopenia,
and immune dysregulation. J. Allergy Clin. Immunol. 141, 2234–2248. doi:
10.1016/j.jaci.2017.08.044

Bindea, G., Mlecnik, B., Tosolini, M., Kirilovsky, A., Waldner, M., Obenauf, A. C.,
et al. (2013). Spatiotemporal dynamics of intratumoral immune cells reveal the
immune landscape in human cancer. Immunity 39, 782–795. doi: 10.1016/j.
immuni.2013.10.003

Biragyn, A., Ruffini, P. A., Coscia, M., Harvey, L. K., Neelapu, S. S., Baskar,
S., et al. (2004). Chemokine receptor-mediated delivery directs self-tumor
antigen efficiently into the class II processing pathway in vitro and induces
protective immunity in vivo. Blood 104, 1961–1969. doi: 10.1182/blood-2004-
02-0637

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A.
(2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68,
394–424. doi: 10.3322/caac.21492

Bronger, H., Singer, J., Windmuller, C., Reuning, U., Zech, D., Delbridge, C.,
et al. (2016). CXCL9 and CXCL10 predict survival and are regulated by
cyclooxygenase inhibition in advanced serous ovarian cancer. Br. J. Cancer 115,
553–563. doi: 10.1038/bjc.2016.172

Browning, L., Patel, M. R., Horvath, E. B., Tawara, K., and Jorcyk, C. L. (2018). IL-6
and ovarian cancer: inflammatory cytokines in promotion of metastasis. Cancer
Manag. Res. 10, 6685–6693. doi: 10.2147/cmar.s179189

Colaprico, A., Silva, T. C., Olsen, C., Garofano, L., Cava, C., Garolini, D., et al.
(2016). TCGAbiolinks: an R/Bioconductor package for integrative analysis of
TCGA data. Nucleic Acids Res. 44:e71. doi: 10.1093/nar/gkv1507

Coukos, G., Tanyi, J., and Kandalaft, L. E. (2016). Opportunities in immunotherapy
of ovarian cancer. Ann. Oncol. 27, i11–i15.

Curtis, M., Mukherjee, A., and Lengyel, E. (2018). The tumor microenvironment
takes center stage in ovarian cancer metastasis. Trends Cancer 4, 517–519.
doi: 10.1016/j.trecan.2018.06.002

Dangaj, D., Bruand, M., Grimm, A. J., Ronet, C., Barras, D., Duttagupta, P. A.,
et al. (2019). Cooperation between constitutive and inducible chemokines

Frontiers in Genetics | www.frontiersin.org 12 July 2021 | Volume 12 | Article 678747

https://www.frontiersin.org/articles/10.3389/fgene.2021.678747/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.678747/full#supplementary-material
https://doi.org/10.1016/j.drup.2015.11.005
https://doi.org/10.1038/sj.bjc.6602596
https://doi.org/10.1038/sj.bjc.6602596
https://doi.org/10.1016/j.ygyno.2017.03.007
https://doi.org/10.1016/j.jaci.2017.08.044
https://doi.org/10.1016/j.jaci.2017.08.044
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1182/blood-2004-02-0637
https://doi.org/10.1182/blood-2004-02-0637
https://doi.org/10.3322/caac.21492
https://doi.org/10.1038/bjc.2016.172
https://doi.org/10.2147/cmar.s179189
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1016/j.trecan.2018.06.002
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-678747 July 27, 2021 Time: 14:35 # 13

Jin et al. CXCL10 Relevant Ovarian Cancer TME

enables T cell engraftment and immune attack in solid tumors. Cancer Cell 35,
885–900.e810.

Davis, S., and Meltzer, P. S. (2007). GEOquery: a bridge between the gene
expression omnibus (GEO) and bioconductor. Bioinformatics 23, 1846–1847.
doi: 10.1093/bioinformatics/btm254

Desrichard, A., Kuo, F., Chowell, D., Lee, K. W., Riaz, N., Wong, R. J., et al. (2018).
Tobacco smoking-associated alterations in the immune microenvironment of
squamous cell carcinomas. J. Natl. Cancer Inst. 110, 1386–1392. doi: 10.1093/
jnci/djy060

Drakes, M. L., and Stiff, P. J. (2016). Understanding dendritic cell immunotherapy
in ovarian cancer. Expert Rev. Anticancer Ther. 16, 643–652. doi: 10.1080/
14737140.2016.1178576

Drakes, M. L., and Stiff, P. J. (2018). Regulation of ovarian cancer prognosis by
immune cells in the tumor microenvironment. Cancers 10:302. doi: 10.3390/
cancers10090302

Du, R. Q., Jin, L., and Zhang, F. (2011). [Copy number variations in the human
genome: their mutational mechanisms and roles in diseases]. Yi Chuan 33,
857–869. doi: 10.3724/sp.j.1005.2011.00857

Duan, J., Wang, Y., and Jiao, S. (2018). Checkpoint blockade-based
immunotherapy in the context of tumor microenvironment: opportunities and
challenges. Cancer Med. 7, 4517–4529. doi: 10.1002/cam4.1722

Dulak, A. M., Stojanov, P., Peng, S., Lawrence, M. S., Fox, C., Stewart, C., et al.
(2013). Exome and whole-genome sequencing of esophageal adenocarcinoma
identifies recurrent driver events and mutational complexity. Nat. Genet. 45,
478–486.

Eftimie, R., Bramson, J. L., and Earn, D. J. (2010). Modeling anti-tumor Th1
and Th2 immunity in the rejection of melanoma. J. Theor. Biol. 265, 467–480.
doi: 10.1016/j.jtbi.2010.04.030

Essers, P. B. M., van der Heijden, M., Vossen, D., de Roest, R. H., Leemans,
C. R., Brakenhoff, R. H., et al. (2020). Ovarian cancer-derived copy number
alterations signatures are prognostic in chemoradiotherapy-treated head and
neck squamous cell carcinoma. Int. J. Cancer 147, 1732–1739. doi: 10.1002/ijc.
32962

Fehniger, J. E., Berger, A. A., Juckett, L., Elvin, J., Levine, D. A., and Zajchowski,
D. A. (2019). Comprehensive genomic sequencing of paired ovarian cancers
reveals discordance in genes that determine clinical trial eligibility. Gynecol.
Oncol. 155, 473–482. doi: 10.1016/j.ygyno.2019.10.004

Fridman, W. H., Zitvogel, L., Sautes-Fridman, C., and Kroemer, G. (2017). The
immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol.
14, 717–734. doi: 10.1038/nrclinonc.2017.101

Ghisoni, E., Imbimbo, M., Zimmermann, S., and Valabrega, G. (2019). Ovarian
cancer immunotherapy: turning up the heat. Int. J. Mol. Sci. 20:2927. doi:
10.3390/ijms20122927

Goodman, M. T., Ferrell, R., McDuffie, K., Thompson, P. J., Wilkens, L. R., Bushley,
A. W., et al. (2005). Calcitonin gene polymorphism CALCA-624 (T/C) and
ovarian cancer. Environ. Mol. Mutagen. 46, 53–58. doi: 10.1002/em.20134

Greppi, M., Tabellini, G., Patrizi, O., Candiani, S., Decensi, A., Parolini, S., et al.
(2019). Strengthening the AntiTumor NK cell function for the treatment of
ovarian cancer. Int. J. Mol. Sci. 20:890. doi: 10.3390/ijms20040890

Hanzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation
analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7. doi:
10.1186/1471-2105-14-7

Hatziveis, K., Tourlakis, D., Hountis, P., Kyriazanos, I., Sougleri, M.,
Ginopoulos, P., et al. (2012). Effects on the immune system and toxicity
of carboplatin/paclitaxel combination chemotherapy in patients with stage
III-IV ovarian and non small cell lung cancer and its role in survival and
toxicity. J. Buon 17, 143–148.

Hillman, R. T., Chisholm, G. B., Lu, K. H., and Futreal, P. A. (2018).
Genomic rearrangement signatures and clinical outcomes in high-grade
serous ovarian cancer. J. Natl. Cancer Inst. 110, 265–272. doi: 10.1093/jnci/d
jx176

Jimenez-Sanchez, A., Memon, D., Pourpe, S., Veeraraghavan, H., Li, Y., Vargas,
H. A., et al. (2017). Heterogeneous tumor-immune microenvironments among
differentially growing metastases in an ovarian cancer patient. Cell 170, 927–
938.e920.doi: 10.1016/j.cell.2017.07.025

Johnson, W. E., Li, C., and Rabinovic, A. (2007). Adjusting batch effects in
microarray expression data using empirical Bayes methods. Biostatistics 8,
118–127. doi: 10.1093/biostatistics/kxj037

Jones, W. D., Michener, C. M., Biscotti, C., Braicu, I., Sehouli, J., Ganapathi, M. K.,
et al. (2020). RNA immune signatures from pan-cancer analysis are prognostic
for high-grade serous ovarian cancer and other female cancers. Cancers 12:620.
doi: 10.3390/cancers12030620

Kim, J., Mouw, K. W., Polak, P., Braunstein, L. Z., Kamburov, A., Kwiatkowski,
D. J., et al. (2016). Somatic ERCC2 mutations are associated with a distinct
genomic signature in urothelial tumors. Nat. Genet. 48, 600–606. doi: 10.1038/
ng.3557

Knutson, K. L., Karyampudi, L., Lamichhane, P., and Preston, C. (2015). Targeted
immune therapy of ovarian cancer. Cancer Metastasis Rev. 34, 53–74. doi:
10.1007/s10555-014-9540-2

Kryworuchko, M., Pasquier, V., Keller, H., David, D., Goujard, C., Gilquin, J.,
et al. (2004). Defective interleukin-2-dependent STAT5 signalling in CD8 T
lymphocytes from HIV-positive patients: restoration by antiretroviral therapy.
AIDS 18, 421–426. doi: 10.1097/00002030-200402200-00007

Levanon, K., Crum, C., and Drapkin, R. (2008). New insights into the pathogenesis
of serous ovarian cancer and its clinical impact. J. Clin. Oncol. 26, 5284–5293.
doi: 10.1200/JCO.2008.18.1107

Li, X. C., Wang, M. Y., Yang, M., Dai, H. J., Zhang, B. F., Wang, W., et al. (2018).
A mutational signature associated with alcohol consumption and prognostically
significantly mutated driver genes in esophageal squamous cell carcinoma. Ann.
Oncol. 29, 938–944. doi: 10.1093/annonc/mdy011

Lieber, S., Reinartz, S., Raifer, H., Finkernagel, F., Dreyer, T., Bronger, H., et al.
(2018). Prognosis of ovarian cancer is associated with effector memory CD8(+)
T cell accumulation in ascites, CXCL9 levels and activation-triggered signal
transduction in T cells. Oncoimmunology 7:e1424672. doi: 10.1080/2162402X.
2018.1424672

Longacre, M., Snyder, N. A., Housman, G., Leary, M., Lapinska, K., Heerboth,
S., et al. (2016). A comparative analysis of genetic and epigenetic events of
breast and ovarian cancer related to tumorigenesis. Int. J. Mol. Sci. 17:759.
doi: 10.3390/ijms17050759

Mariathasan, S., Turley, S. J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y.,
et al. (2018). TGFbeta attenuates tumour response to PD-L1 blockade by
contributing to exclusion of T cells. Nature 554, 544–548. doi: 10.1038/
nature25501

Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018).
Maftools: efficient and comprehensive analysis of somatic variants in cancer.
Genome Res. 28, 1747–1756. doi: 10.1101/gr.239244.118

Mermel, C. H., Schumacher, S. E., Hill, B., Meyerson, M. L., Beroukhim, R., and
Getz, G. (2011). GISTIC2.0 facilitates sensitive and confident localization of the
targets of focal somatic copy-number alteration in human cancers.Genome Biol.
12:R41. doi: 10.1186/gb-2011-12-4-r41

Mlynska, A., Salciuniene, G., Zilionyte, K., Garberyte, S., Strioga, M., Intaite, B.,
et al. (2019). Chemokine profiling in serum from patients with ovarian cancer
reveals candidate biomarkers for recurrence and immune infiltration. Oncol.
Rep. 41, 1238–1252. doi: 10.3892/or.2018.6886

Muralidhar, G. G., and Barbolina, M. V. (2013). Chemokine receptors in epithelial
ovarian cancer. Int. J. Mol. Sci. 15, 361–376. doi: 10.3390/ijms15010361

Nagarsheth, N., Wicha, M. S., and Zou, W. (2017). Chemokines in the cancer
microenvironment and their relevance in cancer immunotherapy. Nat. Rev.
Immunol. 17, 559–572. doi: 10.1038/nri.2017.49

Nwani, N. G., Sima, L. E., Nieves-Neira, W., and Matei, D. (2018). Targeting
the microenvironment in high grade serous ovarian cancer. Cancers 10:266.
doi: 10.3390/cancers10080266

Peng, W., Ye, Y., Rabinovich, B. A., Liu, C., Lou, Y., Zhang, M., et al. (2010).
Transduction of tumor-specific T cells with CXCR2 chemokine receptor
improves migration to tumor and antitumor immune responses. Clin. Cancer
Res. 16, 5458–5468. doi: 10.1158/1078-0432.CCR-10-0712

Porpiglia, M., Vicelli, R., Durando, A., Fracchioli, S., Puopolo, M., Katsaros, D.,
et al. (2004). Biologic therapy and epithelial ovarian cancer. Minerva Ginecol.
56, 91–104.

Rainczuk, A., Rao, J., Gathercole, J., and Stephens, A. N. (2012). The emerging role
of CXC chemokines in epithelial ovarian cancer. Reproduction 144, 303–317.
doi: 10.1530/REP-12-0153

Redjimi, N., Raffin, C., Raimbaud, I., Pignon, P., Matsuzaki, J., Odunsi, K., et al.
(2012). CXCR3+ T regulatory cells selectively accumulate in human ovarian
carcinomas to limit type I immunity. Cancer Res. 72, 4351–4360. doi: 10.1158/
0008-5472.CAN-12-0579

Frontiers in Genetics | www.frontiersin.org 13 July 2021 | Volume 12 | Article 678747

https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1093/jnci/djy060
https://doi.org/10.1093/jnci/djy060
https://doi.org/10.1080/14737140.2016.1178576
https://doi.org/10.1080/14737140.2016.1178576
https://doi.org/10.3390/cancers10090302
https://doi.org/10.3390/cancers10090302
https://doi.org/10.3724/sp.j.1005.2011.00857
https://doi.org/10.1002/cam4.1722
https://doi.org/10.1016/j.jtbi.2010.04.030
https://doi.org/10.1002/ijc.32962
https://doi.org/10.1002/ijc.32962
https://doi.org/10.1016/j.ygyno.2019.10.004
https://doi.org/10.1038/nrclinonc.2017.101
https://doi.org/10.3390/ijms20122927
https://doi.org/10.3390/ijms20122927
https://doi.org/10.1002/em.20134
https://doi.org/10.3390/ijms20040890
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1093/jnci/djx176
https://doi.org/10.1093/jnci/djx176
https://doi.org/10.1016/j.cell.2017.07.025
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.3390/cancers12030620
https://doi.org/10.1038/ng.3557
https://doi.org/10.1038/ng.3557
https://doi.org/10.1007/s10555-014-9540-2
https://doi.org/10.1007/s10555-014-9540-2
https://doi.org/10.1097/00002030-200402200-00007
https://doi.org/10.1200/JCO.2008.18.1107
https://doi.org/10.1093/annonc/mdy011
https://doi.org/10.1080/2162402X.2018.1424672
https://doi.org/10.1080/2162402X.2018.1424672
https://doi.org/10.3390/ijms17050759
https://doi.org/10.1038/nature25501
https://doi.org/10.1038/nature25501
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1186/gb-2011-12-4-r41
https://doi.org/10.3892/or.2018.6886
https://doi.org/10.3390/ijms15010361
https://doi.org/10.1038/nri.2017.49
https://doi.org/10.3390/cancers10080266
https://doi.org/10.1158/1078-0432.CCR-10-0712
https://doi.org/10.1530/REP-12-0153
https://doi.org/10.1158/0008-5472.CAN-12-0579
https://doi.org/10.1158/0008-5472.CAN-12-0579
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-678747 July 27, 2021 Time: 14:35 # 14

Jin et al. CXCL10 Relevant Ovarian Cancer TME

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). limma
powers differential expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res. 43:e47. doi: 10.1093/nar/gkv007

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J. C., et al.
(2011). pROC: an open-source package for R and S+ to analyze and compare
ROC curves. BMC Bioinformatics 12:77. doi: 10.1186/1471-2105-12-77

Santoiemma, P. P., Reyes, C., Wang, L. P., McLane, M. W., Feldman, M. D.,
Tanyi, J. L., et al. (2016). Systematic evaluation of multiple immune markers
reveals prognostic factors in ovarian cancer. Gynecol. Oncol. 143, 120–127.
doi: 10.1016/j.ygyno.2016.07.105

Santos, J. M., Heinio, C., Cervera-Carrascon, V., Quixabeira, D. C. A., Siurala,
M., Havunen, R., et al. (2020). Oncolytic adenovirus shapes the ovarian tumor
microenvironment for potent tumor-infiltrating lymphocyte tumor reactivity.
J. Immunother. Cancer 8:e000188. doi: 10.1136/jitc-2019-000188

Singel, K. L., Emmons, T. R., Khan, A. N. H., Mayor, P. C., Shen, S., Wong, J. T.,
et al. (2019). Mature neutrophils suppress T cell immunity in ovarian cancer
microenvironment. JCI Insight 4:e122311. doi: 10.1172/jci.insight.122311

Singer, M., and Anderson, A. C. (2019). Revolutionizing cancer immunology: the
power of next-generation sequencing technologies. Cancer Immunol. Res. 7,
168–173. doi: 10.1158/2326-6066.CIR-18-0281

Sotiriou, C., Wirapati, P., Loi, S., Harris, A., Fox, S., Smeds, J., et al. (2006).
Gene expression profiling in breast cancer: understanding the molecular basis
of histologic grade to improve prognosis. J. Natl. Cancer Inst. 98, 262–272.
doi: 10.1093/jnci/djj052

Spurdle, A. B., Chen, X., Abbazadegan, M., Martin, N., Khoo, S. K., Hurst, T., et al.
(2000). CYP17 promotor polymorphism and ovarian cancer risk. Int. J. Cancer
86, 436–439. doi: 10.1002/(SICI)1097-0215(20000501)86:3<436::AID-IJC21>3.
0.CO;2-A

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A.
102, 15545–15550. doi: 10.1073/pnas.0506580102

Tan, D., Sheng, L., and Yi, Q. H. (2018). Correlation of PD-1/PD-L1
polymorphisms and expressions with clinicopathologic features and prognosis
of ovarian cancer. Cancer Biomark. 21, 287–297. doi: 10.3233/CBM-170357

Tanese, K., Grimm, E. A., and Ekmekcioglu, S. (2012). The role of melanoma
tumor-derived nitric oxide in the tumor inflammatory microenvironment: its
impact on the chemokine expression profile, including suppression of CXCL10.
Int. J. Cancer 131, 891–901. doi: 10.1002/ijc.26451

Theodoraki, M. N., Yerneni, S., Sarkar, S. N., Orr, B., Muthuswamy, R., Voyten, J.,
et al. (2018). Helicase-driven activation of NFkappaB-COX2 pathway mediates
the immunosuppressive component of dsRNA-driven inflammation in the
human tumor microenvironment. Cancer Res. 78, 4292–4302. doi: 10.1158/
0008-5472.CAN-17-3985

Tian, W., Shan, B., Zhang, Y., Ren, Y., Liang, S., Zhao, J., et al. (2020). Association
between DNA damage repair gene somatic mutations and immune-related gene
expression in ovarian cancer. Cancer Med. 9, 2190–2200. doi: 10.1002/cam4.
2849

Tokunaga, R., Zhang, W., Naseem, M., Puccini, A., Berger, M. D., Soni, S., et al.
(2018). CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - a target
for novel cancer therapy. Cancer Treat. Rev. 63, 40–47. doi: 10.1016/j.ctrv.2017.
11.007

Topalian, S. L., Drake, C. G., and Pardoll, D. M. (2015). Immune checkpoint
blockade: a common denominator approach to cancer therapy. Cancer Cell 27,
450–461. doi: 10.1016/j.ccell.2015.03.001

Unger, A., Finkernagel, F., Hoffmann, N., Neuhaus, F., Joos, B., Nist, A., et al.
(2018). Chromatin binding of c-REL and p65 Is not limiting for macrophage
IL12B transcription during immediate suppression by ovarian carcinoma
ascites. Front. Immunol. 9:1425. doi: 10.3389/fimmu.2018.01425

Viola, A., Sarukhan, A., Bronte, V., and Molon, B. (2012). The pros and cons of
chemokines in tumor immunology.Trends Immunol. 33, 496–504. doi: 10.1016/
j.it.2012.05.007

Vollebergh, M. A., Jonkers, J., and Linn, S. C. (2012). Genomic instability in breast
and ovarian cancers: translation into clinical predictive biomarkers. Cell Mol.
Life Sci. 69, 223–245. doi: 10.1007/s00018-011-0809-0

Wei, W., Dizon, D., Vathipadiekal, V., and Birrer, M. J. (2013). Ovarian cancer:
genomic analysis. Ann. Oncol. 24, x7–x15. doi: 10.1093/annonc/mdt462

Yang, F., Gou, M., Deng, H., Yi, T., Zhong, Q., Wei, Y., et al. (2012). Efficient
inhibition of ovarian cancer by recombinant CXC chemokine ligand 10
delivered by novel biodegradable cationic heparin-polyethyleneimine nanogels.
Oncol. Rep. 28, 668–676. doi: 10.3892/or.2012.1853

Yang, J., Hu, S., Shangguan, J., Eresen, A., Li, Y., Pan, L., et al. (2019). Dendritic
cell immunotherapy induces anti-tumor effect in a transgenic mouse model of
pancreatic ductal adenocarcinoma. Am. J. Cancer Res. 9, 2456–2468.

Yang, K., Li, Y., Lian, G., Lin, H., Shang, C., Zeng, L., et al. (2018). KRAS promotes
tumor metastasis and chemoresistance by repressing RKIP via the MAPK-ERK
pathway in pancreatic cancer. Int. J. Cancer 142, 2323–2334. doi: 10.1002/ijc.
31248

You, J., Liu, J., Bao, Y., Wang, L., Yu, Y., Wang, L., et al. (2017). SEI1 induces
genomic instability by inhibiting DNA damage response in ovarian cancer.
Cancer Lett. 385, 271–279. doi: 10.1016/j.canlet.2016.09.032

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package
for comparing biological themes among gene clusters. OMICS 16, 284–287.
doi: 10.1089/omi.2011.0118

Zeng, D., Li, M., Zhou, R., Zhang, J., Sun, H., Shi, M., et al. (2019). Tumor
microenvironment characterization in gastric cancer identifies prognostic and
immunotherapeutically relevant gene signatures. Cancer Immunol. Res. 7, 737–
750. doi: 10.1158/2326-6066.CIR-18-0436

Zhang, B., Chen, F., Xu, Q., Han, L., Xu, J., Gao, L., et al. (2018). Revisiting
ovarian cancer microenvironment: a friend or a foe? Protein Cell 9, 674–692.
doi: 10.1007/s13238-017-0466-7

Zhang, C., Li, Z., Qi, F., Hu, X., and Luo, J. (2019). Exploration of the relationships
between tumor mutation burden with immune infiltrates in clear cell renal cell
carcinoma. Ann. Transl. Med. 7:648. doi: 10.21037/atm.2019.10.84

Zhang, N., Wang, M., Zhang, P., and Huang, T. (2016). Classification of cancers
based on copy number variation landscapes. Biochim. Biophys. Acta 1860,
2750–2755. doi: 10.1016/j.bbagen.2016.06.003

Zsiros, E., Duttagupta, P., Dangaj, D., Li, H., Frank, R., and Garrabrant, T. (2015).
The ovarian cancer chemokine landscape is conducive to homing of vaccine-
primed and CD3/CD28-costimulated T cells prepared for adoptive therapy.
Clin. Cancer Res. 21, 2840–2850. doi: 10.1158/1078-0432.CCR-14-2777

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Jin, Li, Muluh, Zhi and Zhao. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 14 July 2021 | Volume 12 | Article 678747

https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1016/j.ygyno.2016.07.105
https://doi.org/10.1136/jitc-2019-000188
https://doi.org/10.1172/jci.insight.122311
https://doi.org/10.1158/2326-6066.CIR-18-0281
https://doi.org/10.1093/jnci/djj052
https://doi.org/10.1002/(SICI)1097-0215(20000501)86:3<436::AID-IJC21>3.0.CO;2-A
https://doi.org/10.1002/(SICI)1097-0215(20000501)86:3<436::AID-IJC21>3.0.CO;2-A
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.3233/CBM-170357
https://doi.org/10.1002/ijc.26451
https://doi.org/10.1158/0008-5472.CAN-17-3985
https://doi.org/10.1158/0008-5472.CAN-17-3985
https://doi.org/10.1002/cam4.2849
https://doi.org/10.1002/cam4.2849
https://doi.org/10.1016/j.ctrv.2017.11.007
https://doi.org/10.1016/j.ctrv.2017.11.007
https://doi.org/10.1016/j.ccell.2015.03.001
https://doi.org/10.3389/fimmu.2018.01425
https://doi.org/10.1016/j.it.2012.05.007
https://doi.org/10.1016/j.it.2012.05.007
https://doi.org/10.1007/s00018-011-0809-0
https://doi.org/10.1093/annonc/mdt462
https://doi.org/10.3892/or.2012.1853
https://doi.org/10.1002/ijc.31248
https://doi.org/10.1002/ijc.31248
https://doi.org/10.1016/j.canlet.2016.09.032
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1158/2326-6066.CIR-18-0436
https://doi.org/10.1007/s13238-017-0466-7
https://doi.org/10.21037/atm.2019.10.84
https://doi.org/10.1016/j.bbagen.2016.06.003
https://doi.org/10.1158/1078-0432.CCR-14-2777
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Identification of CXCL10-Relevant Tumor Microenvironment Characterization and Clinical Outcome in Ovarian Cancer
	Introduction
	Results
	Landscape of Ovarian Cancer Survival and Clinicopathological Characteristics of CXCL10 and CXCL9 Expression
	CXCL10/CXCL9 Traits and Infiltrating Patterns of TME
	Tumor Genomic Characteristics Associated With Immune Cell Infiltration
	Construction of the TME Phenotypes and Clinical Functional Annotation

	Discussion
	Materials and Methods
	Ovarian Cancer Datasets and Preprocessing
	TME Immune Signature Genes Definition
	Estimation of Cell Infiltration in TME
	Generation of TME Signatures
	Pathway Enrichment Analysis for the Molecular Function
	Deciphering Alteration Pattern Operative in the Genome
	Statistical Analysis

	Data Availability Statement
	Author Contributions
	Supplementary Material
	References


