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Chenpi is a kind of dried citrus peel fromCitrus reticulata, and it is often used as traditional

Chinese medicine to treat dyspepsia and respiratory tract inflammation. In this study,

to determine which way of chenpi treatment plays a better effect on the prevention of

obesity in healthy mice, we conducted 16S ribosomal RNA (rRNA) gene sequencing for

intestinal microbiota and gas chromatography-mass spectrometry detector (GC/MSD)

analysis for short-chain fatty acids (SCFAs) of female rats fed with either chenpi decoction

or chenpi powder-based diet (n = 10 per group) for 3 weeks. Chenpi powder (CP) group

significantly reduced abdominal adipose tissues, subcutaneous adipose tissue, and the

serum level of total triacylglycerol (TG). At a deeper level, chenpi powder has a better

tendency to increase the ratio of Bacteroidetes to Firmicutes. It alters theMuribaculaceae

and Muribaculum in intestinal microbiota, though it is not significant. The concentrations

of acetic acid, valeric acid, and butyric acid increased slightly but not significantly in the

CP group. Chenpi decoction just reduced perirenal adipose tissues, but it shows better

antioxidant activity. It has little effect on intestinal microbiota. No differences were found

for SCFAs in the chenpi decoction (CD) group. The results indicated that chenpi powder

has a better effect in preventing obesity in mice. It can provide a basis for the development

of functional products related to chenpi powder.

Keywords: chenpi powder, chenpi decoction, intestinal microbiota, short chain fatty acids, different treatment

methods

INTRODUCTION

Dried citrus peel (chenpi) is the mature dry pericarp of Citrus reticulata. As a traditional Chinese
medicine, it has a good effect on treating dyspepsia and improving respiratory tract inflammation.
Chenpi contains many active components, such as essential oil (1), flavonoid (2), pectin (3),
insoluble fiber (4), and so on. Citrus peel essential oils may ameliorate hypercholesterolemia and
hepatic steatosis by modulating lipid and cholesterol homeostasis, and most of them have good
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antimicrobial and antioxidant activities (5, 6).
Polymethoxyflavones, a kind of flavonoid from citrus peel,
have anti-obesity, anti-hyperglycemic, and antiviral activities;
meanwhile, it may effectively prevent the progression of
metabolic syndrome (7–10). Pectin polysaccharide has in vitro
intestinal immunomodulatory activity (11). In addition to the
abovementioned active substances, pure chenpi powder also
contains a large amount of dietary fiber. The composition
and activity of intestinal microbiota and the production of
short-chain fatty acids (SCFAs) were affected by dietary fiber
(12). Meanwhile, the production of SCFAs (in particular, acetate,
propionate, and butyrate) is closely related to intestinal health
and function (13).

Intestinal microbiota are microorganisms colonized in the
human digestive tract, which is closely related to age, obesity, and
inflammation (14–16). In recent years, the study on intestinal
microbiota is a hot spot. Diet has different effects on intestinal
microflora. More and more evidence shows that intestinal
microflora is closely related to metabolism, host gene expression,
and other factors (17–19). Chenpi has been proven to have a
modulation effect on the composition of intestinal microbiota
species, the abundance of microbiota, fecal SCFAs, intestinal
barrier function, and gastrointestinal inflammation (20–22).

Obesity as a thorny issue worldwide is caused by many
factors. Obesity can cause a series of complications, such as
hypertension, hyperlipidemia, metabolic diseases, and increasing
organ burden (23, 24). Several studies have observed the effects
of extracts or natural products on intestinal microorganisms,
SCFAs, glucose metabolism, and body weight of healthy mice
model (25, 26). Looking for natural products that can alleviate
and treat obesity is a healthy and safe method. Although there
are some studies on the effect of reducing weight and lipid of
chenpi, there is no study on which way of chenpi treatment can
play a better effect. In this experiment, we observed the effect
of the chenpi on healthy mice. Traditionally, chenpi was infused
with boiling water to extract their effective components such
as “decoction.” In this study, we added chenpi to the normal
diet of mice in two forms, both chenpi decoction and chenpi
powder. This study aimed to investigate the modulation effect
of two different types of chenpi on the accumulation of adipose,
intestinal microbiota, antioxidant capacity, and SCFAs to unvail
their potential application for obesity prevention, which may also
provide a basis for the use of chenpi as a kind of anti-obesity food
in the food industry.

MATERIALS AND METHODS

Mice and Housing
Forty four-week-old C57BL/six female mice (Tianqin
Biotechnology Company, Changsha, China) were housed
in a controlled room with a 12 h/day lighting cycle during the
experimentation. Food and drinking water were freely available
to mice. Following 1 week of acclimation, mice (n = 10) were
randomly grouped to control (C), chenpi decoction (CD), control
powder (P), chenpi powder (CP). They were all provided with a
normal diet. The normal diet contained 54.9% corn, 5.6% casein,
18% soybeanmeal, 6.5% beer yeast, 0.7% lard, 0.8% bean oil, 0.5%

salt, 1.4% fishmeal, and 1% premixture. The difference between
granulated (C) and powder (P) groups is whether granulation is
carried out. In the CD group and CP group, chenpi decoction and
chenpi powder, respectively, were added to the normal diet. The
body weight, food intake, and water intake were recorded once
a week. After 3 weeks of administration, blood samples were
collected by orbital bleeding. Liver, abdominal adipose tissues,
subcutaneous adipose tissues, and perirenal adipose tissues were
weighed and collected. Fecal samples were collected by 16S
ribosomal RNA (rRNA) sequencing and analysis of SCFAs. The
experimental protocol was approved by the Animal Care and
Use Committee of Hunan Agricultural University.

Preparation of Chenpi Decoction and
Chenpi Powder
Chenpi was purchased from Jiangmen Xinhui tangerine peel
village market limited company, Guangdong Province. The
variety of chenpi is red Pericarpium Citri Reticulatae, which is
made by traditional sunlight drying. According to the traditional
decocting method, 10 g chenpi was crushed into a coarse powder
and 200ml of water was added and boiled over 95◦C for 30min.
The filtrate was filtered out and then added 20 times of water
to decoct again in the same way. The filtrate was combined,
evaporated, and concentrated to 10ml and stored at 4◦C. The
concentration of chenpi decoction was 1 g/ml. CD group were
administered 0.2 ml/day chenpi decoction by gavage. The mice
in the C group were given distilled water at the same time. After
grinding and sieving, the chenpi powder was sealed in vacuum
and stored at 4◦C. The CP group were given 0.2 g/day chenpi
powder in the diet.

Histopathological Observation
Paraformaldehyde solution in 4% was used to fix adipose tissues.
Then, they were dehydrated by ethanol solution, embedded,
and prepared. The subcutaneous adipose tissue was stained with
H&E. Images were obtained using a Nikon Eclipse E100 Upright
optical microscope from Nikon Corporation, Japan (27).

Biochemical Analysis
The serum concentration of total cholesterol (TC), total
triacylglycerol (TG), high-density lipoprotein cholesterol (HDL-
C), and low-density lipoprotein cholesterol (LDL-C) were
determined by using Kehua biological automatic biochemical
analyzer. Biochemical kits were purchased from Shanghai Kehua
Bio-Engineering Co., Ltd (Shanghai, China) (28).

Measurement of Hepatic Malondialdehyde
(MDA) and Superoxide Dismutase (SOD)
Levels
About 0.5 g of each liver tissue was homogenized in 4.5ml frozen
normal saline and then centrifuged and collected supernatant
at 2,000 rpm for 10min at 4◦C for measurements. All these
biochemical markers were measured using kits purchased
from the Nanjing Jiancheng Bioengineering Institute (Nanjing,
China). Coomassie Brilliant Blue was used to determine the
concentration of protein (27). Each sample has a parallel sample.
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FIGURE 1 | Chenpi alleviated the accumulation of adipose in mice (n = 9–10). (A) The body weight in 3 weeks (g); (B) the relative weight of liver to body weight; (C)

abdominal adipose tissues to body weight ratio (%); (D) subcutaneous adipose tissues to body weight ratio (%); and (E) perirenal adipose tissues to body weight ratio

(%). * P < 0.05; ** P < 0.01; and ns P > 0.05.

16S Ribosomal RNA (rRNA) Gene
Sequencing for Microbiota Profiling
Total genomic DNA was extracted from fecal samples and stored
at −20◦C using the DNA kit according to the instructions
for 16S rRNA gene pyrosequencing. Paired-end sequencing
was performed on the Illumina MiSeq platform (29). The V3-
V4 regions were amplified using a specific primer with the
barcode by thermocycler PCR system. In summary, α-diversity,
β-diversity, and principal coordinate analysis (PCoA) were
calculated and generated by Quantitative Insights Into Microbial
Ecology (QIIME). The measurement was repeated three times
for each sample. The online platform of Majorbio Cloud (http://
www.majorbio.com/) was used to analyze data (30, 31).

Detection of SCFAs
A total of 100mg feces were dissolved in 0.9ml water, then
mixed, and then centrifuged at 13,200 g force for 10min at
4◦C. A 1 µl supernatant of each sample was injected into
the inlet for gas chromatography-mass spectrometry detector
(GC/MSD) analysis. The levels of acetic, propionic, butyric,
valeric, isobutyric, and isovaleric acids in SCFAs were measured
using 8890B-5977B GC/MSD (Agilent Technologies Inc. CA,
USA) (32, 33). The measurement was repeated three times for
each sample.

Statistical Analysis
The statistical analyses were completed using IBM SPSS Statistics
26.0. The t-test was performed to determine the difference
between groups. Values of P < 0.05 mean statistically significant.

RESULTS

Chenpi Alleviates Accumulation of Adipose
in Mice
To determine the anti-obesity effect of chenpi on mice, body
weight, liver, abdominal adipose tissues, subcutaneous adipose
tissues, and perirenal adipose tissues were weighed. Chenpi
treatment has a tendency to regulate body weight, but the
difference was not significant (P > 0.05) (Figure 1A). Liver
weight has basically no change in every group (Figure 1B).
Weight of abdominal adipose tissues and subcutaneous adipose
tissue was significantly reduced at 0.13 and 0.15% in the CP group
compared with the P group (P < 0.05) (Figures 1C,D). Perirenal
adipose tissues were significantly reduced in CD (P < 0.05)
compared with the C group (Figure 1E). Serum concentrations
of lipids were analyzed (Figure 2) to find out that chenpi
powder can significantly reduce the serum level of TG by 24%
compared to the P group (P < 0.05) (Figure 2B) but had no
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FIGURE 2 | Chenpi adjusted serum concentrations of lipids. Concentrations of total cholesterol (TC) (A), total triacylglycerol (TG) (B), high-density lipoprotein

cholesterol (HDL-C) (C), and low-density lipoprotein cholesterol (LDL-C) (D) in serum (n = 8–10). * P < 0.05; ns P > 0.05.

FIGURE 3 | The observation of subcutaneous adipose tissues by H&E staining of four treatment groups (×400).

remarkable effect on the serum levels of TC, LDL-C, and HDL-
C. These items showed no significant changes in the CD group
compared to the C group. The histopathological observation of

adipose tissues showed that the CP group exhibited a strong
inhibitory effect on the enlargement of adipocytes compared with
the P group, while the difference was not significant in other
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groups (Figure 3). To sum up, compared with chenpi decoction,
supplementation of chenpi powder in the diet significantly
alleviated accumulation of lipid and serum TG metabolism, and
it reduced the relative weight of abdominal adipose tissue and
subcutaneous adipose tissue.

Chenpi Enhanced Antioxidant Capacity in
the Liver
In order to test the antioxidant capacity of each group, the MDA
index and SOD index of the liver were detected. The content of
MDA was decreased in the CD group compared to the C group,
while the content of MDA in the CP group was 1.35 nmol/mg
higher than that of the P group (P< 0.05) (Figure 4). The activity
of SOD was increased marginally in the CD group compared to
the C group (P > 0.05).

Chenpi Modulated the Structural
Composition of Intestinal Microbiota
Intestinal microbiota were known as a key factor in modulating
obesity. Thus, to investigate whether chenpi influences the
intestinal microbiota of mice, 16S rRNA sequencing was tested.
We analyzed the composition and difference of intestinal
microflora in different diet groups.

Microbial diversity and richness were evaluated by α-diversity
and β-diversity. PCoA plot was applied to evaluate overall
differences in β-diversity in unweighted UniFrac distance for
the sample set (34, 35). As shown in Figure 5, different diets
have strong effects on the gut microbial composition revealed by
a clear separation among four groups. Shannon and Simpson’s
indexes evaluated the diversity of the microbiota. ACE and
Chao indexes described the richness of the microbiota (36). As
shown in Figure 6, the CD group exhibited a higher richness
of microbiota evidenced by the increased ACE and Chao
indexes compared to C (P > 0.05) (Figures 6C,D) but with
no significant difference. Simpson’s index in the CP group
significantly increased, but other indexes reduced.

As shown in Figure 7, there were differences in microbial
composition among the four groups at phylum, family, and

genus levels. Firmicutes and Bacteroidetes are the two majorities
at the phylum level. CD group had a 51% higher ratio of
Firmicutes to Bacteroidetes compared with the C group (P >

0.05) (Figures 7A, 8A). However, the CP group had a lower
abundance of Firmicutes (P = 0.07) and a higher abundance of
Bacteroidetes (P= 0.06) compared with the P group (Figures 7A,
8B). The difference is not significant. The dominant genera are
Muribaculaceae, Lactobacillaceae, and Lachnobacterium at the
family level. The relative abundance of Lactobacillaceae in the
CD group is higher than in the C group (p > 0.05) (Figures 7B,
8C). The relative abundance of Muribaculaceae in two powder
groups is higher than in two decoction groups (Figure 7B).
The relative abundance of Muribaculaceae increased in the CP
group compared with the P group (P = 0.086) (Figures 7B, 8D).
Similar alterations were observed for norank_f_Muribaculaceae,
Lactobacillus, and Lachnospiraceae _NK4A316_group at the
genus level (Figures 7C, 8E). The relative abundance of
Muribaculaceae (p= 0.09) andMuribaculum increased in the CP
group compared with the P group (P = 0.08) (Figure 8F).

Chenpi Changed the Content of SCFAs
in Feces
The content of SCFAs of feces is closely related to intestinal
health. Here, the contents of acetic, propionic, butyric, valeric,
isobutyric, and isovaleric acids were tested by GC/MSD.
On the whole, the content of SCFAs in the two powder
groups was higher than that in the decoction groups. There
was no difference in the concentration of any SCFAs in
feces in the CD group when compared with the control
group. The group that consumed chenpi powder had higher
concentrations of SCFAs than the P group, especially acetic,
valeric, and butyric acids, but the difference was not significant
(Figure 9).

DISCUSSION

We present the results of a study investigating the effects of
different supplementation treatments with chenpi on various

FIGURE 4 | The content of hepatic malonaldehyde (MDA) (A) and superoxide dismutase (SOD) (B) in liver (n = 8–10). * P < 0.05; #P < 0.05; and ns P > 0.05.
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health parameters, microbial composition, and content of SCFAs.
In healthy mice, chenpi supplement changed the accumulation of
fat. In particular, chenpi powder can effectively reduce the weight

FIGURE 5 | Principal coordinate analysis (PCoA) and plot analysis of different

treatment groups (n = 10).

of abdominal adipose tissues, subcutaneous adipose tissue, and
the serum level of TG. Other studies also have shown that
chenpi can reduce the gain of body weight, organ weight,
and accumulation of lipid (37). Obesity is closely related to
hyperlipidemia, and reducing the content of serum triglyceride
can effectively alleviate hyperlipidemia (38). There was no
significant change in body weight and liver weight in our study,
perhaps because the feeding time was not long enough. The effect
of chenpi on the antioxidant activity of the liver was analyzed.
MDA is the most frequently measured biomarkers of lipid
peroxidation and oxidative stress that is considered hazardous
to health (39). Oxidative damage can lead to a decrease in the
content of SOD (40, 41). Here, the decoction of chenpi shows
stronger antioxidant activity, which might be explained as more
antioxidants are released from chenpi after decoction treatment
using a high temperature (42).

Chenpi and its main active substances can affect the
composition and richness of intestinal microorganisms.
Hesperidin can increase the proportion of Lactobacillus in
healthy mice. Citrus polymethoxyflavones can greatly enrich
the bacterium Bacteroides in high-fat diet (HFD) mice (43–45).
The abundance of Proteobacteria and the ratio of Firmicutes
to Bacteroidetes were decreased by the chenpi extract in HFD
mice. Although the addition of chenpi supplement did not
significantly increase the abundance and diversity of intestinal
microbiota in our study, it shows that chenpi powder has

FIGURE 6 | Shannon (A), Simpson’s (B), ACE (C), and Chao (D) indexes in α-diversity analysis. * P < 0.05; ns P > 0.05 (n = 10).
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FIGURE 7 | Compositions of microbiota at the phylum (A), family (B), and genus levels (C) (n = 10).

a better tendency to increase the ratio of Bacteroidetes to
Firmicutes. This may be because the decoction does not extract
the active ingredients of chenpi very well and contains fewer

ingredients than chenpi powder. Although active compounds
such as hesperidin, naringenin, and nobiletin can be detected
in the water decoction of chenpi, some components cannot
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FIGURE 8 | Bar plots of Welch’s t-test at the phylum, family, and genus levels (n = 9–10). (A) C group and CD group at the phylum level. (B) P group and CP group at

the phylum level. (C) C group and CD group at the family level. (D) P group and CP group at the family level. (E) C group and CD group at the genus level. (F) P group

and CP group at the genus level. *P < 0.05.

be fully and effectively extracted because of their poor water
solubility (46). A study showed that the water solubility
of 5-demethylnobiletin and hesperidin in chenpi was low
(47, 48). ACE and Chao indexes reduced in the CP group.
This may be related to the reduction in harmful bacteria.
Studies show that the abundance of Bacteroidetes was reduced
by 50%, but Firmicutes was increased about 18% (49, 50), the
abundance ratio of Bacteroidetes to Firmicutes will decrease in
fat mice compared to lean mice (51, 52), and our results are
consistent with them. In the control group, Muribaculaceae,
Lactobacillaceae, and Lachnospiraceae are the dominant strain
at the family level. Chenpi powder increased the abundance
of Muribaculaceae significantly at family and genus levels. A
high abundance of Muribaculaceae is associated with longevity
in mice (53). Chenpi decoction can increase the abundance
of Lactobacillaceae that are intestinal beneficial bacteria (54).
It has correlation coefficients between bacterial abundances
and serum lipid oxidative. The correlations between the
abundance of Lactobacillaceae, serum TG, and MDA levels
were negative (55). Chenpi increased intestinal beneficial

bacteria and reduced microbial abundance associated with
obesity. Chenpi powder is more outstanding in the regulation of
intestinal microbiota.

The content of SCFAs is closely related to the diet structure.
Chenpi contains not only many active ingredients but also a
lot of dietary fiber. A fiber-rich diet can increase the content
of SCFAs in mice. Dietary fiber can be fermented by colonic
microbiota to produce SCFAs. Many studies have shown that
a diet rich in dietary fiber can change the content of SCFAs.
Passion fruit peel can increase the concentrations of butyrate
and acetate in cecal content (56). Salami with citrus fiber
increased the production of acetate, propionate, and butyrate
(57). Dietary fibers from papayas promoted the production
of SCFAs (58). Intestinal microorganisms are closely related
to SCFAs. Lachnospiraceae plays an important role in the
production of butyrate (59, 60). Muribaculaceae are helpful
to the production of propionate (61). Escherichia coli could
produce acetic acid (62). No significant changes in SCFAs
were observed in our study, perhaps due to our shorter
feeding cycle.
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FIGURE 9 | The effect of chenpi on short-chain fatty acids (SCFAs) in the feces (n = 9–10). (A) Acetic acid, (B) propionic acid, (C) isobutyric acid, (D) butyric acid, (E)

isovaleric acid, and (F) valeric acid.

In conclusion, daily consumption of chenpi has a certain effect

on reducing weight and lipid. Compared with chenpi decoction,

chenpi powder has a better effect in preventing obesity. Chenpi

powder may be developed as supplementary functional food to

prevent obesity in the future. In this study, we focused on the

effect of different treatment methods of chenpi on healthy mice

to predict the preventive effect on obesity. In the future, a high-
fat model would be established to observe this effect in depth.

It is our next direction to research study to develop a variety of
popular chenpi functional foods.
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