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Characteristics of the lung microbiota in lower respiratory tract infections with 
and without history of pneumonia
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ABSTRACT
Lung microbiota plays an important role in many diseases including lower respiratory tract 
infections (LRTI) and pneumonia. This study aimed to explore the effects of community- 
acquired pneumonia (CAP) on microbial diversity and identify potential biomarkers of respiratory 
tract in CAP LRTI patients. In the current study, a comprehensive bioinformatics analysis was 
performed based on metagenomic next-generation sequencing technology, followed by alpha 
and beta diversity, LEfSe, and co-occurrence network analysis, and random forest model con-
struction. Our results showed that CAP dramatically influenced taxon abundance, and the sig-
nificant differences in microbiota including Proteobacteria, Bacteroidetes, Euryarchaeota, Firmicutes 
and Spirochetes were observed at the phylum level. Co-occurrence network selected out novel 
modules involved in microbial proliferation-associated pathways. A random forest model screened 
Klebsiella pneumoniae and Bacillus cereus as potential diagnostic biomarkers with high AUC values. 
The microbial composition was different between CAP LRTI patients and non-CAP LRTI patients. 
Klebsiella pneumoniae and Bacillus cereus were strongly associated with increased severity of LRTI 
with a pneumonia history. Our findings provided an insight for a better understanding of 
community and structure of lung microbiota for future diagnosis and treatment in LRTI patients 
with a history of pneumonia. Moreover, these microbes were considered as potential biomarkers 
for predicting the risks for the treatment strategies of LRTI.
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Introduction

Lower respiratory tract infection (LRTI) is the 
most common syndrome leading to death in the 
world. LRTI may also be caused by noninfectious 
syndromes [1]. Previous studies have shown that 
potential pathogens can cause a variety of diseases, 
including LRTI and pneumonia [2]. For example, 
previous evidence suggests that Staphylococcus 
aureus is associated with the course of LRTI [3]. 
Community-acquired pneumonia (CAP) is often 
misdiagnosed and inappropriately treated as 
a common infection [4]. It has been showed 
more than 2 million children die from pneumonia 
each year worldwide [5]. Additionally, 
Mycoplasma Pneumoniae is considered to be 
a common causative agent of CAP [2], and acute 
LRTI [6]. Antibiotics commonly used to treat 
Mycoplasma Pneumoniae are still necessary for 
LRTI secondary to Mycoplasma Pneumoniae in 
children [6]. Klebsiella pneumonia has been 

directly found in LRTI patients, and it was identi-
fied as a etiological factor causing LRTI based on 
clinical features [7,8]. Nowadays, it is still 
a challenge for clinicians and microbiologists to 
reduce pulmonary complication and eliminate 
toxicity of empirical antibiotic therapies. By 
understanding the differences in the microbiologi-
cal composition of patients with CAP and non- 
CAP LRTI, the disease risk can be predicted and 
treatment plans can be developed accordingly [9].

Shotgun and targeted metagenomics based on 
next-generation sequencing (NGS) technology 
showed that the dysbiosis of respiratory tract micro-
biome plays important roles in the pathological pro-
cess of pneumonia [10,11]. NGS-mediated 
metagenomics analysis provide a new insight into 
composition and function of microbiome in physio-
logical and pathological processes [12]. Results from 
NGS data have revealed Haemophilus influenzae as 
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an important pathogen in chronic obstructive pul-
monary disease (COPD) exacerbations [13]. In addi-
tion, Acinetobacter, Bacillus and Staphylococcus were 
recognized as pathogenic bacteria associated with 
LRTI [14]. The balance of microbial composition is 
affected by inflammatory responses and antibiotic 
application [15]. Moreover, acute and chronic lung 
diseases change the migration and elimination of 
lung microbiome [16]. It has been demonstrated 
changes in the dynamics of the respiratory micro-
biota are associated with pneumonia, and pneumo-
nia causes the lung microbiome out of balance [12]. 
The history of pneumonia was screened as a strong 
risk factor for COPD exacerbation [17]. The hospi-
talized patients with a history of pneumonia showed 
a higher risk of developing lung disease, compared to 
non-CAP patients [18]. However, the dynamics and 
mechanisms of respiratory microbiota among 
patients with CAP LRTI or non-CAP LRTI remain 
obscure.

Here, we expected that CAP LRTI patients dis-
play different microbial compositions compared 
with non-CAP LRTI patients. Hence, to confirm 
this hypothesis, we aimed to evaluate the changes 
in the microbiota of bronchoalveolar lavage fluid 
(BALF) between CAP LRTI patients and non-CAP 
LRTI patients using metagenomic NGS technology. 
Meanwhile, a comprehensive and innovative bioin-
formatics analysis was performed to explore micro-
biota profiles in CAP LRTI patients and non-CAP 
LRTI patients. The discriminant model established 
based on clinical features was used to predict the 
pathogens of CAP LRTI patients and non-CAP 
LRTI patients, which provides the basis for detailed 
bacteriological diagnosis and antibiotics therapy.

Materials and methods

Patients and BALF Collection

A total of 6 LRTI patients with a diagnosis of CAP 
and 8 non-CAP LRTI patients were enrolled during 
January 132,019 to April 3 2020 from the depart-
ment of respiratory medicine of the first affiliated 
hospital of Xiamen University (Fujian, China). The 
diagnosis of CAP is according to a combination of 
clinical features (cough, dyspnea, sputum produc-
tion, pleuritic pain, fever or chills, and malaise) and 
imaging of the lung by chest radiography. 

Evaluation of specific pathogens (bacteria, fungi, 
virus, and mycobacteria) was performed. Non- 
pneumonia LRTI patients were included with the 
presence of hyperinflation or new or increased 
peribronchial infiltrates without alveolar infiltrates 
on chest radiograph. Patients with at least one day 
of follow-up were included in the study. Patients 
were excluded if they had been hospitalized within 
the previous week, or diagnosed other than an 
immunocompromised condition, and if no inter-
pretable chest X-ray was obtained. All patients 
signed the informed consents. The clinical features 
of patients are presented in Table 1.

Bronchoalveolar lavage procedure was carried out 
with reference to a standard safety protocol [19]. 
BALF samples were collected from LRTI patients 
with and without a history of pneumonia. BALF 
sampling was carried out in the right middle lobe 
or left upper lobe of the lung allograft. After the 
bronchoscope reaches a wedge position, 50 mL of 
normal saline were instilled. The wedged position 
was maintained and normal saline was suctioned. 
The samples were collected into a separate container, 
and transferred into a sterile sputum container. After 
recording the volume, the samples were stored 
at −20°C.

DNA extraction and NGS analysis

The collected BALF samples were used for sequen-
cing and bioinformatics analysis. DNA was 
extracted and purified using QIAamp DNA 
Microbiome Kit (Qiagen, Hiden, Germany). The 
microbial DNA was used to generate sequencing 
library with NEBNext Ultra II DNA library Pre Kit 
(Illumina, San Diego, CA, USA). The library was 
purified and its quality was evaluated using agar-
ose gel electrophoresis. After dilution, mixture, 

Table 1. Age and gender of patients with CAP and non-CAP 
LRTI.

CAP (n = 6) non-CAP LRTI (n = 8)

Gender
Males, n (%) 6 (100%) 4 (50%)
Females, n (%) 0 (%) 4 (50%)
Age
Mean ± SD 47.83 ± 22.66 47.88 ± 16.81
Range, year 25–75 26–70
> 65 years, n (%) 2 (33.3) 2 (25)

CAP, community acquired pneumonia; LRTI, lower respiratory track 
infection; SD, standard deviation. 
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denaturation, and re-dilution, the sample was 
spiked with PhiX according to the MiniSeq 
System Denature and Dilute Libraries Guide. 
Following the MiniSeq Local Run Manager 
Software Guide, the sequencing was performed 
on an Illumina MiniSeq system with the high out-
put reagent kit 150 cycles. CapitalBio Corporation 
(Beijing, China) was commissioned to perform the 
DNA extraction and sequencing.

Bioinformatics analysis

The raw data were subjected to high-quality filtra-
tion and trimmed through CLC genomics work-
bench software (Qiagen). The filtered reads were 
assembled into contigs and mapped back to the 
contigs for calculating numbers of reads per con-
tigs. Bowtie2 (https://github.com/topics/bowtie2) 
was used to select human-derived sequences from 
metagenomic data and aligned with the human 
genome in NCBI database (GRCh38). The 
obtained quality-filtered reads were run through 
the UPARSE (http://www.drive5.com/uparse) and 
subject to operational taxonomy unit (OTU) clus-
tering with a similarity threshold of 98%. All 
assigned reads were subjected to downstream ana-
lysis, including alpha and beta diversity assess-
ments using the Quantitative Insights into 
Microbial Ecology (QIIME) package in R software.

To explore significant differences between CAP 
LRTI and non-CAP LRTI patients, the linear dis-
criminant analysis effect size (LEfSe) analysis was 
carried out to identify specific OTUs. To select out 
the diagnostic factors, the receiver operating char-
acteristic (ROC) curves were illuminated using the 
pROC R package. The area under the ROC curve 
(AUC) value was used to screen diagnostic genes 
with AUC > 0.7 as the threshold. To explore the 
functional enrichment analysis of novel genes, the 
GO and Kyoto Encyclopedia of Gene and 
Genomes (KEGG) analysis were performed using 
‘clusterProfiler’ R package.

Statistical analysis

All statistical analyses were performed using 
R software. Wilcoxon signed rank test was used 
to compare alpha diversity measures. Nonmetric 
multidimensional scaling was used to compare 

beta diversity measures. The correlation between 
two groups was analyzed, and the significance 
difference was accepted with Spearman correlation 
coefficient > 0.6 and Benjamini Hochberg P-value 
< 0.05 as the cutoff criteria.

Results

The homeostasis of lower respiratory tract micro-
biome maintains the balance of immune system, 
while its dysbiosis triggers lung inflammation [14]. 
Here, we speculated that LRTI patients hospitalized 
for CAP present a different microbial composition 
from non-CAP LRTI patients. Thus, to prove that 
CAP shows effects on microbiome in LRTI patients, 
we assessed the changes of microbiome in BALF 
between CAP LRTI and non-CAP LRTI patients.

Effects of CAP on microbial community in BALF 
samples from patients with LRTI

To investigate the role of CAP in lung microbiota 
composition, NGS technology was used to produce 
clean reads from 14 samples. In our results, a total 
of 300 OTUs were commonly detected in two 
groups, while 8 OTUs were particularly found in 
non-CAP LRTI patients and 6 OTUs were 
uniquely detected in CAP LRTI patients. There 
was no significant difference in ACE (P = 0.23), 
chao 1 (P = 0.09), observed OTUs (P = 0.091), and 
Shannon index (P = 0.059) between case group 
(CAP LRTI patients) and control group (non- 
CAP LRTI patients) (Figure 1(a)), suggesting that 
the alpha diversity of microbiome was relatively 
consistent between case group and control group. 
PCoA analysis revealed that the weighted UniFrac 
distance was dramatically different between case 
group and control group (P = 0.045, Figure 1(b)). 
These results indicated that CAP shows effects on 
microbial community in BALF samples from 
patients within LRTI.

Effects of history pneumonia on the abundance 
of microbial taxon in LRTI patients

To explore the effect of history of pneumonia on 
the abundance of microbiome with different tax-
onomy, the beta diversity was analyzed. At the 
family level, Clostridium botulinum showed the 
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highest abundance in 14 patients, followed by 
Bacillus cereus and Klebsiella pneumoniae 
(Figure 2(a)). The taxon abundance of microbiota 
(Clostridium botulinum, Bacillus cereus, Klebsiella 
pneumoniae, Halomonas sp. JS92.SW72, 
Pasteurella multocida, Burkholderia pseudomallei, 
and Staphylococcus aureus) were compared 
between case group and control group, as shown 
in Figure 2(b). The abundance of Glypta fumifer-
anae ichnovirus was significantly increased in case 
group compared to control group (P = 0.00496), 
followed by Candidatus Portiera aleyrodidarum 
(P = 0.00795) (Table S1). The relative abundance 
of Bacillus cereus and Klebsiella pneumoniae was 
decreased in case group compared with control 
group (P < 0.05, Figure 2(c)).

LEfSe analysis identifying the dysregulated 
microbiota in CAP LRTI patients

In order to screen for potential microbial biomar-
kers that differ in abundance between CAP LRTI 
patients and non-CAP LRTI patients, LEfSe ana-
lysis was performed using the LEfSe R package to 
discover high-dimensional biomarkers. Results 
showed that there are 47 taxonomic clades 

showing significant differences between CAP 
LRTI patients and non-CAO LRTI patients. 
Several microbes were detected as potential mar-
kers in CAP LRTI patients non-CAP LRTI 
patients, including Candidatus, Cytophagia, and 
Spirochetes (Figure 3(a)). Cytophagia showed the 
highest scores of LDA, suggesting that microbial 
abundance showed strong effects on the module 
groups(Figure 3(b)). CAP LRTI patients suggested 
a significant change in lung microbiota at the 
phylum level with P < 0.05. Our results identified 
numerous dysregulated microbes including 
Proteobacteria, Bacteroidetes, Euryarchaeota and 
Firmicutes (Figure 3(c)).

Network analysis revealing a potential 
interaction consisting of microbiota with 
different abundance between CAP LRTI and 
non-CAP LRTI patients

To explore a potential microbial interaction, we 
selected out novel modules in the co-occurrence 
network. We subsequently investigated the biolo-
gical function of microbiota by using Spearman 
method. A total of 10 modules were identified in 
the network analysis (Table S2, Figure 4(a)). The 

Figure 1. Diversity analysis for microbiota in bronchoalveolar lavage fluid. (a) Alpha diversity analysis showed significant differences 
in abundance-based coverage estimator (ACE), taxonomy-based richness (Chao1), observed OTUs, and Shannon index; (b) Beta 
diversity analysis by non-metric multidimensional scaling (NMDS, up panel) and principal co-ordinates analysis (PCoA, down panel)) 
suggesting the community structure of microbiota.
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Figure 2. Relative abundance of microbiota at the genus level. (a) Relative abundance of microbiota in individual patients with CAP 
LRTI patients (Pt9, Pt10, Pt11, Pt12, Pt13, and Pt14) and non-CAP LRTI patients (Pt1, Pt2, Pt3, Pt4, Pt5, Pt6, Pt7, and Pt8). (b) Relative 
abundance of microbiota in case group (CAP LRTI patients) and control group (non-CAP LRTI patients). (c) The relative abundance of 
Bacillus cereus and Klebsiella pneumonia with the most significant difference between case group (CAP LRTI patients) and control 
group (non-CAP LRTI patients). Student t-test was used to evaluate significant differences between the groups, *P < 0.05.

Figure 3. Effects of pneumonia history on microbiota composition in BALF. (a) The linear discriminant analysis (LDA) scores of taxa 
presented the difference in microbiome composition between CAP LRTI patients and non-CAP LRTI patients; (b) Taxonomic 
cladogram by LEfSe analysis showed the changes of microbiome in patients with CAP LRTI patients and non-CAP LRTI patients; 
(c) Manhattan plots showed the OTUs in case group (CAP LRTI patients) and control group (non-CAP LRTI patients). The colors of the 
dot represent the different taxonomic affiliations of the OTUs (phylum level). The size corresponds to their relative abundance in the 
respective samples. The dashed line corresponds to the significance threshold of P-values (P < 0.05).
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modules with significant difference in abundance 
used for the downstream analysis include module 
1, 2, 4, 7 and 8 (Figure 4(b)). These microbials in 
the differential modules were enriched in micro-
bial proliferation-associated pathways, including 
glycolysis, pentose phosphate pathway, Calvin- 
Benson-Bassham cycle and L-ornithine de novo 
biosynthesis (Figure 4(c)).

Forest model was used for screening potential 
pathogenic bacteria for CAP LRTI patients

To explore which microorganisms are influenced 
by the history of pneumonia, we further applied 
a random forest model to screen for potentially 
pathogenic microorganisms. In our results, we also 
observed high accuracy scores of microbes that 
were associated with CAP LRTI patients, including 
Klebsiella pneumonia, Burkholderia pseudomallei, 
Bacillus cereus, and Methanococcus voltae 
(Figure 5a). The receiver operating characteristic 
(ROC) curves were drawn and AUC values were 
calculated to evaluate the prediction ability of the 
random forest model. Our findings demonstrated 
higher AUC values of the following microbiota, 
Klebsiella pneumonia (AUC = 0.804), 
Burkholderia pseudomallei (AUC = 0.804) and 
Bacillus cereus (AUC = 0.786, Figure 5b). 
Furthermore, the relative abundance of these 
microbiota with high accuracy scores was calcu-
lated. The results showed an increase in the rela-
tive abundance of Klebsiella pneumonia 
(P = 0.00992), Burkholderia pseudomallei 
(P = 0.00267) and Bacillus cereus (P = 0.00064) 

in CAP LRTI patients compared to non-CAP 
LRTI patients (Figure 5c).

Discussion

Previous studies showed that the dysregulation of 
pathogenic microbiota was associated with many 
complex diseases, including LRTI and CAP [20– 
22]. Recent studies have shown that lung micro-
biota were dramatically changed in response to 
pathological alterations, and patients showed sig-
nificant differences in community composition 
during disease progress [16]. Studies demonstrated 
that the diversity reduction of nasal microbiome 
including Rothia and Lactobacillus would increase 
the risk of pneumonia [23]. The pathogens such as 
Mycoplasma pneumoniae casing pneumonia have 
been considered as risk factors for asthma [24]. 
HIV virus increased the risk of LRTI progression 
[25]. However, the microbiome diversity of CAP 
LRTI patients remains obscure. Therefore, our 
study performed the high-throughput sequencing 
to explore the difference in structure and compo-
sition of microbiota community between CAP 
LRTI patients and non-CAP LRTI patients.

In our present study, the lung microbiota of 6 
CAP LRTI patients and eight non-CAP LRTI 
patients were examined using metagenomic 
NGS technology. Next, we investigated the 
diversity and biomarkers for CAP LRTI patients. 
For alpha diversity indexes, there were no sig-
nificant difference in the alpha diversity of 
microbiota in CAP LRTI patients and non-CAP 
LRTI patients, suggesting that the diversity and 
richness of bacterial communities were similar 

Figure 4. The co-occurrence networks and function analysis of microbiome differently detected in CAP LRTI patients and non-CAP 
LRTI patients. (a) A strong correlation among module 1, module 2, module 4, module 7, and module 8 shows an effect of CAP on 
microbial composition of LRTI. (b) The cumulative relative abundance of each module in case group (CAP LRTI patients) and control 
group (non-CAP LRTI patients). (c) The difference of KEGG pathways is presented between case group (CAP LRTI patients) and control 
group (non-CAP LRTI patients).
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between LRTI patients with or without CAP. 
Our findings conformed to the results of alpha 
diversity in oral microbiome analyzed by other 
researches [26]. The microbial composition in 
lung cancer patients significantly differs between 
lung cancer patients and healthy controls but 
not microbial diversity [27]. On the contrary, it 
has been reported that the outgrowth of patho-
gens in pneumonia patients led to a decrease in 
diversity [28]. In the elderly with dental caries, 
the results of alpha diversity showed more varied 
communities in healthier ecosystems [29]. In 
patients with acute respiratory distress syn-
drome, the alpha diversity is significantly 
decreased compared to that of control groups 
[30]. In LRTI patients, the alpha diversity has 
been reported to decrease compared to that of 
patients with upper respiratory tract infection 
[31]. For beta diversity indexes, our results 

found a dramatical difference in the composition 
(PcoA, P = 0.0045), suggesting a potential effect 
of pneumonia history on lung microbiota in 
patients with LRTI. Similarly, studies have 
demonstrated significant differences in beta 
diversity of microbiota between the upper and 
the lower respiratory tract [31]. In upper 
respiratory tract infection, there is a higher 
probability in the alteration of lung microbial 
composition [32]. In saliva microbiota, the 
results of beta diversity analysis showed that 
the community structures were dramatically dif-
ferent in Helicobacter pylori uninfected and 
infected patients, showing that pathogenic bac-
teria affect the community structures of lung 
microbiota [33]. The results of beta diversity 
analysis showed a significant difference between 
patients with or without LRTI [34]. These find-
ings suggested the history of pneumonia 

Figure 5. A random forest-based classification model for identifying novel microbiota in CAP LRTI and non-CAP LRTI patients. (a) The 
OTUs that contributed the most to the model are ranked by mean decrease accuracy. (b) Receiver operating characteristic curve 
(ROC) of random forest model. (c) The relative abundance of microbiota in random forest models. Student t-test was used to 
evaluate significant difference. *P < 0.05.
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influenced the microbial composition of LRTI 
patients.

Studies reported that the functional abundance 
of the microbiome depends on the individual and 
interactive roles of the environment and commu-
nity structure [35]. The microbiota are involved in 
the immunological homeostasis in lung mucosa 
[36]. Furthermore, the microbiota may contribute 
to the susceptibility to diseases by metabolites- 
mediated immunological progresses [37]. Our 
results showed that the dysregulated-microbiota 
were enriched in metabolites-associated pathways, 
including pentose phosphate pathway and glycoly-
sis pathway. Previous studies have revealed that 
SARS-CoV-2 infectivity causes increased abun-
dances of bacterial species associated with glycolysis 
[38]. The gut bacterial taxa are involved in pentose 
phosphate in acute leukemia patients, including 
Streptococcus, Ruminococcus and Veillonella [39].

The random forest algorithm exhibits a high 
accuracy and robustness [40]. A recent study 
showed that a random forest model is used for 
feature selection and biomarkers screening [41]. 
The random forest algorithm has been used to 
identify the gut microbiota as biomarkers in 
major depressive disorders [42]. Another study 
showed that a random forest model was estab-
lished based on oral microbiota, which is used 
for biomarker selection [43]. To explore the 
novel microbial markers to distinguish LRTI 
patients with or without CAP, the random forest 
analysis was used to screen the biomarkers in the 
present study. Studies have reported that random 
forest classification at the genus level was used to 
select out the gut microbiota as biomarkers for 
major depressive disorders [42]. In children with 
juvenile idiopathic arthritis, a random forest 
model was established to screen 12 genera in 
gut microbiota as biomarkers using nested cross- 
validation analysis [44]. In nasopharyngeal 
microbial composition, the random forest 
model was used to explore the bacterial genera 
involving in pneumococcal colonization [45]. In 
LRTI, the random forest classifier analyses on the 
bacterial data were performed to discriminate 
LRTI from healthy individuals [20]. These results 
showed that a random forest model was consid-
ered as a universal method to screen potential 
novel bacterial genera and biomarkers.

In the present study, the random forest model 
was constructed to screen the potential novel bio-
markers. The obtained results showed that the 
accumulation in the increasing abundance of 
Bacillus cereus and Klebsiella pneumoniae was 
associated with the lung microbiota profiles of 
LRTI patients with CAP compared with that in 
LRTI patients without CAP. Studies showed that 
microbiome dysbiosis was considered as biomar-
kers for the development of potential colorectal 
cancer [46]. In addition, Bacillus cereus was 
regarded as a volatile human pathogen [47]. In 
pneumonia patients, Bacillus cereus contributes to 
the development of severe pneumonia and it is 
recognized as a potential pathogen [48]. There 
were few literatures reporting that Bacillus cereus 
causes LRTI [48,49]. Our results showed Bacillus 
cereus was identified as a marker in LRTI patients 
with a history of pneumonia. Whether Bacillus 
cereus directly causes the development of LRTI or 
homeostasis of microbial diversity in pneumonia 
will be explored in our future study. Interestingly, 
our findings revealed Klebsiella pneumonia as the 
indicator of CAP LRTI patients using random 
forest classifier, which got an AUC value of 
0.804. Studies have showed that Klebsiella pneu-
monia are the important pathogens causing pneu-
monia, which are associated with high morbidity 
and mortality [50,51]. In wheezing episodes in 
children, Klebsiella pneumoniae are predictive 
markers for the prediction of wheeze [52]. In the 
diversity of pathogens responsible for LRTI, 
Klebsiella pneumonia were identified as the most 
predominant single pathogens [53].

Nevertheless, some limitations should be con-
sidered in the present study. The metagenomic 
NGS analysis was performed to examine microbial 
diversity and identify potential biomarkers, rather 
than to do some experimental research to explore 
the mechanisms of Bacillus cereus on LRTI pro-
gression. Secondly, the biomarkers should be 
further screened in a broad population.

Conclusions

This study revealed a difference in microbial com-
position between CAP LRTI and non-CAP LRTI 
patients. Further, we identified Bacillus cereus as 
a potential biomarker to predict the risk of LRTI 
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progress, which is conducive to the diagnosis and 
management of CAP LRTI and non-CAP LRTI 
patients.
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