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Abstract. [Purpose] Many studies have been using cell culture models of muscle cells with exogenous cytokines 
or glucocorticoids to mimic atrophy in in vivo and in vitro tests. However, the changes in the phosphorylation of 
atrophy-related cofilin are still poorly understood in starved skeletal muscle cells. In this study, we first examined 
whether or not phosphorylation of cofilin is altered in L6 myoblasts after 3, 6, 12, 24, 48, and 72 hours of serum-free 
starvation with low glucose. [Methods] We used Western blotting to exam protein expression and phosphorylation 
in atrophied L6 myoblasts. [Results] L6 cell sizes and numbers were diminished as a result of serum-free starvation 
in a time-dependent manner. Serum-free starvation for 3, 6, 12, 24, 48, and 72 hours significantly decreased the 
phosphorylation of cofilin, respectively. [Conclusion] These results suggest that starvation-induced atrophy may be 
in part related to changes in the phosphorylation of cofilin in L6 myoblasts.
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INTRODUCTION

Starvation and other altered metabolic conditions such 
as immobilization, denervation, aging, and unloading 
states induces loss of muscle mass1–4). To study the signal 
transduction of atrophy in particular, various cell culture 
models have been developed5–7). In many studies, exog-
enous cytokines such as TNF-α, glucocorticoids such as 
dexamethasone, and serum-free starvation of cultured cells 
have been used as atrophy models to confirm the mecha-
nisms of whole skeletal muscle atrophy in vivo8–10). The 
elevated degradation of proteins in skeletal muscle atrophy 
and serum-free starvation is commonly coupled with acti-

vation of the protein ligases such as muscle specific RING 
finger-1 (MuRF-1) and atrogin-11, 4, 5, 11). Meanwhile, cofilin 
is a ubiquitously expressed protein in mammalian cells and 
thereby regulates the actin filament dynamics and reorgani-
zation and other functions12–14). Furthermore, cofilin binds 
to actin molecules, changing fibrous actin to globular ac-
tin13). This process is enabled by the dephosphorylation of 
cofilin by phosphatases12, 15). On the other hand, phosphory-
lation of cofilin abolishes the cofilin activity and inhibits its 
severing function12, 16) (Fig. 1C). However, the changes in 
phosphorylation of cofilin in starvation-induced atrophy are 
not fully understood. Therefore, we investigated the chang-
es in the phosphorylation of cofilin in L6 myoblasts during 
serum-free starvation with low glucose.

MATERIALS AND METHODS

L6 myoblasts from rat neonate skeletal muscle were 
separated into control and serum-free starvation groups1). 
The control group of L6 myoblasts was purchased from 
the American Type Culture Collection (Rockville, MD, 
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USA) and cultured in Dulbecco’s modified Eagle’s me-
dium containing 10% fetal bovine serum, 100 U/ml peni-
cillin, 100 µg/ml streptomycin, 200 mM glutamine, and 
4,500 mg/L high-concentration D-glucose. The serum-free 
starvation group of L6 myoblasts grown to 60–70% conflu-
ence and undernourished in DMEM containing 1,000 mg/L 
low-concentration D-glucose without FBS for 3, 6, 12, 24, 
48, and 72 h, respectively1). After each experimental treat-
ment, cells were lysed with an extraction buffer (20 mM 
HEPES, pH 7.5, 1% Nonidet P-40, 150 mM NaCl, 10% 
glycerol, 10 mM NaF, 1 mM Na3VO4, 2.5 mM 4-nitro-
phenylphosphate, 0.5 mM PMSF, and one tablet of Com-
plete Proteinase Inhibitor Cocktail [Roche, Indianapolis, 
IN, USA]). The morphological changes in L6 myoblasts 
with or without each experimental treatment were visual-
ized with an inverted microscope (AE30/31, Motic Incorpo-
ration, Richmond, BC, Canada). To measure the phosphory-
lation of cofilin, the samples were then homogenized in a 
sample buffer. The homogenate was centrifuged, and the 
supernatant was collected. Proteins (30–45 μg/lane) were 
separated on 12% polyacrylamide sodium dodecyl sulfate 
gels and then transferred electrophoretically to a polyvinyl-
idene fluoride membrane (Millipore; Bedford, MA, USA)2). 
Anti-cofilin antibody was purchased from Santa Cruz 
Biotechnology (Santa Cruz, CA, USA). Antibody-specific 
bands were quantified using an image analyzer (Bio-Rad). 
The protocol for the study was approved by the Commit-
tee of Ethics in Research of the University of Yongin, in 
accordance with the terms of Resolution 5-1-20, December 
2006. Data were expressed as means±SEM. The data were 
statistically evaluated using Student’s t-tests for compari-
sons between pairs of groups and by ANOVA for multiple 
comparisons. A p value of < 0.05 was considered to be sta-
tistically significant.

RESULTS

L6 cell sizes and numbers were diminished as a result 
of serum-free starvation in a time-dependent manner (Fig. 
1A). Phosphorylation of cofilin was significantly decreased 
after 3, 6, 12, 24, 48, and 72 hours of starvation compared 
with those of the control groups (n=3–4, Fig. 1B, Table 1). 
However, the expression of cofilin was significantly in-
creased after 3, 6, 12, 24, 48, and 72 hours of starvation 
compared with the expression of cofilin in the control 
groups (n=3–4, Fig. 1B, Table 1).

DISCUSSION

Skeletal muscle atrophy and joint contracture have 
proven to be significant orthopaedic problems in the area 
of physical therapy3, 17, 18). The skeletal muscle is the largest 
organ with high plasticity in the human, comprising about 
50% of the total body weight. Maintenance of muscle mass 
and neuromuscular function is important for activities daily 
living (ADL) in patients1, 2, 19), and maintenance of muscle 
mass in particular is related in part to optimal nutrient ab-
sorption and use. In contrast, nutrient starvation and disuse 
have in part the potential to negatively impact muscle mass 
such as through skeletal muscle atrophy20–23). Our previous 
study reported that the ubiquitin protein ligases MuRF-11) 
and atrogin-1 (data not shown), markers of muscle atrophy, 
are increased in atrophied gastrocnemius muscle strips 
and involved in the development of serum-free starvation-
induced atrophy in L6 myoblasts. Simultaneously, extracel-
lular signal-regulated kinase 1/2 (ERK1/2), stress-activated 
protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK), 
and p38 mitogen-activated protein kinase (p38MAPK) are 
involved in atrophy caused by cast immobilization of a hind 
limb and serum-free starvation of L6 myoblasts1, 2). Also, 
our previous report demonstrated that cast immobilization 
of rat gastrocnemius muscles increases the expression of 
tissue myoglobin24). Meanwhile, cofilin in eukaryotic cells 
binds to actin and plays a role in actin dynamics and re-
organization involved in cast immobilization-induced at-
rophy14, 25). Phosphorylation of cofilin is achieved by LIM 

Fig. 1. Change in phosphorylation of protein and schematic rep-
resentation of the cellular response caused by serum-free 
starvation with low glucose. 
Morphologic (A-a×30, A-b×100) and immunoblotting 
(B) analyses in the starved L6 myoblasts. FBS, fetal 
bovine serum; h, hours; E. period, experimental period; 
HG, high-concentration glucose; LG, low-concentration 
glucose; p-Cofilin, phosphorylated cofilin; R, receptor; 
F-actin, fibrous actin; G-actin, globular actin; Rho-Rac-
Cdc42, Rho family small GTPases; ROCK, Rho-associ-
ated protein kinase; PAK, p21-activated protein kinase; 
SSH, cofilin-specific phosphatases slingshot; Skeletal 
MCs, skeletal muscle cells.

Table 1. Changes in expression and phosphorylation of cofilin 
of L6 myoblasts during serum-free starvation with low 
glucose

Experimental 
period

Cofilin 
(%)

p-Cofilin 
(%)

0 hour (control) 100.0±0.0 100.0±0.0
3 hours 252.3±29.5* 20.7±6.1*
6 hours 242.7±20.7* 25.3±4.6*
12 hours 201.0±26.2* 24.7±6.3*
24 hours 198.7±22.9* 26.3±5.9*
48 hours 196.0±22.1* 24.3±5.4*
72 hours 176.3±14.4* 18.0±5.5*

Data were presented as the mean ± SEM. p, phosphorylated 
protein. The basal levels of abundance and phosphorylation in 
controls (0 hour) were considered to be 100%. *Compared with 
the 0 hour control, p<0.05.
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kinases and thereby inhibits the actin binding, severing, 
and depolymerizing activities of cofilin16, 25) (Fig. 1C). Fur-
thermore, the kinases responsible for this phosphorylation 
are Rho-associated protein kinase and p21-activated protein 
kinase, which are downstream kinases of the Rho family 
small GTPases26–28). On the other hand, dephosphoryla-
tion of cofilin is mediated by the cofilin-specific phospha-
tases slingshot12, 15) (Fig. 1C). Although cofilin is essential 
for maintenance of skeletal muscle mass12), it has not been 
reported that phosphorylation of cofilin is related to atro-
phy caused by serum-free starvation in the area of physical 
therapy. However, further systematic studies in the area of 
physical therapy such as electrotherapy, neurotherapy, hy-
drotherapy, and others are needed to confirm the mecha-
nism of cofilin under atrophic conditions29–31) (Fig. 1C). In 
summary, the phosphorylation of cofilin was decreased in 
starved skeletal muscle cells. The present results suggest 
that serum-free starvation-induced atrophy may be in part 
mediated by cofilin from L6 myoblasts.
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