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People make surprising but reliable perceptual errors.
Here, we provide a unified explanation for systematic
errors in the perception of three-dimensional (3-D)
motion. To do so, we characterized the binocular retinal
motion signals produced by objects moving through
arbitrary locations in 3-D. Next, we developed a Bayesian
model, treating 3-D motion perception as optimal
inference given sensory noise in the measurement of
retinal motion. The model predicts a set of systematic
perceptual errors, which depend on stimulus distance,
contrast, and eccentricity. We then used a virtual-reality
headset as well as a standard 3-D desktop stereoscopic
display to test these predictions in a series of perceptual
experiments. As predicted, we found evidence that
errors in 3-D motion perception depend on the contrast,
viewing distance, and eccentricity of a stimulus. These
errors include a lateral bias in perceived motion direction
and a surprising tendency to misreport approaching
motion as receding and vice versa. In sum, we present a
Bayesian model that provides a parsimonious account
for a range of systematic misperceptions of motion in
naturalistic environments.

Introduction

The accurate perception of visual motion is critical
for everyday behavior. In the natural environment,
motion perception involves determining the 3-D
direction and speed of moving objects, based on both
retinal and extraretinal sensory cues. In the laboratory,
a large number of studies have reported systematic
biases in the perception of 3-D motion, despite the

availability of many such cues (Fulvio, Rosen, &
Rokers, 2015; Harris & Dean, 2003; Harris & Drga,
2005; Lages, 2006; Rushton & Duke, 2007; Welchman,
Lam, & Bülthoff, 2008; Welchman, Tuck, & Harris,
2004). These perceptual errors may contribute to
behavioral failures in real-world scenarios, such as
catching projectiles (Peper, Bootsma, Mestre, & Bak-
ker, 1994) and driving under foggy conditions (Pretto,
Bresciani, Rainer, & Bülthoff, 2012; Shrivastava,
Hayhoe, Pelz, & Mruczek, 2010; Snowden, Stimpson,
& Ruddle, 1998). Here we ask if a range of systematic
errors in 3-D motion perception can be understood as a
consequence of 3-D viewing geometry and reasonable
prior expectations about the world.

Bayesian-observer models are a strong candidate for
addressing this question. They provide a straightfor-
ward rule for the optimal combination of incoming
sensory evidence with prior knowledge. The Bayesian
framework has successfully explained a variety of
perceptual phenomena (Girshick, Landy, & Simoncelli,
2011; Knill, 2007; Knill & Richards, 1996), including
systematic biases in 2-D motion perception (Weiss,
Simoncelli, & Adelson, 2002). Specifically, when visual
input is unreliable (for example, when a stimulus has
low contrast), observers systematically underestimate
the speed of visual motion in the fronto-parallel plane:
Low-contrast patterns appear to move more slowly
than otherwise equivalent high-contrast patterns (Stone
& Thompson, 1992; Thompson, 1982). This misper-
ception, along with several other seemingly unrelated
phenomena in motion perception, can be elegantly
accounted for by a Bayesian model that incorporates a
prior assumption that objects in the world tend to move
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slowly (Hürlimann, Kiper & Carandini, 2002; Stocker
& Simoncelli, 2006; Weiss et al., 2002).

In the 3-D domain, a prior assumption for slow
motion may have additional consequences. For exam-
ple, observers exhibit a lateral bias: They systematically
overestimate angle of approach in 3-D, such that
objects moving toward the head are perceived as
moving along a path that is more lateral than the true
trajectory (Harris & Dean, 2003; Harris & Drga, 2005;
Lages, 2006; Rushton & Duke, 2007; Welchman et al.,
2004; Welchman et al., 2008). Bayesian models of 3-D
motion perception, assuming a slow motion prior, can
account for this bias (Lages, 2006; Lages, Heron, &
Wang, 2013; Wang, Heron, Moreland, & Lages, 2012;
Welchman et al., 2008). However, existing models are
restricted to specific viewing situations (stimuli in the
midsagittal plane) and have been tested using tasks and
stimuli that limit the kind of perceptual errors that can
be observed. In addition, these models have not
addressed a recently identified perceptual phenomenon
in which the direction of motion in depth (but not
lateral motion) is frequently misreported: Approaching
motion is reported to be receding and vice versa (Fulvio
et al., 2015).

Here, we provide a Bayesian model of 3-D motion
perception for arbitrary stimulus locations and natu-
ralistic tasks. The derived model provides predictions
for both average biases and trial-to-trial variability. We
follow up this model with a series of perceptual studies,
both in virtual reality and on a stereoscopic desktop
display, and find that the model predicts the impact of
stimulus distance, contrast, and eccentricity on the
magnitude of 3-D motion misperceptions. We thus
provide a unified account of multiple perceptual
phenomena in 3-D motion perception, showing that
geometric considerations, combined with optimal
inference under sensory uncertainty, explain these
systematic and, at times, dramatic misperceptions.

Developing a Bayesian model

Geometric explanation of biases in 3-D motion
perception

The Bayesian-brain hypothesis posits that perception
of the physical world is dictated by a probabilistic
process that relies on a distribution called the posterior
(Kersten & Yuille, 2003; Knill & Pouget, 2004; Knill &
Richards, 1996). This posterior P(sjr) specifies the
conditional probability of the physical stimulus s given
a sensory measurement or response r. The posterior is
determined, according to Bayes’s rule, by the product
of two probabilistic quantities known as the likelihood
and the prior. The likelihood P(rjs) is the conditional

probability of the observed sensory response r given a
physical stimulus s. It characterizes the information
that neural responses carry about the sensory stimulus.
Increased sensory uncertainty, due to ambiguity or
noise in the external world or internal noise in the
sensory system, manifests as an increase in the width of
the likelihood. The prior P(s) represents the observer’s
assumed probability distribution of the stimulus in the
world. The prior may be based on evolutionary or
experience-based learning mechanisms. The relation-
ship between posterior, likelihood, and prior is given by
Bayes’s rule, which states:

P sjrð Þ}P rjsð ÞP sð Þ: ð1Þ
When sensory uncertainty is high, the likelihood is

broad and the prior exerts a relatively large influence
on the posterior, resulting in percepts that are
systematically more biased toward the prior (but see
Wei & Stocker, 2015). That is, the visual system relies
on prior assumptions when sensory information is
unreliable. Misperceptions will inevitably occur when
actual stimulus properties diverge from these prior
assumptions, particularly when sensory uncertainty is
high.

Here we apply this Bayesian framework to the
problem of 3-D motion perception. Since the derivation
of the posterior distribution for 3-D motion is lengthy,
we first provide an intuition by examining a simple
diagram illustrating the consequences of perspective
projection on retinal signals to 3-D motion. First, we
consider that light reflected from moving objects in the
world will project through the optics of the eye and cast
a pattern with a particular angular velocity on the
retina. This is illustrated in Figure 1A. A simplified top-
down diagram illustrates the left and right eyes of an
observer (projections are shown for the left eye only;
the right eye is for reference). Two linear motion
vectors are illustrated in orange and green. The vectors
have the same length, indicating the same speed in the
world, but they move in different directions, either in
depth (toward the observer, shown in green) or laterally
(to the left, shown in orange). Of course, the angular-
velocity signal in either eye alone does not specify the
direction of motion in the world. While these signals do
constrain the possible trajectories, estimates of 3-D
motion critically depend on the relationship of the
retinal-velocity signals between the two eyes.

The angular subtense of each vector in the left eye is
illustrated by the green and orange arcs, respectively.
Note that although the vectors have the same length,
and thus the same world speed, the angular subtense of
the vector corresponding to motion in depth is
considerably smaller than the one corresponding to
lateral motion, and thus produces a considerably
slower retinal speed.
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Next, we consider that our perception of motion in
the world (i.e., the motion vectors) relies on measuring
these angular speeds (i.e., the arcs) and inferring the
physical motion trajectories that caused them. To
examine how the limited accuracy in measuring angular
speed on the retina propagates to limited accuracy in
perceiving different motion trajectories, we can project
a fixed retinal uncertainty in angular speed back into
world coordinates. This is illustrated in Figure 1B,
again just for two sample directions of motion directly
toward or to the left of the observer. Note that even
though the angular speeds on the retina are the same,
the amount of uncertainty for motion in depth
(represented by the vector length) is greater than for
lateral motion. That is, a given uncertainty in angular
speed will result in greater uncertainty for motion in
depth in the world. Vectors are reproduced side by side
on the right for clarity. This difference is simply due to
inverting the projection shown in Figure 1A. Note that
this is an observation about the geometry of 3-D
viewing, not a claim about how observers estimate
motion direction.

However, is the high uncertainty for motion in depth
universally true for all viewing situations? Simple
geometric diagrams show that this is not the case.
Figure 1C and 1D illustrates two additional situations.
In Figure 1C, the distance of the motion vectors from
the eyes is decreased. Uncertainty is still larger for
motion in depth, but the increase relative to lateral
motion is substantially attenuated. In Figure 1D, the
motion vectors are located off to the observer’s right.
In this case, the relationship has actually inverted, and
uncertainty for lateral motion is greater. Note that we
only illustrate motion directly lateral to or toward the
observer. However, as we will show later, since any
motion vector can be decomposed into its components

along these orthogonal axes, these general principles
will hold for any direction.

Indeed, if we model the eye as a circle and assume
the center of projection is at the circle’s center, it is easy
to see that there is no consistent increase in uncertainty
for motion in depth relative to lateral motion.
Intuitively, for a given trajectory the motion compo-
nent parallel to the tangent of the circle (at the point
where a line connecting the center of projection to the
vector intersects the circle) will have the least uncer-
tainty (Figure 1E). In the derivation that follows, we
quantitatively determine the predicted uncertainty for
3-D motion trajectories in all directions under any
viewing situation and use these predictions to formulate
a Bayesian model for 3-D motion perception, focusing
specifically on the impact of uncertainty in retinal
motion on errors in perceived direction of objects
moving through the world.

Relationship between 3-D motion trajectories
and retinal velocities

We can describe the motion of any object in space
relative to an observer in a 3-D coordinate system with
the function

p tð Þ ¼ x tð Þ; y tð Þ; z tð Þ½ �; ð2Þ
where p is the position of the object as a function of
time t in a coordinate system defined over x-, y-, and z-
axes. Here, we use a head-centered coordinate system
and place the origin at the midpoint between the two
eyes of the observer (see icon in upper left corner of
Figure 2). In this left-handed coordinate system, the x-
axis is parallel to the interocular axis (positive
rightward), the y-axis is orthogonal to the x-axis in the

Figure 1. Schematic top-down view illustrating how uncertainty in retinal velocity propagates asymmetrically to motion trajectories in

the world. (A) Two orthogonal motion vectors with the same speed in the world (motion in depth in green and lateral motion in

orange) project to different angular speeds on the retina. (B) A fixed retinal speed projects to a longer vector for motion in depth than

for lateral motion. The same geometry applies to the transformation of uncertainty. (C) This difference is much reduced at near

viewing distances. (D) This relationship can invert for trajectories that occur off of the midsagittal plane. (E) Illustration of how the

tangent line of a circle determines the vector direction with the minimum length for a given angle and distance. Note that when

motion is directly toward either eye, this will project to zero retinal velocity in one eye (ignoring looming/optical expansion) and

nonzero velocity in the other.
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plane of the forehead (positive upward), and the z-axis
extends in front of and behind the observer (positive in
front).

We will model the retinal information available from
horizontal velocities, and thus consider the projection
of points onto the xz-plane (y¼ 0 for all points; Figure
2). Note, however, that this does not mean that this
model is valid only for stimuli in the plane of the
interocular axis. As long as retinal angles are repre-
sented in an azimuth-longitude coordinate system, the
horizontal retinal velocities can be computed from the
x and z components of 3-D motion vectors alone. This
geometry is independent of the observer’s point of
fixation but assumes that fixation does not change over
the course of stimulus presentation. In this coordinate
system, the (x, z) coordinates of the left and right eye
are defined as (xL, 0) and (xR, 0), respectively. The
distance between the eyes along the interocular axis,
denoted by a, is xR � xL.

At any time point, an object with coordinates (x(t),
z(t)) will project to a different horizontal angle in each
eye. If we define these angles relative to the x-axis in the
xz-plane, they are given by

bL;R tð Þ ¼ arctan
z tð Þ

x tð Þ � xL;R

� �
; ð3Þ

where bL(t) and bR(t) indicate the angle in the left and
the right eye, respectively. The object will generally
have a different distance from each eye. These distances
are given by

hL;R tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x tð Þ � xL;R

� �2 þ z tð Þ2
q

; ð4Þ

where hL(t) and hR(t) indicate the distance from the left
and the right eye, respectively.

Since we are interested in motion cues, we differen-
tiate Equation 3 with respect to time to determine the
relationship between object motion and motion on the
retina. We denote first derivatives of functions with the
convention df(x)/dt ¼ f0(x). This yields

b0
L;R tð Þ ¼ 1

1þ z tð Þ
x tð Þ�xL;R

� �2 z0 tð Þ x tð Þ � xL;R

� �
� z tð Þx0 tð Þ

x tð Þ � xL;R

� �2
" #

:

ð5Þ
Rearranging Equation 5 and substituting in Equation 4
allows us to simplify to

b0
L;R tð Þ ¼ 1

hL;R tð Þ2
z0 tð Þ x tð Þ � xL;R

� �
� z tð Þx0 tð Þ

	 

:

ð6Þ
For motion estimation, b0

L tð Þ and b0
R tð Þ are the

sensory signals, representing retinal velocities in left
and right eyes, and the motion components in the
world x 0(t) and z 0(t) that generated them are
unknown. We therefore solve for x 0(t) and z 0(t) as a
function of b0

L tð Þ and b0
R tð Þ. For simplicity, we will

drop the time index so that b0
L;R, hL,R, z0, z

0, x0, and x 0

refer to b0
L;R tð Þ, hL,R(t), z(t), z 0(t), x(t), and x 0(t), each

evaluated at time t ¼ t0. To determine the velocity x 0

in terms of retinal velocities, we rearrange Equation 6
for the left eye to solve for z 0, substitute the result
back into Equation 6 for the right eye, and solve for
x 0, yielding

x0 ¼ 1

z0a
b0

Lh
2
L x0 � xRð Þ � b0

Rh
2
R x0 � xLð Þ

	 

: ð7Þ

Recall that a refers to the interocular separation. To
determine the equation for z 0 in terms of retinal
velocities, we rearrange Equation 6 for the left eye to
solve for x 0 and substitute this back into Equation 6
for the right eye, yielding the following equation for
z 0, also in terms of retinal velocities:

z0 ¼ 1

a
b0

Lh
2
L � b0

Rh
2
R

	 

: ð8Þ

Propagating uncertainty for 3-D motion

We assume that the measurements of retinal motion
in each eye, b0

L and b0
R, are corrupted by independent

additive noise:

€b0
L ¼ b0

L þ nb0
L
ð9AÞ

Figure 2. Diagram of the 3-D motion coordinate system. The

icon in the upper left shows the origin and axes of the

coordinate system, with arrowheads indicating the positive

direction on each axis. The top-down view shows a slice through

the interocular axis in the xz-plane. Large circles indicate the

left and right eyes. The smaller gray circle and arrow indicate

the location and trajectory of motion of an object. The

coordinates of key points are indicated in x and z (y¼ 0 for all

points), as well as several line segments and angles. Note that

x0 and z0 denote the coordinates of the object with the motion

defined by Equation 2, evaluated at time point t ¼ t0.
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€b0
R ¼ b0

R þ nb0
R
: ð9BÞ

Here, €b0
L and €b0

R denote the measured retinal velocities in
the left and right eye, respectively, where noise samples
nb0

L
and nb0

R
are assumed to be independently drawn from

a zero-mean Gaussian distribution with a variance of
r2
nb0
. Note that the assumption of constant additive noise

is inconsistent with Weber’s law (which would predict
that the noise increases proportionately with speed), and
that this model assumes that noise is independent of the
motion direction. However, psychophysical experiments
have shown that for relatively slow speeds (less than;28/
s–48/s), speed-discrimination thresholds are more stable
than is predicted by Weber’s law (Freeman, Champion,
&Warren, 2010;McKee, Silverman, &Nakayama, 1986;
Stocker & Simoncelli, 2006).

We should note that although our derivations
depend on the locations of the object relative to the
eyes, they do not depend on where the observer fixates.
This independence occurs because the position of
fixation does not affect the angular velocity cast by a
moving object at a given head-centric location—
assuming, as in previous models, that fixation remains
stable during stimulus presentation (Lages, 2006; Wang
et al., 2012; Welchman et al., 2008). However, this does
not explicitly account for any differences in retinal-
velocity estimation across the visual field. For example,
while retinal-motion signals may be less reliable at
eccentricity compared to at fixation (Johnston &
Wright, 1986; Levi, Klein, & Aitsebaomo, 1984), we do
not explicitly incorporate such differences here.

Under the assumption that the object’s initial 3-D
location—its distance z0 and its location relative to
each eye (x0� xL) and (x0� xR)—is known, we can use
Equations 7 and 8 (which specify x0 and z0 as linear
combinations of b0

L and b0
R) to determine the noise

covariance of the sensory measurements of speed in x
and z (€x0 and €z0). First, we rewrite the linear
transformation from retinal velocities b0 ¼ b0

L; b
0
Rð Þ to

world velocities w0 ¼ x0; z0ð Þ in terms of the matrix
equation w0 ¼ Ab0. In this formulation, A is given by

A ¼
h2L x0�xRð Þ

z0a

�h2R x0�xLð Þ
z0a

h2L
a

�h2R
a

2
4

3
5: ð10Þ

If we assume independent and equal noise distributions
for the two eyes, the noise covariance of the sensory
measurements is given byM¼AATr2

nb
0 , which is equal to

M ¼ cov €x0; €z0ð Þ

¼
x0�xRð Þ2h4Lþ x0�xLð Þ2h4R

z2
0
a2

r2
nb0

x0�xRð Þh4Lþ x0�xLð Þh4R
z0a2

r2
nb0

x0�xRð Þh4Lþ x0�xLð Þh4R
z0a2

r2
nb0

h4Lþh4R
a2

r2
nb0

2
64

3
75:
ð11Þ

To gain more intuition for the relative noise effects on
the x and z velocity components of a motion trajectory,
we plot the sensory uncertainty for each velocity
component (the square root of the diagonal elements of
Equation 11, denoted rx0 and rz0) as a function of
horizontal location x0 and distance in depth z0 in Figure
3A and 3B. Each panel contains an isocontour plot
showing the log of the sensory uncertainty at each true
spatial location. Several features are notable. The
uncertainty in x0 is at its minimum for points that fall on
or near the midsagittal plane and increases for points to
the left and right. The uncertainty in z0 is at its minimum
for points closest to the eyes and increases radially away
from the midpoint between the eyes. Note that
uncertainty in x0 also increases with distance, but not as
steeply as in z0. In the central visual field, the uncertainty
in z0 is generally much greater than the uncertainty in x0.

To illustrate the relative magnitude of uncertainty in
x0 and z0, we plot the log of the ratio of the two values
for a subset of points close to the observer in Figure 3C
(within 25 cm left/right and 100 cm in depth). Ratios
greater than 0 (red) indicate that uncertainty in z0 is
greater than x0, and ratios less than 0 (blue) indicate the
reverse. In the central visual field, this ratio is greater
than 1. This is consistent with previous work (Welch-
man et al., 2008). However, the ratio varies consider-
ably as a function of both viewing distance and viewing
angle. At steep viewing angles (.458), the relationship
reverses and x0 uncertainty is actually greater than z0

uncertainty. We should note that our model includes
uncertainty only in object speed, not in object location.
Uncertainty in object location would likely increase for
objects projecting to larger retinal eccentricities.

Equation 11 indicates that the uncertainties in x0 and
z0 are not independent. To visualize this relationship, in
Figure 3D we show the covariance ellipses for a set of
locations within 100 cm in depth (the inset shows a
zoomed view of nearby points). For most locations, the
ellipses are highly elongated, indicating that for each
location, uncertainty is anisotropic across directions.
As expected from the geometric analysis (Figure 1), the
axis of minimal uncertainty is orthogonal to a line
connecting each location back to the interocular axis,
independent of the direction of gaze. This creates a
radial pattern, in which uncertainty is highest for
motion extending radially from the observer’s location.
Along the midsagittal plane (x0 ¼ 0), the covariance is
zero and the axes of minimal and maximal uncertainty
align with the x- and z-axes, respectively.

Indeed, if we consider only cases in which the
stimulus is presented in the midsagittal plane—as is
often done in perceptual studies—the off-diagonal
elements of the covariance matrix become zero, and we
can simplify r2

x0 and r2
z0 to
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r2
x0 ¼

h4

2z20
r2
nb0
ð12Þ

r2
z0 ¼

h4

2 a=2ð Þ2
r2
nb0
; ð13Þ

where h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=2ð Þ2 þ z20

q
. Typical viewing conditions

(where z0 � a) result in substantially larger uncertainty
for the z component of velocity than for the x
component. However, if z0 is equal to a/2, half the
interocular distance, the variances in x0 and z0 will be
equal. Thus, while uncertainty for motion in depth in
the midsagittal plane clearly tends to be substantially
higher than for lateral motion, the relative uncertainty
is reduced for near viewing distances.

Application of Bayes’s rule to predict perceived
motion in the midsagittal plane

In order to predict how sensory uncertainty in
motion measurement affects actual percepts, we need to
define a formal relationship between sensory measure-
ments and perceived motion. For this, we derive a

Bayesian ideal observer that combines this sensory
information with a prior distribution over 3-D motions.
We will first consider only motion in the midsagittal
plane (x0¼ 0), such that uncertainty in x0 and z0 from
the likelihood come out as independent (Equations 12
and 13).

The full likelihood function in real-world coordi-
nates—that is, the conditional probability of the
(transformed) velocity measurements €x0 and €z0 given the
true velocities (x0, z0)—is given by a 2-D Gaussian
probability density function. For motion originating
along the midsagittal plane, this is given by the product
of two 1-D Gaussians, N l;r2

� �
, where l and r denote

the mean and standard deviation of a 1-D Gaussian,
respectively. These likelihoods are given by

P €x0jx0ð Þ ¼ N x0;r2
x0

� �
ð14AÞ

P €z0jz0ð Þ ¼ N z0; r2
z0

� �
; ð14BÞ

where €x0 and €z0 are derived from the measurements of
retinal velocity in the left and right eyes (Equations 7–
9). Note that we assume that hL and hR in these
equations can be determined if one knows the
interocular separation and has a reliable estimate of the

Figure 3. Uncertainty for x and z motion vary with stimulus distance and head-centric eccentricity. (A) Uncertainty in the x component

of a motion vector (x0) is plotted in arbitrary units as a function of location in x and z (assuming an interocular distance a¼ 6.4 cm).

(B) Same as (a), except for the z component of motion (z0). The color-map scales of (A) and (B) are the same. (C) The ratio between

the values in the boxed region in (A) and (B). (D) Ellipses illustrate the noise covariance of x0 and z0 for a range of spatial locations.

Ellipse scale indicates the relative uncertainty for each location, and orientation indicates the axis of maximal uncertainty. All ellipses

have been reduced by scaling with an arbitrary factor to fit within the plot. Inset shows the same ellipses for a small spatial region

(also with a different scaling).
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object location from any combination of monocular
and binocular cues (that is, the distance from each eye
need not be derived from monocular distance infor-
mation only).

We assume that the prior for slow speeds is isotropic
in world velocities (a Gaussian with equal variance in
all directions) and centered at 0 in x0 and z0, as has been
done previously (Lages, 2006, 2013; Wang et al., 2012;
Welchman et al., 2008). We can then express the prior
as

P x0ð Þ ¼ N 0; r2
p

� �
ð15AÞ

P z0ð Þ ¼ N 0; r2
p

� �
; ð15BÞ

where r2
p is the variance of the prior.

The posterior distribution, according to Bayes’s rule,
results from multiplying the likelihood and the prior
and renormalizing. For Gaussian likelihoods and
priors, the posterior distribution also takes the form of
a Gaussian, with mean and variance that can be
computed according to standard formulas. The means
of the posterior in x0 and z0 are given by

x̂0 ¼ ax0 €x
0 ð16AÞ

ẑ0 ¼ az0€z
0; ð16BÞ

and the variances by

r2
x̂0 ¼ ax0r

2
x0 ð17AÞ

r2
ẑ0 ¼ az0r

2
z0 ; ð17BÞ

where ax0 and az0 are ‘‘shrinkage factors’’ between 0 and
1 that govern how much the maximum-likelihood
velocity estimates are shrunk toward zero (the mean of
the prior). They are given here by

ax0 ¼
r2

p

r2
x0 þ r2

p

ð18AÞ

az0 ¼
r2

p

r2
z0 þ r2

p

: ð18BÞ

The means in Equations 16A and 16B are denoted by x̂0

and ẑ0 because they also correspond to the sensory
estimate of each motion component determined by the
posterior maximum, or maximum a posteriori (MAP)
estimate. In brief, the estimated speeds correspond to
the measured speeds in each direction, scaled toward
zero by the shrinkage factor in each direction.
Similarly, the posterior variance equals the variance of
the sensory measurements also scaled by the shrinkage
factor.

The full posterior distribution—that is, the proba-
bility of a given world velocity given a particular
measured velocity—can therefore be written as

P x0j€x0ð Þ ¼ N x̂0;r2
x̂0

� �
ð19AÞ

P z0j€z0ð Þ ¼ N ẑ0; r2
ẑ0

� �
: ð19BÞ

We can examine the trial-to-trial performance of the
Bayesian ideal observer by deriving the sampling
distribution of the MAP estimate—that is, the distri-
bution of the estimates of a Bayesian ideal observer
over multiple repeated presentations of a fixed stimu-
lus. (The ideal observer exhibits variability because it
receives a new set of noisy measurements on each trial).
This distribution is given by

P x̂0jx0ð Þ ¼ N ax0x
0; a2x0r

2
x0

� �
ð20AÞ

P ẑ0jz0ð Þ ¼ N az0z
0; a2z0r

2
z0

� �
: ð20BÞ

The variances of the ideal observer’s estimates are
scaled by a2x0 and a2z0 relative to the variance of a
maximum-likelihood estimator (due to the fact that a
Gaussian random variable scaled by a will have its
variance scaled by a2). This shows that the ideal
observer exhibits a reduction in variance even as it
exhibits an increase in bias (in this case, bias toward
slower speeds).

Application of Bayes’s rule to predict perceived
motion at arbitrary x-z locations

For the case of motion occurring away from the
midsagittal plane, we can derive the full covariance
matrix of the ideal observer’s estimates (which is not
aligned with the x- and z-axes). We already have the
noise covariance M of the sensory measurements from
Equation 11. The covariance of the posterior of the
Bayesian ideal observer (denoted by K, the covariance
of x̂0 and ẑ0) can be determined from this matrix and the
covariance of the prior (denoted as C, a diagonal
matrix with variance in x0 and z0 of r2

p:

K ¼ M�1 þ C�1
� ��1

: ð21Þ
Given a pair of transformed velocity measurements
€w0 ¼ €x0; €z0ð Þ, the vector of posterior means in x0 and
z0—that is, ŵ0 ¼ x̂0; ẑ0ð Þ, the MAP estimate in x0 and
z0—is then

ŵ0 ¼ KM�1 €w0: ð22Þ
Here, the matrix S ¼ KM�1 provides a joint shrinkage
factor on the maximum-likelihood estimate analogous
to the role played by a in the previous section.
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Lastly, the sampling distribution of the MAP
estimate can be described as a 2-D Gaussian:

P ŵ0jw0ð Þ ¼ N Sw0;SMST
� �

; ð23Þ

where w0 ¼ x0; z0ð Þ. In the next sections, we describe the
methods of a set of 3-D motion-perception experiments
and compare the experimental results to the predictions
of this ideal-observer model. Since the selection of axes
over which to calculate motion is arbitrary, in all cases
we convert world motion (whether the actual stimulus,
the MAP estimate, or the actual participant response)
to an angular-motion direction, with motion rightward
defined as 08 and angles increasing counterclockwise
(Figure 4C). In particular, we focus on systematic
errors in the predicted and perceived direction of
motion, and the impact of viewing distance, stimulus
contrast, and lateral eccentricity on these errors.

Experimental methods

In each experiment, observers viewed briefly present-
ed stimuli moving with a random velocity in a random
direction in the xz-plane, and indicated the perceived
direction of motion. Raw data from all three experi-
ments are provided in Supplementary Figures S1–S3.

Experiment 1

The goal of Experiment 1 was to test the model
predictions regarding the effects of viewing distance

and stimulus contrast on perceptual errors (lateral bias
and direction misreports) in the midsagittal plane using
a naturalistic virtual-reality (VR) paradigm.

Participants

Seventy college-aged members of the University of
Wisconsin–Madison community (43 women, 27 men)
gave informed consent to complete the study, and 47 (26
women, 21 men) successfully completed all parts of the
experiment. The participants that did not complete the
study had difficulty either understanding the task or
perceiving depth in the display (n¼19) or wearing glasses
inside the VR head-mounted display system (n¼ 4). The
experiment was carried out in accordance with the
guidelines of the University of Wisconsin–Madison
Institutional Review Board. Course credits were given in
exchange for participation.

All participants had normal or corrected-to-normal
vision and were screened for intact stereovision using the
Randot Stereotest (Stereo Optical Company, Chicago,
IL). To qualify for the study, participants were required
to accurately identify all of the shapes in the Randot
Form test, to identify the location of at least five out of 10
targets in the Randot Circle test, and to pass the
suppression check. Although all participants passed the
tests at these criteria, those with lower scores on the Form
test (i.e., 5 or 6) were more likely to terminate their
participation early (;50% of thosewho consentedbut did
not complete the study).

Apparatus

The experiment was controlled using MATLAB and
the Psychophysics Toolbox (Brainard, 1997; Kleiner,

Figure 4. Stimulus and procedure for Experiment 1. (A) Participants wore a head-mounted display and viewed a stereoscopic virtual

room with a planar surface in the middle. (B) Zoomed-in views of the left and right eyes’ images show the critical aspects of the

stimulus. Participants fixated nonius lines in the center of a circular aperture, and a virtual target (white sphere) appeared inside the

nonius lines. (C) The target moved at a constant velocity in a random direction within the xz-plane (Stimulus). Afterwards,

participants positioned a virtual paddle such that it would intersect the trajectory of the target (Response). The setting denoted by

the black paddle in this example would result in a successful target interception.
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Brainard, Pelli, Ingling, &Murray, 2007; Pelli, 1997) on
a Macintosh computer and projected through an
Oculus Rift DK1 (Oculus VR, Menlo Park, CA), which
was calibrated using standard gamma calibration
procedures. The Oculus Rift DK1 is a stereoscopic
head-mounted VR system with an 18-cm LCD screen
embedded in the headset providing an effective
resolution of 6403800 pixels per eye with a refresh rate
of 60 Hz. The horizontal field of view is over 908 (1108
diagonal). Also embedded within the headset is a 1,000-
Hz Adjacent Reality Tracker that relies upon a
combination of gyros, accelerometers, and magnetom-
eters to measure head rotation along the yaw, pitch,
and roll axes with a latency of 2 ms. Note that
translations of the head are not tracked by the device.
Participants used a wireless keyboard to initiate trials
and make responses.

Stimulus and procedure

In a series of trials, participants were asked to
indicate the perceived direction of motion of a target
sphere that moved with a constant velocity in the
virtual environment. The stimuli were presented in the
center of a virtual room (346 cm in height, 346 cm in
width, and 1,440 cm in depth). The virtual wall, ceiling,
and floor were all mapped with different textures.
These textures were included to facilitate better
judgment of distances throughout the virtual space and
the relative positions of the stimuli (Figure 4A).

The stimuli were otherwise similar to those used by
Fulvio et al. (2015). In the center of the virtual room,
there was a planar surface with a circular aperture (7.58
in radius). The planar surface was mapped with a 1/f
noise pattern that was identical in both eyes to aid
vergence. In addition, nonius lines were embedded
within a small 1/f noise patch near the center of the
aperture. All stimulus elements were antialiased to
achieve subpixel resolution. The background seen
through the aperture was midgray (Figure 4B).

The planar surface was positioned in the room at one
of two viewing distances from the observer’s location:
90 cm (n ¼ 15 participants) or 45 cm (n ¼ 32
participants). Participants were instructed to fixate the
center of the aperture. However, they were free to make
head movements, and when they did so, the display
updated according to the viewpoint specified by the
yaw, pitch, and roll of their head. Translations of the
head did not affect the display, such that stimulus
viewing distance remained constant.

On each trial, a white sphere (target) of 0.258 in
diameter appeared at the center of the aperture and
then followed a trajectory defined by independently
chosen random speeds in the x (lateral) and z (motion-
in-depth) directions, with no change in y (vertical
direction), before disappearing. The motion trajectory

always lasted for 1 s. Velocities in x and z were
independently chosen from a 2-D Gaussian distribution
(M¼ 0 cm/s, SD¼ 2 cm/s) with imposed cutoffs at 6.1
and �6.1 cm/s. This method resulted in motion
trajectories whose directions spanned the full 3608

space (Figure 4C, left side). Thus, the target came
toward the participant (approaching) and moved back
behind fixation away from the participant (receding) on
approximately 50% of trials each. It is important to
note that since x and z motion were chosen randomly
and independently, the amount of perceived lateral
movement on each trial did not carry information
about the amount of motion in depth, and vice versa.
The target was rendered under perspective projection,
so that both monocular (looming) and binocular cues
to motion in depth were present.

Participants indicated the perceived target trajectory
using a ‘‘3-D Pong’’ response paradigm (Fulvio et al.,
2015). After the target disappeared, a 3-D rectangular
block (paddle), whose faces also consisted of a 1/f noise
pattern, appeared at the edge of the aperture. The
paddle dimensions were 0.25 cm 3 0.5 cm 3 0.25 cm.
Participants were asked to extrapolate the target’s
trajectory and adjust the paddle’s position such that the
paddle would have intercepted the target if the target
had continued along its trajectory. The paddle’s
position could be adjusted along a circular path that
orbited the fixation point in the xz-plane using the left
and right arrow keys of the keyboard (Figure 4C, right
side). As the participant moved the paddle through the
visual scene, the paddle was rendered according to the
rules of perspective projection. Thus, the stimuli were
presented and the responses were made in the same 3-D
space. By asking participants to extrapolate the
trajectory, we prevented them from setting the paddle
to a screen location that simply covered the last seen
target location. We did not ask participants to retain
fixation during the paddle-adjustment phase of the
trial. When participants were satisfied with the paddle
setting, they resumed fixation and pressed the space bar
to initiate a new trial. Supplementary Movie S1
demonstrates the general procedure.

The target had variable contrast, presented at one of
three Weber values—100% (high), 15% (mid), and 7.5%
(low)—which were counterbalanced and presented in
pseudorandom order.

Participants carried out 10 to 15 practice trials in the
presence of the experimenter to become familiar with
the task. All participants completed the experimental
trials in one session that was self-paced. The data
reported here were collected as part of a larger study.
Within the study, these data comprise one block of
trials, which took on average 5–12 min for each
participant to complete and contained an average of
225 trials (an entire session was 30–45 min with breaks
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throughout). No feedback was provided for either the
practice or experimental trials.

Data analysis

To examine biases in the perceived direction of
motion, we computed the mean angular error for each
participant and each unique stimulus condition (view-
ing distance and target contrast). Errors were calcu-
lated as the angular distance of the reported direction
relative to the stimulus direction in the xz-plane. We
analyzed the data to determine whether this angular
error tended to be toward the fronto-parallel plane
(lateral bias) or the midsagittal plane (medial bias; see
Figure 4C). We assigned positive values to medial
errors and negative values to lateral errors such that the
average would indicate the overall directional bias.

To examine the frequency of motion-direction
errors, we computed the percentage of trials on which
paddle settings were made on the opposite side of either
the fronto-parallel or the midsagittal plane. Responses
on the opposite side of the fronto-parallel plane
(approaching vs. receding) were considered depth-
direction confusions. Responses made on the opposite
side of the midsagittal plane (leftward vs. rightward)
were considered lateral-direction confusions.

Statistical effects were tested through an analysis of
variance (ANOVA) evaluated on generalized linear
model fits to the individual trial data for mean lateral
bias and to the individual subject proportions for
direction-confusion analyses. The model incorporated
viewing distance as a between-subjects fixed effect and
target contrast as a within-subject (repeated-measures)
fixed effect. The model intercepts were included as
random subject effects. Follow-up tests consisted of
Bonferroni-corrected t tests for multiple comparisons.

Experiment 2

To examine whether the motion-direction confusions
measured in Experiment 1 were particular to the VR
setup, we compared these results to those of a second
experiment conducted on a traditional stereoscopic
display.

Participants

Three adults participated in the experiment. All had
normal or corrected-to-normal vision. One participant
(a man, age 23 years) was unaware of the purpose of
the experiment and had limited psychophysical experi-
ence. The remaining two participants (authors JWP
and BR; men, age 34–35 years) had extensive psycho-
physical experience. The experiment was undertaken
with the written consent of each observer, and all

procedures were approved by the University of Texas
at Austin Institutional Review Board.

Apparatus

The experiment was performed using a similar setup
to Experiment 1; however, in this case the stimuli were
presented on two 35.0 cm 3 26.3 cm CRT displays
(ViewSonic G90fB, one for each eye; 75 Hz; 1,280 3
1,024 pixels) at a single viewing distance of 90 cm (21.28
3 16.38 of visual angle). Left- and right-eye half images
were combined using a mirror stereoscope. The
luminance of the two displays was linearized using
standard gamma-correction procedures, and the mean
luminance was 50.6 cd/m2.

Stimulus and procedure

As in Experiment 1, all stimuli were presented within
a circular midgray aperture (18 radius) that was
surrounded by a 1/f noise texture at the depth of the
fixation plane (90 cm) to help maintain vergence. No
virtual room was present. Additionally, a small square
fixation point was placed at the center of the display.
The fixation point was surrounded by horizontal and
vertical nonius lines, and was placed on a circular 0.18
radius 1/f noise pattern.

Rather than a single target, a field of randomly
positioned dots moving in the xz-plane was presented
on each trial. The positions of the dots were
constrained to a single plane fronto-parallel to the
display (i.e., perpendicular to the observer’s viewing
direction). The initial disparity of the plane was
consistent with a distance of 93 cm (3 cm behind the
fixation plane). The plane then moved for 500 ms with
x and z velocities independently and uniformly sampled
from an interval of �4 to 4 cm/s, corresponding to a
maximum possible binocular disparity of 0.218 (un-
crossed) relative to the fixation plane.

Each moving dot had a 200-ms limited lifetime to
prevent tracking of individual stimulus elements. Dot
radius was 0.11 cm and dot density was ;74 dots/deg2.
Both dot size and dot density changed with distance to
the observer according to the laws of perspective
projection. Dots had variable contrast, presented at one
of three Weber values (7.5%, 15%, or 60%). Weber
contrast was computed as the luminance difference
between the dots and the background expressed as a
percentage of the background luminance level. Half of
the dots were darker, and the other half brighter, than
the midgray background.

The stereoscope was initially adjusted so that the
vergence demand was appropriate for the viewing
distance, given a typical interocular distance. Prior to
each session, each participant made further minor
adjustments so that the nonius lines at fixation were
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aligned both horizontally and vertically, and vergence
was comfortable. Participants were instructed to main-
tain fixation for the duration of each experimental trial.

Trials proceeded as described for Experiment 1,
except that participant responses were made differently.
After the dots disappeared, a circle and a line were
presented on-screen, where one of the line endpoints
was fixed to the center of the circle and the participant
could adjust the other line endpoint with a computer
mouse. Participants were instructed to treat this as a
top-down view of the stimulus (see Figure 4C), and to
adjust the line such that the angle was consistent with
the trajectory of the dots. We verified in pilot
experiments that this method produced consistent,
reproducible estimates. As in Experiment 1, no
feedback concerning performance was provided.

Data analysis

Data were analyzed in the same manner as in
Experiment 1.

Experiment 3

To test model predictions for stimuli presented at
locations at eccentricity—away from the midsagittal
plane—we conducted a third experiment using the same
VR display as described in Experiment 1.

Participants

Twenty-two college-aged members of the University
of Wisconsin–Madison community gave informed
consent to complete the study. One participant did not
complete the study because of difficulty in perceiving
depth in the display, despite passing the stereovision
screening. The remaining 21 participants completed all
aspects of the experiment. The experiment was carried
out in accordance with the guidelines of the University
of Wisconsin–Madison Institutional Review Board.
Course credits were given in exchange for participation.
All participants had normal or corrected-to-normal
vision and were screened for intact stereovision using
the Randot Stereotest in order to meet the criteria
outlined for Experiment 1.

Apparatus

The apparatus was the same as that described for
Experiment 1.

Stimulus and procedure

The stimulus and procedure were similar to those of
Experiment 1, with the exception that the planar surface

in the center of the room had three circular apertures
rather than just one. As in Experiment 1, one of the
apertures appeared at the center of the planar surface
directly in front of the participants (7.58 radius). The
other two apertures were located 208 to the left and right
of the central location. These two apertures were slightly
larger (10.58 radius) in order to ensure adequate visibility
of the stimulus. All three apertures appeared on every
trial, and the background seen through the aperture was
black, which increased the contrast of the stimuli and
further improved visibility in the periphery (Figure 4B).

The planar surface was positioned in the virtual
room at 45 cm from the participants. Participants were
instructed to fixate the center of the central aperture on
every trial, even when a target appeared at one of the
peripheral locations. This instruction served to mini-
mize head rotation, not eye movements per se. Recall
that model predictions critically depend on stimulus
location in 3-D space (relative to the observer), not
stimulus position on the retina.

On each trial, a white sphere appeared at the center of
one of the three apertures randomly and counterbal-
anced across trials. To ensure that the peripheral targets
were clearly visible while participants fixated the central
aperture, these targets were rendered with a diameter of
0.58 versus the 0.258 in the central location. Targets were
always presented at full contrast corresponding to a
;65,000% Weber value—that is, white (92.4 cd/m2) on a
black (0.14 cd/m2) background. All other aspects of the
target’s motion were identical to those in Experiment 1.

Participants indicated the perceived target trajectory
using a ‘‘3-D Pong’’ response paradigm as in Experiment
1 at each of the three aperture locations. They were free
to move their eyes to the three apertures during the
response phase of the trial. Participants carried out 10 to
15 practice trials in the presence of the experimenter to
become familiar with the task. All participants com-
pleted the experimental trials in one session. No
feedback was provided in either the practice or
experimental trials. All participants completed 360
experimental trials, divided into three blocks to allow for
breaks from wearing the head-mounted display. Across
participants, the average time to complete each of the
three blocks was 5–8 min, for a total of 15–24 min of
active experimental time in a session.

Data analysis

Data were analyzed in the same manner as in
Experiment 1.

Goodness of fit

To fit our model to the experimental data, we
assumed that the participant response for motion
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direction on each trial was based on the polar angle of
the MAP estimate, such that

ĥ ¼ arctan
x̂0

ẑ0

� �
: ð24Þ

Thus, we fit the distribution of responses over ĥ
given the stimulus velocities, which is given by the
offset normal distribution (Jammalamadaka & Sen-
gupta, 2001). This distribution is written as

P ĥjx0; z0
� �

¼ / cð Þffiffiffiffiffiffi
2p
p

acx0cz0
b

U bð Þ
/ bð Þ þ 1

� �
; ð25Þ

where

b ¼ x̂0 cos ĥ

c2x0
þ ẑ0 sin ĥ

c2z0

 !
cos2ĥ

c2x0
þ sin2ĥ

c2z0

 !�1
2

ð26Þ

c ¼ x̂02

c2x0
þ ẑ02

c2z0

 !1
2

ð27Þ

and / �ð Þ and U �ð Þ denote, respectively, the standard
normal probability density function and cumulative
density function. Here, c2x0 ; c

2
z0

� �
denote the variances of

the sampling distribution of the MAP.
We found the maximum-likelihood estimate of the

model parameters by numerically optimizing the log
likelihood over all trials i:

logP ĥi
n o

j x0i; z0if g
� �

¼
X
i

logP ĥijx0i; z0i
� �

ð28Þ

for the standard deviations of the measurement noise
(rnb0

, in deg/s) and the prior (rp, in cm/s and assumed
to be isotropic). Using this method, we fit the model to
the motion-direction responses of each individual
participant in each experiment. Note that the param-
eter for the prior was fitted for each participant based
on the assumption that individuals do not have
identical priors. For Experiments 1 and 2, the
measurement noise for each stimulus contrast was fit
independently.

Along with the noise parameters, the goodness of fit
g of this model was assessed by comparing the log
likelihood of the best-fit parameters to the log
likelihood achieved if the prior was assumed to be
uniform (not Gaussian). This comparison was calcu-
lated in terms of the bits per trial gained by fitting with
a zero-mean Gaussian prior:

g ¼
logP ĥi

n o
j x0i; z0if g

� �
� logPu ĥi

n o
j x0i; z0if g

� �
I

0
@

1
A 1

log e
;

ð29Þ

where Pu �ð Þ denotes the likelihood associated with the
uniform prior and I denotes the total number of trials
for a given participant.

To compare the model-predicted errors in motion
perception to the experimental data, we used various
descriptive statistics as defined in the experimental
methods: mean angular error (lateral/medial bias),
motion-in-depth direction confusions, and lateral-
direction confusions. For the model predictions, we
computed the predicted errors using each participant’s
fitted parameters and assumed a typical interocular
separation of 6.4 cm, a uniform sampling of stimulus
directions, and an average stimulus speed consistent
with each experiment.

Results

Comparing model predictions to observed
behavior

The average and standard deviation of the fitted
noise parameters for each experiment are shown in
Table 1. Note that for Experiments 1 and 2, separate
noise parameters were determined for each stimulus
contrast level. As expected, in these experiments the
best-fit noise increased monotonically (but not linearly)
with decreasing contrast. Quantitative predictions for
how velocity noise should vary with contrast have been
derived previously (Hürlimann et al., 2002), and in
particular have suggested that the internal representa-
tion of stimulus contrast may be highly nonlinear,
particularly when a broad range of contrasts are
considered.

A goodness-of-fit measure g is also provided for each
experiment in Table 1. Across all three experiments,
between 0.29 and 0.87 bits/trial was gained on average
through the inclusion of a Gaussian slow-motion prior.
For Experiment 3, six (out of 21) participants were best
described as having a flat prior (that is, essentially 0
bits/trial were gained with the Gaussian prior, and the
best-fit rp . 1,000 cm/s). The noise-parameter mean
and standard deviations in the table exclude the fits to
these participants (but all participants are included in
the goodness of fit and all subsequent analyses). Even
excluding these six participants, the estimated sensory
noise for the participants in Experiment 3 was greater
than for the high-contrast condition in the other
experiments. Recall that Experiment 3 had three
potential stimulus eccentricities: Although only the
central position was used to fit the model, it seems
reasonable that the demand to attend to all three
locations may have increased the sensory uncertainty in
this experiment.
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We can compare model predictions with behavioral
performance for individual participants by plotting the
predicted MAP sampling distributions along with the
trial-by-trial data. Figure 5 shows this comparison for
an example participant from Experiment 1. We plot
presented stimulus direction on the horizontal axes and
predicted/reported direction on the vertical axis.
Arrows along the axes indicate these motion directions
from a top-down view (e.g., a downward arrow
corresponds to approaching motion). By convention,
rightward motion is defined as 08 and increases
counterclockwise (compare to Figure 4C). The figure
axes depict circular data, such that 08 and 3608 both
represent rightward motion. The red circles reflect the
behavioral performance, depicting reported motion
direction (vertical axis) as a function of presented
motion direction (horizontal axis). The grayscale data

reflect the model predictions for this observer, showing
the probability density of the MAP sampling distribu-
tion for each motion direction.

A few features stand out in these data. First, if
reported motion direction always matched presented
direction, data points should cluster along the positive
diagonal (yellow dashed line). In inspecting perfor-
mance at high contrast (left panel) it is clear that a
considerable proportion of trials reflect this relation-
ship for both model predictions and human behavior.
As contrast is reduced (middle and right panels),
performance becomes less accurate. In particular, both
the predicted and reported motion directions start to
cluster around 1808 and 08/3608, representing an
increase in the prediction/reporting of lateral motion
directions at the expense of motion-in-depth directions
(908/2708). Second, those predictions and data points

Experiment 1 100% rnb0
15% rnb0

7.5% rnb0
rp g

M (SD) at 45 cm 0.66 (0.45) 0.88 (0.50) 1.18 (0.76) 7.75 (3.86) 0.29 (0.30)

M (SD) at 90 cm 0.52 (0.30) 0.66 (0.31) 0.96 (0.38) 10.82 (4.16) 0.81 (0.47)

Experiment 2 60% rnb0
15% rnb0

7.5% rnb0

M (SD) 0.27 (0.35) 0.31 (0.35) 0.41 (0.45) 5.05 (6.42) 0.87 (0.52)

Experiment 3 rnb0

M (SD) 1.14a (1.18)a — — 10.13a (7.70)a 0.31 (0.81)

Table 1. Noise estimates from fitting the Bayesian ideal-observer model to each participant’s responses. For each experiment, mean
(M) and standard deviation (SD, both in deg/s) of the noise estimates across participants for each stimulus contrast, and the prior (rp,
in cm/s), are shown. Estimates were computed separately for the participant groups from the two viewing distances in Experiment 1
(45 and 90 cm). The goodness of fit g for each complete dataset is reported, as described in Equation 29. aParameters from six outlier
participants were not included in the calculation of the mean and standard deviation.

Figure 5. Model predictions and human performance for an example participant in Experiment 1. Red data points reflect individual

trials with a randomly chosen trajectory on each trial, but a shared starting location 45 cm directly ahead of the participant. The

grayscale color map indicates the probability density of the sampling distribution of the maximum a posteriori estimate for each

stimulus direction, and each panel is normalized so that the probability densities span the full color map. For this participant, the

standard deviation of the prior was estimated as 3.76 cm/s. Standard deviations of the retinal measurement noise were estimated as

0.428/s, 1.088/s, and 1.278/s for stimuli at 100%, 15%, and 7.5% contrast, respectively.
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that fall away from the positive diagonal seem to
cluster around the negative diagonal. What do such
points indicate? These data points correspond to trials
in which the observer accurately judged the lateral
component of the 3-D motion trajectory but incorrectly
judged the motion-in-depth component, reporting
approaching trajectories as receding and vice versa.
Third, model predictions and human performance seem
to be in agreement, at least qualitatively. In particular,
as stimulus contrast is reduced, precision decreases and
off-diagonal points increase. In the next sections, we
will explore these errors further and assess quantitative
agreement between the model predictions and the
results of three perceptual experiments.

Predicted and observed biases toward lateral
motion in the midsagittal plane vary with
stimulus distance and contrast

Recall that previous perceptual experiments have
demonstrated that observers tend to overestimate the
angle of approach of objects (the lateral bias). That is,
an object on a trajectory toward the observer tends to
be perceived as moving more laterally than the true
stimulus trajectory. Figure 6 summarizes the average
angular lateral bias (predicted and observed) across all
observers from Experiment 1 for each viewing condi-
tion. Bars indicate the average signed error between the
stimulus and either the percept predicted by the model
(Figure 6A) or the measured participant responses from
the experiment (Figure 6B). Larger values of this error
indicate larger lateral biases (see Experimental meth-
ods). The overall effects of stimulus distance and
contrast are well matched to the model predictions. The
model (Figure 6A) predicts a decrease in the lateral bias
with decreased viewing distances (i.e., 90 cm vs. 45 cm).
It also predicts an increase in the lateral bias for lower
contrast stimuli. Both of these effects are reflected in
the observed errors in the behavioral experiment
(Figure 6B), although an effect of contrast is only
apparent at the closer viewing distance.

A two-way ANOVA performed on the experimental
data showed a significant interaction between viewing
distance and target contrast, F(2, 10494)¼ 5.8, p ,
0.01. Multiple comparisons revealed a significant
increase in perceptual bias at the greater viewing
distance compared to the smaller viewing distance for
the mid and high target contrast levels (p , 0.01). The
difference in perceptual bias at the two viewing
distances for the low target contrast was not significant
(p . 0.05).

While a previous model did predict an effect of
viewing distance (Welchman et al., 2008), prior
experimental studies have concluded that distance does
not modify the lateral bias (Harris & Dean, 2003;
Poljac, Neggers, & van den Berg, 2006). Until now, this
inconsistency between model and data did not have a
clear explanation. However, as demonstrated in Figure
6B, the magnitude of the difference between viewing
distances interacts with other properties of the stimulus
uncertainty (here shown as contrast, but generally
summarized as the variance of the likelihood). Thus, it
is possible that some experimental setups would reveal
a distance effect and others might not, particularly with
relatively small sample sizes such as those used in the
previous studies (three and six participants, respec-
tively). While the model predicts a viewing-distance
effect at all contrasts in the current study, the
magnitude of the effect does decrease slightly with
decreasing contrast (from 11.18 at 100% contrast to
10.68 at 7.5% contrast).

Figure 6. Comparison between model predictions and human

lateral bias in Experiment 1. (A) Mean signed error in predicted

perceived target direction for viewing three target contrast

levels at two viewing distances. Negative values (increasing on

the ordinate) correspond to reports that are laterally biased. (B)

Results for the 47 participants (n¼ 15 for 90 cm and n¼ 32 for

45 cm) who took part in Experiment 1 (viewing the stimulus

within the virtual-reality environment), plotted in the same

format as (A). Error bars correspond to 61 standard error of

the mean.
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In addition to the dependence of the lateral bias on
viewing distance, the model predicts a dependence on
stimulus eccentricity. It predicts that the relative
stimulus uncertainty in depth (and therefore the lateral
bias) should be reduced when an object is located off to
the left or right rather than directly in front of the
observer (Figures 1 and 3). We will return to this
prediction in a later section.

Misperceptions in motion direction in the
midsagittal plane

Recent work has shown that motion-trajectory
judgments tend to be subject to direction confusions for
approaching and receding motion (Fulvio et al., 2015).

That is, observers sometimes report that approaching
stimuli appear to move away, and vice versa. Such
dramatic errors are surprising. Within the same
paradigm, observers rarely if ever report that leftward-
moving stimuli appear to move rightward, and vice
versa. Can motion-in-depth reversals be explained by
our Bayesian model? We first examined this question
by plotting the full sampling distribution of the MAP
for two example stimuli: motion directly toward an
observer and motion directly to the right (the left
panels of Figure 7A and 7B, respectively, with model
parameters from the participant plotted in Figure 5).
Specifically, for each example stimulus we show a heat
map of this distribution, with x0 plotted on the
horizontal axis and z0 plotted on the vertical axis. These
plots demonstrate that a large percentage of the
sampling distribution for a stimulus moving toward an

Figure 7. Direction confusions for motion in depth and lateral motion. (A, B) Illustrations of the predicted sampling distribution of the

maximum a posteriori estimates for motion directly toward an observer (A) and directly to the right of an observer (B) in Cartesian

and polar coordinates. Model parameters used were from the same example participant shown in Figure 5 (45-cm viewing distance,

7.5% contrast). (C, D) Predictions of the model and experimental results for motion-in-depth confusions (C) and lateral-motion

confusions (D). Experiments 1 and 2 are shown in separate panels. Error bars correspond to 61 standard error of the mean.
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observer can occur for trajectories that recede in depth.
In other words, the variance of the MAP sampling
distribution in the z direction can be large enough that
it extends into the opposite direction of motion. For
rightward motion, however, very little of the distribu-
tion occurs for leftward trajectories. To further
examine the percentage of trials in which observers are
predicted to misreport motion direction, we converted
the trajectories in the sampling distribution of the MAP
to direction angles and replotted the normalized
frequency in polar coordinates as a function of motion
direction (Figure 7A and 7B, right panels). Nonzero
values in the opposite direction of motion (away or
leftward) indicate that the model predicts that a certain
percentage of trials will include direction confusions.

Next, we examined the effects of distance and
contrast on predicted and observed direction confu-
sions, averaging across all directions of motion in the
world. The Bayesian model predicts that direction
confusions for motion in depth (Figure 7C) will greatly
exceed lateral-motion confusions (Figure 7D). Each bar
represents the predicted percentage of trials in which
direction will be confused, and the dashed line indicates
chance performance (50%).

For motion-in-depth confusions, the model predicts
that direction confusions will decrease with reduced
viewing distance (90 cm vs. 45 cm). The model also
predicts that direction confusions will increase as
sensory uncertainty increases (contrast decreases from
100% to 15% to 7.5%), most markedly at the smallest
viewing distance (dark bars). The upper right-hand
panel in Figure 7C shows the results from Experiment
1, plotted in the same manner as the model predictions.
The overall effects of stimulus distance and contrast are
well matched to the model predictions.

A two-way ANOVA conducted on the data from
Experiment 1 revealed a main effect of viewing distance
on human performance, F(1, 135)¼ 7.8, p , 0.01, as
well as a main effect of target contrast, F(1, 135)¼
26.79, p , 0.01, with a reduction in direction
confusions for object motion nearer to the head and for
higher target contrasts. There was also a significant
interaction between viewing distance and target con-
trast, F(2, 135)¼ 4.4, p¼ 0.014. Multiple comparisons
revealed that direction confusions significantly in-
creased for all target contrast levels (p , 0.01 low and
high; p ¼ 0.013 mid) as the viewing distance doubled
from 45 cm to 90 cm.

Because direction confusions might seem surprising,
we compared these results to a second experiment
(Experiment 2, lower right-hand panel of Figure 7C).
This experiment used a standard stereoscopic display
and a random-dot stimulus. Note that Experiment 2
included a contrast manipulation, but stimuli were
always presented at one distance, and the high-contrast
condition was 60% rather than 100% contrast. As

predicted, a one-way ANOVA on the data from
Experiment 2 revealed a main effect of target contrast,
F(2, 4) ¼ 160.99, p , 0.01.

The model predicts that lateral motion-direction
confusions will be much less frequent but will be
similarly affected by viewing distance and stimulus
contrast (Figure 7D, left panel). That is, in the fronto-
parallel plane, direction confusions will decrease with
reductions in viewing distance and increase with
reductions in stimulus contrast. These predicted effects
were present in both experiments (Figure 7D, right
panels). A two-way ANOVA on the data from
Experiment 1 revealed a main effect of viewing
distance, F(1, 135) ¼ 17.35, p , 0.01. The interaction
between viewing distance and contrast was also
statistically significant, F(2, 135) ¼ 9.52, p , 0.01.
Follow-up comparisons revealed that direction confu-
sions significantly increased with viewing distance for
the lowest contrast stimulus (p , 0.01).

Although the average percentage of lateral misper-
ceptions was highest in the low-contrast condition of
Experiment 2, the effect of stimulus contrast was not
statistically significant, F(2, 6) ¼ 3.4, p¼ 0.05.

To summarize, while overt confusions in the
direction of motion seem surprising on their own, they
are clearly predicted by the same Bayesian motion-
perception model that accounts for other perceptual
phenomena.

3-D motion perception outside of the
midsagittal plane

The previous sections have considered motion
trajectories originating in the midsagittal plane. Of
course, in the real world, stimuli need not be confined
to this plane and may originate in any location relative
to the observer. While uncertainty in z0 is typically
much larger than uncertainty in x0 for the same
location in the midsagittal plane, the relative uncer-
tainty decreases away from that plane (Figure 3). In
fact, at an angle of 458 away from that plane the
relative uncertainty becomes the same, predicting
unbiased estimates of motion trajectory. Beyond 458
the relationship reverses, such that the model will
predict a medial rather than a lateral bias. Another way
to think about this is that the axis of maximal
uncertainty shifts from being aligned with the z-axis in
the midsagittal plane to become aligned with the x-axis
for motion originating directly to the left or right of the
observer (see Figure 1). Because of this, estimated
motion trajectories predicted by the model will differ
between midsagittal and peripheral motion.

In Experiment 3, we tested whether the observed
lateral bias and motion-direction confusions are
affected by stimulus eccentricity, in accordance with
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model predictions. Figure 8A and 8C shows the model
predictions for lateral bias and direction confusions for
motion trajectories originating in the midsagittal plane
(central) and 208 to the left or right (peripheral). At
eccentricity, the lateral bias is predicted to decrease
(Figure 8A); the percentage of motion-direction con-
fusions is predicted to increase for lateral motion (x)
but stay largely the same for motion in depth (z; Figure
8C). These model predictions are qualitatively similar
to the experimental data (Figure 8B and 8D). Note that
for this experiment, the model parameters were fitted to
the central data for each participant, and then
peripheral predictions were generated based on these
parameters.

A paired-sample t test on the experimental data
revealed significantly less lateral bias in response to
peripheral compared to central targets, t(20)¼�2.5, p¼
0.02, with a difference of 7.98. There was a small
decrease in motion-in-depth direction confusion at the
peripheral locations of ;1.38% on average, but this
difference was not significant, t(20)¼ 0.78, p . 0.05. By
contrast, there was a substantial and significant
increase in lateral motion-direction confusion (20.9%

on average) at the peripheral locations, t(20)¼�10.82,
p , 0.01, as predicted by the model.

Additional biases

In addition to the lateral bias and depth-direction
confusions, other researchers have documented that
motion trajectories towards the observer have some
amount of ‘‘privileged’’ perceptual processing (Lin,
Franconeri, & Enns, 2008; Lin, Murray, & Boynton,
2009; Schiff, Caviness, & Gibson, 1962). Indeed, our
prior work has shown a bias to report motion-in-depth
stimuli as approaching rather than receding, or vice
versa, depending on the specific appearance of the
stimulus (Cooper, van Ginkel, & Rokers, 2016; Fulvio
et al., 2015). These biases may be related to prior work
which suggests that observers perceive lower contrast
stimuli as farther away than high-contrast stimuli
(Dosher, Sperling, &Wurst, 1986; Farnè, 1977; O’Shea,
Blackburn, & Ono, 1994; Schwartz & Sperling, 1983).
However, given that the contrast of the stimuli in the
motion-in-depth experiments did not vary within a
given trial, the exact nature of this relationship remains
to be explored. Figure 9 illustrates how these
approaching/receding biases manifest in the current set
of experiments. Each panel shows the probability
density of response directions, averaged over all
participants from Experiment 1, for stimuli that moved
toward four different quadrants: rightward (red),
leftward (yellow), approaching (green), and receding
(blue). Figure 9A shows the responses for the high-
contrast (100%) smaller viewing distance (45 cm): The
reported motion directions tended to generally fall
within the stimulus quadrant, but some motion-in-
depth direction confusions are clearly evident. Figure
9B and 9C shows the responses for two conditions in
which participants, on average, were biased to report
that motion was receding (B) and approaching (C). The
current Bayesian model does not predict approaching
or receding biases because the prior for motion is
always centered on 0 in both x0 and z0. That is,
although the sampling distribution of the MAP extends
into reversed directions (Figure 7A), the average of this
distribution is always in the same direction as the
stimulus. Prior studies directly comparing a Bayesian
ideal observer to 3-D motion perception either did not
present both approaching and receding motion or
disregarded direction confusions (Lages, 2006; Welch-
man et al., 2008), and thus this additional bias was not
observed. However, there are several ways in which
existing Bayesian models, including the one presented
here, may be elaborated to account for these effects.
For example, extensions to our model might incorpo-
rate a prior that is not centered on zero motion for
some stimuli, a cost function that reflects the different

Figure 8. Lateral bias and direction confusions in central and

peripheral locations. (A, B) Lateral-bias predictions of the model

(A) and experimental results (B) for stimuli present in the

midsagittal plane (central) and 208 to the left or right

(peripheral). (C, D) Predictions of the model (C) and exper-

imental results (D) for lateral-motion confusions (x) and motion-

in-depth confusions (z). Error bars correspond to 61 standard

error of the mean.
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behavioral consequences of misperceiving approaching
and receding motion, or the impact of attentional
effects. Of particular interest would be the exploration
of a statistical relationship between stimulus contrast
and motion direction in natural scenes.

Discussion

We have presented a Bayesian model of 3-D motion
perception that predicts systematic errors in perceived
motion direction, including a lateral bias, a tendency to
report approaching motion as receding and vice versa,
and a dependency of these errors on viewing distance,
contrast, and eccentricity. We tested these predictions
in a VR environment where monocular and binocular
cues to 3-D motion were available and established that
the errors persist under such conditions. Thus, our
results demonstrate that uncertainty in retinal-velocity
signals, coupled with a prior for slow motion and
simple geometric considerations, accounts for a num-

ber of motion-perception phenomena in the three-
dimensional world. Finally, we identify a limitation of
our model: It does not explain why observers report the
majority of stimuli as either receding (Figure 9B) or
approaching (Figure 9C). Our model provides a
framework with which to understand errors in 3-D
motion perception at arbitrary locations, and further
supports the idea that visual perception can be
accurately and parsimoniously modeled as a process of
probabilistic inference.

Previous Bayesian models of motion perception

This work extends a line of Bayesian models that
account for errors in motion perception for stimuli
presented in the fronto-parallel plane (Hürlimann et al.,
2002; Stocker & Simoncelli, 2006; Weiss et al., 2002;
Yuille & Grzywacz, 1988). Critically, these models
make the assumption that motion percepts reflect noisy
measurements of visual motion combined with a prior
for slow speeds.

Why would observers employ a prior for slow speeds
in the world? A slow-motion prior presumably reflects
the fact that objects in the world are most likely
stationary, and if moving, are more likely to move
slowly rather than quickly. This prior would thus have
to disregard the contributions of eye, head, and body
motion to the visual input. Nonetheless, even during
head-free fixation, it has been shown that retinal-
velocity signals are biased towards slower speeds
(Aytekin, Victor, & Rucci, 2014). Thus, there is both
strong theoretical and experimental evidence that a
slow-motion prior is consistent with the statistical
regularities of visual experience.

Two groups have previously extended Bayesian
motion-perception models to account for errors in the
perception of 3-D motion based on binocular cues
(Lages, 2006; Lages et al., 2013; Welchman et al., 2008).
The model proposed by Welchman and colleagues
provides an account for the lateral bias and predicts an
effect of viewing distance. However, since the deriva-
tion relies on the small-angle approximation, this
model does not account for motion occurring off of the
midsagittal plane.

While the Welchman model relied on retinal-velocity
cues, the model proposed by Lages and colleagues
considered the separate contributions of two binocular
cues to 3-D motion—interocular velocity differences
and changing binocular disparity signals. The Lages
(2006) study concluded that disparity rather than
velocity processing introduced the lateral bias. How-
ever, the Lages model assumed that prior assumptions
operate in retinal coordinates (Lages, 2006; Lages &
Heron, 2008). Here we have assumed that the
combination of the prior and the likelihood takes place

Figure 9. Approaching and receding biases under different

viewing conditions. Each panel illustrates the probability density

of responses for all stimulus motions falling within the indicated

quadrants: rightward (3158–458), receding (458–1358), leftward

(1358–2258), and approaching (2258–3158). Responses are

averaged over all participants in Experiment 1. Examples are

shown for three viewing conditions: 100% contrast at 45 cm (A),

7.5% contrast at 45 cm (B), and 100% contrast at 90 cm (C).
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in world coordinates. While these assumptions are
essentially equivalent for predicting percepts in the
fronto-parallel plane, they can produce different
predictions for motion in depth, depending on whether
binocular disparity or binocular motion cues are
assumed to be the key visual cue (Lages, 2006; Lages et
al., 2013). In particular, a Bayesian model based on
motion cues being combined in retinal coordinates does
not predict a lateral bias in 3-D motion perception.

What is the natural coordinate system in which to
formulate a Bayesian perceptual model? We would
argue that performing inference in world coordinates
makes the most sense because it is ultimately motion in
the world and not motion on the retina that is relevant
to behavior. Thus, the inference problem should
consider a posterior distribution that reflects uncertainty
about motion in the world, not motion on the retina.
However, the extension of a prior for slow speeds into a
probability distribution over 3-D velocities does not
have a single solution. For the current model, we
assumed (as has been done previously) that the prior
distribution (as well as the likelihood and posterior) is
represented in a Cartesian world space over x0 and z0,
where motions toward/away and left/right are continu-
ous with each other (i.e., positive and negative arms of
the same axis; see heat maps in Figure 7A and 7B). This
type of coordinate system is necessary in order for the
model to predict the prevalence of direction confusions
in depth, because the resulting posterior distribution
often straddles z0 ¼ 0 but not x0 ¼ 0. From a purely
computational perspective, it would be reasonable to
consider that the probabilities of motion trajectories
might be represented in terms of polar direction and
speed. But in such a coordinate system, it is unclear if the
same pattern of direction confusions would result. The
clear match between the direction-confusion predictions
of our model and the experimental data provide strong
support that the current model captures essential
features that describe the inferences that underlie motion
perception.

An additional contribution of the current work is to
derive the full sampling distribution of the MAP, and
therefore account for trial-to-trial variability in judg-
ments of motion direction. Examination of this
sampling distribution reveals that the Bayesian model
accurately predicts that observers will systematically
misreport direction of motion in depth such that they
judge approaching motion as receding, and vice versa
(Fulvio et al., 2015).

Other 3-D motion cues

While our model is based solely on binocular retinal
velocities, the stimuli used in our perceptual experi-
ments included an additional cue to 3-D motion:

looming. Consistent visual looming was incorporated
in order to mitigate the effect of cue conflicts.
Specifically, conflicting cues that indicate zero motion
in depth (i.e., no change in retinal size) might lead to an
overrepresentation of perceptual errors that are simply
due to the cue conflict and are not a feature of 3-D
motion perception more generally.

Given the short stimulus duration in our experiments
and the relatively large viewing distances, the actual
change in stimulus retinal size was minimal on most
trials. However, it is important to note that the general
presence of looming (and other depth cues such as
motion parallax, familiar size, occlusion, etc.) during
natural vision may greatly reduce the overall 3-D
motion uncertainty. That is, the noise properties
plotted in Figure 3 refer to uncertainty from binocular
motion alone and do not take any other cues into
consideration. At the same time, analyses of motor
responses to looming stimuli suggest that other 3-D
motion cues can be subject to their own systematic
biases based on prior assumptions about the world
(López-Moliner, Field, & Wann, 2007; López-Moliner
& Keil, 2012). Clearly, future research should work
toward unifying the existing Bayesian frameworks for
considering different 3-D motion cues.

The perceptual errors we predicted are entirely based
on sensory signals produced by object motion, not self-
motion. That is, we assumed that observers were
stationary and maintained fixation during stimulus
presentation. The consequences of self-motion on
perceptual accuracy are not directly obvious. While
self-motion might increase perceptual errors (Freeman
et al., 2010), it also provides additional parallax cues
that may help reduce these errors (Aytekin et al., 2014).
Ultimately, 3-D motion-perception models will need to
incorporate both stimulus and self-motion to help us
understand the perceptual accuracy of active observers
moving through the real world.

3-D motion response paradigms

It is worth highlighting that the average lateral bias
reported for the current experiments is considerably
larger than the levels of lateral bias reported in previous
work (Duke & Rushton, 2012; Gray, Regan, Castane-
da, & Sieffert, 2006; Harris & Dean, 2003; Harris &
Drga, 2005; Poljac et al., 2006; Rushton & Duke, 2007;
Welchman et al., 2004; Welchman et al., 2008). As
mentioned previously, an important distinction be-
tween the current experiments and previous studies is
that the full 3608 space was utilized for both the stimuli
and responses. In these previous studies, the stimuli and
responses were restricted to approaching motion. An
exception is the study conducted by Lages (2006);
however, in the data analysis for that experiment,
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misreports of depth direction were treated as indica-
tions that participants were unable to do the task (if
occurring on a large proportion of trials) or as ‘‘bad’’
trials in which participants did not see the stimulus.
Therefore, such misreports were not treated as a
meaningful feature of visual motion perception. Given
the motion-in-depth direction confusions observed in
the current experiments, many of the measured angular
errors between stimulus and response were actually
very large, which in turn increases the average lateral
bias. To examine this further, in our recent work
(Fulvio et al., 2015) we conducted an analysis in which
the data were restricted to the range of stimulus
motions used in previous studies. Under such condi-
tions, we found a lateral bias that is comparable to the
reports of previous studies.

In the current experiments, we focused on response
paradigms in which participants indicate the perceived
motion direction using a ‘‘3-D Pong’’ setup. Equally
interesting would be to examine perceived speed under
these viewing conditions (Welchman et al., 2008).
Future work could perhaps extend the 3-D Pong set up
into a real-time interception task, and examine
response times as well as accuracy.

Errors in the real world

The errors predicted by the current model will no
doubt be most apparent in the real world under
demanding conditions, such as when there is limited
time or poor visibility (Pretto et al., 2012; Shrivastava
et al., 2010; Snowden et al., 1998). In situations where
sensory uncertainty is very low, the model predicts that
these perceptual errors will be negligible. It is difficult
to quantify what level of sensory uncertainty a person
will be subject to at any particular time during day-to-
day life under natural viewing conditions. However, we
do know that when stimulus contrast is very high
(greater than 100% Weber contrast), the lateral bias can
effectively disappear for practiced observers in our
experimental setups (Fulvio et al., 2015). While the
motion-in-depth confusions persist longer in the
laboratory, we expect that these may be similarly
reduced by the presence of additional and more reliable
visual cues. In fact, the presence of these systematic
errors may provide a way to compare and quantify the
performance of different VR display systems, especially
those that incorporate less well-understood cues such as
predictive head motion or defocus blur.

Implications for neural processing of motion

While the current model is perceptual and not
mechanistic, our predictions and results are relevant to

investigating the neural mechanisms that underlie
motion perception. The central role of area MT in the
processing of binocular 3-D motion signals is now well
established, based on both neuroimaging (Rokers,
Cormack, & Huk, 2009) and electrophysiology studies
(Baker & Bair, 2016; Czuba, Huk, Cormack, & Kohn,
2014; Sanada & DeAngelis, 2014). Our model high-
lights the fact that both position and binocular speed
tuning are essential for inferring the trajectory of a
stimulus moving in three dimensions. Consider the case
of an object moving directly toward the midpoint
between the two eyes. If this object is located in the
midsagittal plane, it will cast equal and opposite
horizontal velocities in the two eyes. However, if this
object has an eccentric location to the left of the
midsagittal plane, the velocities cast on the two eyes
will not be equal and opposite—they will have opposite
signs, but the velocity in the left eye will be greater.
Thus, the interpretation of an MT neuron’s tuning
profile and preference for 3-D motion must somehow
take into account the location of the stimulus relative
to the observer, independent of retinotopic location.

When it comes to the slow-motion prior, there
remains significant debate on how prior assumptions
for visual motion factor into the neural computations,
and where perceptual biases arise along the visual
motion-processing pathway. Results from neuroimag-
ing show that responses to 2-D motion stimuli can
depend on perceived rather than presented speed as
early as V1, suggesting that motion priors interact with
sensory evidence at the earliest stage of cortical
processing (Kok, Brouwer, van Gerven, & de Lange,
2013; Vintch & Gardner, 2014). However, evidence
from electrophysiology has been decidedly more mixed
(Krekelberg, van Wezel, & Albright, 2006; Livingstone
& Conway, 2007; Pack, Hunter, & Born, 2005). Since
the biases for the lateral motion and motion-in-depth
components for 3-D stimuli have different magnitudes,
these differences provide an additional signature for
determining whether the responses of particular neu-
ronal populations are driven by the stimulus or the
percept.

Conclusion

Understanding how Bayesian inference plays out
during natural vision and natural behavior requires not
only characterizing the prior assumptions of an
observer but also having a deep understanding of the
sensory signals available at a given point in time. The
current model predicts perceived 3-D motion under a
wide range of scenarios and viewing conditions, and in
doing so provides a parsimonious account of multiple,
seemingly disparate perceptual errors.
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