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Radiomics and dosiomics for predicting
radiation-induced hypothyroidism and guiding
intensity-modulated radiotherapy

Shan-Shan Yang,1,2,4 Qing-He Peng,1,4 Ai-Qian Wu,3,4,* Bao-Yu Zhang,1 Zhi-Qiao Liu,1 En-Ni Chen,1

Fang-Yun Xie,1,* Pu-Yun OuYang,1,* and Chun-Yan Chen1,5,*

SUMMARY

To guide individualized intensity-modulated radiotherapy (IMRT), we developed and prospectively vali-
dated a multiview radiomics risk model for predicting radiation-induced hypothyroidism in patients
with nasopharyngeal carcinoma. And simulated radiotherapy plans with same dose-volume-histogram
(DVH) but different dose distributions were redesigned to explore the clinical application of themultiview
radiomics risk model. The radiomics and dosiomics were built based on selected radiomics and dosiomics
features from planning computed tomography and dose distribution, respectively. The multiview radio-
mics riskmodel that integrated radiomics, dosiomics, DVH parameters, and clinical factors had better per-
formance than traditional normal tissue complication probability models. And multiview radiomics risk
model could identify differences of patient hypothyroidism-free survival that cannot be stratified by tradi-
tional models. Besides, two redesigned simulated plans further verified the clinical application and advan-
tage of the multiview radiomics risk model. The multiview radiomics risk model was a promising method
to predict radiation-induced hypothyroidism and guide individualized IMRT.

INTRODUCTION

Radiotherapy is the cornerstone of nasopharyngeal carcinoma treatment.1 As intensity-modulated radiotherapy (IMRT) preserves organs at

risk, patients’ quality of life improves.2 However, radiation-induced hypothyroidism has a higher incidence after IMRT than after 3-dimensional

conformal radiotherapy.3 The prevalence of primary hypothyroidism in nasopharyngeal carcinoma patients after IMRT ranges from 20% to

60%.4,5 Hypothyroidism generally occurs within 5 years after radiotherapy, with a peak at 1–2 years.3,6,7 If ignored, hypothyroidism may

have an important impact on quality of life.

Dosimetric predictors for hypothyroidism included V40 (percentage of thyroid volume receiving more than 40 Gy), V45, V50, and thyroid

volume.8,9 Clinical factors such as age, N stage, and treatment, has also been proven as risk factors.7,8 Thus, Zhou et al. developed a combined

model of total tumor volume andN stage to predict the incidence of hypothyroidism.7 Normal tissue complication probability (NTCP)models

are commonly used for predicting radiation-induced complications.10 However, notably, the aforementioned studies were based on only

one-dimensional dosimetric factors or two-dimensional dose-volume histogram (DVH) curves. The same dosimetric parameters can be ob-

tained from completely different dose distributions. Due to the lack of an effective model for evaluating the spatial information of the

3-dimensional dose distribution, it is difficult to choose an optimal treatment plan based on only dosimetric parameters. Whether different

3-dimensional dose distributions with sameDVHparameters leads to different incidences of radiation-induced hypothyroidism remains to be

verified. In addition, pretreatment planning computed tomography (CT) may also contain microscopic genetic heterogeneities of organs at

risk and could predict the probability of hypothyroidism.

Radiomics can convert medical images to high-dimensional mineable data by high-throughput extraction of quantitative features,11 which

provides a method for mining the spatial information of medical images. While CT has been widely applied to improve predictive models by

radiomics,12 dosiomics can also be used for describing spatial features of 3-dimensional dose distribution to predict radiation-induced com-

plications.13,14 A study confirmed the outstanding performance of a dosiomics-basedmodel in predicting radiation-induced complications in

prostate cancer, and a model combining dosiomics and radiomics was also reported to significantly improve the performance of predicting
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local control and acute weight loss.15,16 Therefore, we aimed to develop and validate a multiviewmodel that combines radiomics, dosiomics,

DVH parameters, and clinical characteristics to predict radiation-induced hypothyroidism in nasopharyngeal carcinoma, and thus guide indi-

vidualized IMRT.

RESULTS

Patient characteristics

There were 723, 80, and 420 patients in the training cohort, validation cohort, and prospective test cohort, respectively (Figure 1). With a me-

dian follow-up of 34, 37, and 22 months, 375 (53.34%), 48 (60.00%), and 191 (45.48%) patients were diagnosed with primary hypothyroidism in

the training, validation, and prospective test cohorts, respectively. The baseline characteristics are shown in Table 1. Obviously, primary hy-

pothyroidism tended to occur in younger and advancedN stage patients in the training and validation cohorts.With regard to the T stage and

overall stage, there was no difference between euthyroid and hypothyroidism patients. The 3-year hypothyroidism-free survival rates were

63.9%, 64.0%, and 44.5%, respectively.

Development and prospective test of multiview radiomics risk model

After univariate Cox regression analysis, age and N stage were identified as potential predictors for hypothyroidism (Table S1). The Pearson

correlation between twenty DVH parameters is shown in Figure S1. Since dosimetric parameters were highly correlated with each other, only

V45 with a cutoff of 57% was selected for model building.

According to the selection process (Table S2), 20 dosiomics features and 27 radiomics features with nonzero coefficients in the LASSO-Cox

model were retained for signature building in the training cohort (Figure S2). Imaging and segmentation perturbations were performed for

robustness evaluation of the selected features. For the segmentation perturbations, the median intraclass correlation coefficients (ICCs) of

features for test-retest and inter-rater analyses were 0.962 (interquartile ranges [IQR]: 0.796–0.975) and 0.912 (IQR: 0.813–0.974), respectively,

while themedian ICCs of features for modifying the field of view (FOV) and reconstructionmodewere 0.813 (IQR: 0.792–0.922) and 0.876 (IQR:

0.797–0.962) in the imaging perturbations, respectively. And the median ICCs of dosiomics features for modifying the dose calculation grid

size were 0.869 (IQR: 0.850–0.975), which indicated robustness of the selected features. Based on the selected features and corresponding

coefficients presented in Table S3, radiomics signature and dosiomics signature were calculated. The C-indices of radiomics signature and

dosiomics signature were 0.671 (95% confidence interval [CI]: 0.630–0.712) and 0.652 (95% CI: 0.611–0.694), respectively, in the prospective

test cohort (Table S4).

WhenmultivariableCox regression analysis was conducted, the variables including radiomics signature, dosiomics signature, V45, age, and

N stage were the independent predictive factors for hypothyroidism-free survival (Table S5). Consequently, a multiview radiomics risk model

and corresponding nomogram were established to predict individualized hypothyroidism (Figure 2). The calibration curves displayed favor-

able agreement between the predicted probability and the actual outcome in each cohort (Figure 2). As shown in Table 2, the C-indices of

multiview radiomics risk model were 0.681 (95% CI: 0.653–0.710), 0.704 (95% CI: 0.632–0.777), and 0.725 (95% CI: 0.687–0.762) in the training,

validation, and prospective test cohorts, respectively, and the three-year time-dependent AUC of the multiview radiomics risk model was

0.723 (95% CI: 0.681–0.765), 0.777 (95% CI: 0.663–0.892), and 0.763 (95% CI: 0.699–0.827) in the corresponding cohort. The cutoff value of

the radiomics nomogram point was determined to be 94 by time-dependent receiver operating characteristic (ROC). Thus, 341, 41, and

Figure 1. The workflow of this study

Abbreviation: CT, computed tomography; DVH, dose-volume histogram.
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215 patients withR94 nomogram points were divided into high-risk group in the training, validation, and prospective test cohorts, while 382,

39, and 205 patients with <94 nomogram points were classified into the low-risk group. Patients in the low-risk group had better hypothyroid-

ism-free survival rates than patients in the high-risk group in all cohorts (all p < 0.001, Figure S3).

Advantages of the multiview radiomics risk model

For comparison, the performance of Sommat’s model of V40 [7] and Zhou’s model of thyroid volume plus N stage [6] were also evaluated. The

C-indices of Sommat’s model were 0.514, 0.538, and 0.536 in the training, validation, and prospective test cohorts, respectively, and Zhou’s

model had C-indices of 0.549, 0.571, and 0.629. The multiview radiomics risk model had higher C-indices than Sommat’s model and

Zhou’s model (all p < 0.001, Table 2). Similarly, Figure S4 also shows the AUCs of multiview radiomics risk model were higher than those

of Sommat’s model and Zhou’s model in all cohorts (Table 2, all p % 0.002). In addition, the decision curve analysis showed that multiview

radiomics risk model had higher net benefits than Sommat’s model and Zhou’s model, when the threshold probability ranged from 0.030

to 0.664 (Figure S5).

In the prospective test cohort, 357 and 63 patients were divided into low-risk and high-risk groups by Sommat’smodel of V40, while 352 and

68 patients were classified into low-risk and high-risk groups, respectively, by Zhou’s model of thyroid volume plus N stage (Table S6).

Notably, among the two undistinguished low-risk groups stratified by Sommat’smodel and Zhou’smodel, themultiview radiomics risk model

could still distinguish 3-year hypothyroidism-free survival (70.4% vs. 26.2% in the V40 < 85% set; 68.5% vs. 26.1% in the low-risk group by Zhou’s

model; all p < 0.001, Figures 3A and 3B). In contrast, in the high- or low-risk groups stratified by multiview radiomics model, both Sommat’s

model and Zhou’s model were unable to distinguish hypothyroidism-free survival (all p > 0.05, Figures 3C–3F)

Table 1. The clinical characteristics of patients with non-HT and HT in the training, validation, and prospective test cohorts

Training cohort Validation cohort Prospective test cohort

Non-HT HT

p

Non-HT HT

p

Non-HT HT

pN = 348 N = 375 N = 32 N = 48 N = 229 N = 191

Sex 0.067 1 0.003

Female 95 (27.3) 127 (33.9) 11 (34.4) 16 (33.3) 56 (24.5) 73 (38.2)

Male 253 (72.7) 248 (66.1) 21 (65.6) 32 (66.7) 173 (75.5) 118 (61.8)

Age <0.001 0.819 0.001

<45 155 (44.5) 236 (62.9) 15 (46.9) 25 (52.1) 94 (41.0) 110 (57.6)

R45 193 (55.5) 139 (37.1) 17 (53.1) 23 (47.9) 135 (59.0) 81 (42.4)

T stage 0.782 0.930 0.748

T1 30 (8.6) 32 (8.5) 4 (12.5) 5 (10.4) 13 (5.7) 12 (6.3)

T2 53 (15.2) 65 (17.3) 4 (12.5) 7 (14.6) 23 (10.0) 19 (9.9)

T3 181 (52.0) 182 (48.5) 17 (53.1) 23 (47.9) 131 (57.2) 117 (61.3)

T4 84 (24.1) 96 (25.6) 7 (21.9) 13 (27.1) 62 (27.1) 43 (22.5)

N stage 0.064 0.016 0.108

N0 55 (15.8) 37 (9.9) 6 (18.8) 4 (8.3) 28 (12.2) 11 (5.8)

N1 127 (36.5) 142 (37.9) 19 (59.4) 17 (35.4) 89 (38.9) 80 (41.9)

N2 123 (35.3) 134 (35.7) 3 (9.4) 18 (37.5) 68 (29.7) 67 (35.1)

N3 43 (12.4) 62 (16.5) 4 (12.5) 9 (18.8) 44 (19.2) 33 (17.3)

Overall stage 0.635 0.112 0.611

I 13 (3.7) 15 (4.0) 3 (9.4) 0 (0.0) 4 (1.7) 4 (2.1)

II 38 (10.9) 41 (10.9) 3 (9.4) 2 (4.2) 19 (8.3) 14 (7.3)

III 181 (52.0) 178 (47.5) 15 (46.9) 24 (50.0) 108 (47.2) 102 (53.4)

IV 116 (33.3) 141 (37.6) 11 (34.4) 22 (45.8) 98 (42.8) 71 (37.2)

Treatment 0.026 0.476 0.301

RT alone 38 (10.9) 27 (7.2) 3 (9.4) 1 (2.1) 20 (8.7) 9 (4.7)

CCRT 163 (46.8) 151 (40.3) 13 (40.6) 24 (50.0) 107 (46.7) 87 (45.5)

IC + CCRT 139 (39.9) 190 (50.7) 15 (46.9) 22 (45.8) 98 (42.8) 89 (46.6)

IC + RT 8 (2.3) 7 (1.9) 1 (3.1) 1 (2.1) 4 (1.7) 6 (3.1)

Abbreviation: CCRT, concurrent chemoradiotherapy; HT, hypothyroidism; IC, induction chemotherapy; RT, radiotherapy.
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Clinical application of the multiview radiomics risk model

The characteristics of 50 randomly selected test patients are listed in Table S7. With the same dose prescription and constraints, three simu-

lated treatment plans of each patient had target coverage higher than 95%. Simulated plan 1 had the same V45 to the thyroid but a different

dose distribution than simulated plan 2, while simulated plan 3 was nearly the same as the irradiation treatment plan (all p R 0.5, Figure 4).

There was a significant difference in the median 3-year hypothyroidism-free survival probability predicted by the multiview radiomics risk

model between simulated plan 1 and plan 2 (69.00% vs. 72.86%, p < 0.001). Additionally, the median 3-year predicted hypothyroidism-

free survival probability of simulated plan 3 (68.23%) was different from those of simulated plan 1 and plan 2 (all p % 0.005). However, the

predicted hypothyroidism-free survival probability of simulated plan 1 by Sommat’s model (67.14%) or Zhou’s model (65.84%) was the

same as that of simulated plan 2.

DISCUSSION

In this large cohort study, we developed and prospectively validated a multiview radiomics risk model to predict hypothyroidism-free survival

rates and guide individualized IMRT. The multiview model combining radiomics, dosiomics, DVH parameters, and clinical factors performed

better than the existing model. The redesigned simulated plans with different dose distributions had significant differences in hypothyroid-

ism-free survival rates predicted by the multiview radiomics risk model, which further verified its clinical application.

In accordance with a previous study,17 primary hypothyroidism had a high incidence of approximately 50% after IMRT in this study, indi-

cating the importance of identifying predictors and regularly screening thyroid function. However, thyroid function monitoring is not routine

after radiotherapy in clinical practice. Thus, building an effectivemultiviewmodel for predicting radiation-induced hypothyroidism is urgently

needed. Younger patients tended to suffer radiation-induced hypothyroidismmore than older patients in our study. Similarly, several studies

also reported that younger patients had a higher incidence of primary hypothyroidism.8,17 Certainly, as shown in our study, the advanced

Figure 2. Nomogram and calibration curves of multiview radiomics risk model

Radiomics risk nomogram (A) and calibration curves in the training (B), validation (C), and prospective test cohort (D).

Abbreviation: CT, computed tomography; HT, hypothyroidism.
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N stage was significantly related to hypothyroidism since the thyroid was more likely to be irradiated in patients with cervical lymph node

metastasis.7 In addition, studies have shown that the early T stage is an independent factor for predicting hypothyroidism,8,18 as they assumed

that a high dose to the pituitary in patients with advanced T stagemight prevent the thyroid-stimulating hormone (TSH) from increasing. How-

ever, the postulation cannot be validated in our study. Since the whole pituitary was reoutlined, it was almost impossible to identify the adeno-

hypophysis in which TSHwas produced accurately. Considering the sharp drop in dose to organs at risk in IMRT era, dosimetric parameters to

the whole pituitary cannot represent the dose to adenohypophysis. Therefore, patients with central hypothyroidism were excluded from this

study. Although themedian follow-up time of 22months in the prospective test cohort was slightly short, we can still draw reliable conclusions

since the peak incidence of hypothyroidism was 1–2 years after radiotherapy.

There was no doubt that DVH parameters played a critical role in predicting hypothyroidism, and the NTCP model has been commonly

used in clinical practice. Previous studies have reported that various parameters including V30, V35, V40, V50 and thyroid volume, are strongly

related to hypothyroidism.7,8,19 However, the optimal DVHparameter has not yet been determined, and the dose constraint to the thyroid has

also not been reported inQuantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC). Given the strong correlation betweenDVH

parameters, V45 with maximum time-dependent AUC was selected in this study.

With the rapid advancement of radiotherapy, the current one-dimensional and two-dimensional methods of evaluating treatment plan-

ning can no longer meet the complex dose distributions. Therefore, this study used the radiomics method to extract spatial features from

planning CT and three-dimensional dose distribution. Image segmentation is the most critical and basic step for radiomics since the features

are extracted from the segmentation region. In this study, all thyroids were reoutlined by a radiation oncologist with ten years of experience

and checked by an expert radiation oncologist. Feature selectionwas themost challenging step for our study. To avoid overfitting and reduce

irrelevant features, LASSO-Cox, which can effectively solve the multicollinearity problem of high-dimensional data, was applied to determine

important features for predicting hypothyroidism and combine the panel of selected features into radiomics signature and dosiomics signa-

ture for easy interpretation.20 The performances of single dosiomics signature or radiomics signature seemed to be better than those of the

dosimetric parameter, Sommat’s model and Zhou’s model in the training, validation, and prospective cohorts. The C-index increased when

combining radiomics signature and dosiomics signature, which indicated that planning CT and dose distribution could complement each

other in predicting radiation-induced injury. Not unexpectedly, themultiview radiomics riskmodel integrating radiomics signature, dosiomics

signature, DVHparameter, and clinical factors had better results than Sommat’smodel and Zhou’smodel in terms of performance and gener-

alization ability. In fact, the promising results of multiparametric model that combined radiomics, dosiomics, and clinical factors for predicting

local control in skull-base chordoma have been reported.15 The main reason may be that radiomics and dosiomics could make full use of the

spatial information of planning CT and dose distribution, which carry microscopic genetic susceptibility of the thyroid and heterogeneity of

the dose distribution. However powerful, underlying mechanism of radiomics and dosiomics features is still not fully explained, as the radio-

mics is inherently data-driven.21,22 Following emerging approaches, the underlying biological mechanism of radiomics and dosiomics will be

explored in the future. By using a multiview radiomics risk model, it was possible to precisely identify high-risk patients who required more

regularmonitoring of thyroid function after radiotherapy in clinical practice. In addition, when patientsmet the recommendeddose constraint

by Sommat’smodel or were in the low-risk groupby Zhou’smodel,multiview radiomics riskmodel could still stratify patients into high-risk and

low-risk groups, further demonstrating that it was superior to the other twomodels. Finally, the predicted hypothyroidism probabilities of two

simulated treatment plans with same DVH parameter but different dose distributions by the multiview radiomics risk model were significantly

different, while the two simulated plans had comparable predicted rates by Sommat’s model or Zhou’s model, which further verified the clin-

ical application and advantage of the multiview radiomics risk model.

There were several advantages in this study. A multiview radiomics risk model was developed and validated to predict radiation-induced

complications for the first time, combining radiomics, dosiomics, DVH parameters, and clinical factors. The multiview model provided a new

Table 2. Concordance indices and 3-year AUCs of different models in the training, internal test, prospective test, and external test cohorts

Training cohort Validation cohort Prospective test cohort

C-index

(95% CI) P

3-year

AUC

(95% CI) p

C-index

(95% CI) p

3-year

AUC

(95% CI) p

C-index

(95% CI) p

3-year

AUC

(95% CI) p

Sommat’s

model

0.514

(0.490–

0.537)

<0.001 0.535

(0.496–

0.574)

<0.001 0.538

(0.461–

0.615)

<0.001 0.556

(0.435–

0.677)

<0.001 0.536

(0.510–

0.562)

<0.001 0.583

(0.540–

0.626)

<0.001

Zhou’s

model

0.549

(0.518–

0.581)

<0.001 0.560

(0.513–

0.607)

<0.001 0.571

(0.491–

0.652)

<0.001 0.591

(0.457–

0.725)

0.001 0.629

(0.589–

0.669)

<0.001 0.675

(0.609–

0.741)

0.002

Radiomics

risk model

0.681

(0.653–

0.710)

RE 0.723

(0.681–

0.765)

RE 0.704

(0.632–

0.777)

RE 0.777

(0.663–

0.892)

RE 0.725

(0.687–

0.762)

RE 0.763

(0.699–

0.827)

RE

Abbreviation: AUC, area under the curve; C-indices, concordance index; CI, confidence interval; RE, reference.
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strategy for predicting other adverse events. Besides, imaging and segmentation perturbations evaluate the robustness of the selected fea-

tures, contributing to the overall strength of the multiview radiomics risk model.

In conclusion, we developed and prospectively validated amultiview radiomics risk model to predict radiation-induced complications and

guide IMRT. And the multiview radiomics risk model has better performance and generalization ability than existing models.

Figure 3. Hypothyroidism-free survival curves of subgroups

Hypothyroidism-free survival curves of high- and low-risk groups stratified by multiview radiomics risk model (A and B), V40 (C and D), and Zhou’s model (E and F).

(C and E) High-risk and (D and F) low-risk group stratified by multiview radiomics risk model.

Abbreviation: HT, hypothyroidism.
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Limitations of the study

The limitations should also be noted. First, only radiation-induced hypothyroidism was evaluated in this study, and a more comprehensive

model that could assess radiation-induced toxicities of multiple organs at risk and tumor volume is needed to guide future treatment plan

design. Second, the multiview radiomics risk model was only validated in the prospective cohort, and external validation was needed in

the future. Third, there was a lack of reporting the severity of hypothyroidism. In addition, although it is unclear how unfavorable texture fea-

tures were improved during the optimization, dosiomics and radiomics were an important step in the right direction for automated planning

using spatial dose volumes. A deep learning basedmultiview radiomics risk model withmulticenter external tests is going to reduce time cost

and improve performance.
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Abbreviation: DVH, dose-volume-histogram.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethics statement

This study was approved by the Ethics Committees of our Center (B2021-343), and informed consent was obtained from all eligible patients.

Patients

A total of 803 nasopharyngeal carcinomapatients who received intensity-modulated radiotherapy between January 2014 andDecember 2015

at Sun Yat-sen University Cancer Center were retrospectively enrolled for the training cohort (n = 723) and validation cohort (n = 80). The in-

clusion criteria were as follows (1) age greater than 18 years, regardless of gender and ethnicity, newly diagnosed, untreated nasopharyngeal

carcinoma; (2) receipt of one course of intensity-modulated radiotherapy; (3) normal thyroid function before radiotherapy; (4) the availability of

the radiotherapy treatment plan; and (5) regular follow-up of thyroid function. Exclusion were patients (1) who underwent thyroidectomy; (2)

who received irradiation to pituitary and/or head and neck cancer; (3) with disorders in the hypothalamic-pituitary-thyroid axis before radio-

therapy; (4) with thyroid tumors; and (5) who were diagnosed with central hypothyroidism. All patients were restaged according to 8th edition

American Joint Committee on Cancer/Union for International Cancer Control (AJCC/UICC) staging system.

In addition, 420 patients from the secondary analysis of our prospective observational study (ClinicalTrials.gov Identifier: NCT03003182)

sinceMay 2017were defined as the prospective test cohort. This studywas approvedby the Ethics Committees of our Center (B2021-343), and

informed consent was obtained from all eligible patients. The study followed the transparent reporting of amultivariable predictionmodel for

individual prognosis or diagnosis (TRIPOD) guidelines.23

METHOD DETAILS

Evaluation of hypothyroidism

Thyroid function was evaluated before radiotherapy, including serum levels of thyroid-stimulating hormone (TSH), free triiodothyronine (FT3),

and free thyroxine (FT4). After radiotherapy, all eligible patients were followed-up for thyroid function every three months during the first two

years, and then every six months. Thyroid function was measured using the electrochemiluminescence method (Elecsys 2010 analyzer) in our

center. The reference ranges of TSH, FT3, and FT4 were 0.27–4.20 mIU/mL, 2.80–7.10 pmol/L, and 12.00–22.00 pmol/L, respectively. Primary

hypothyroidism was defined as elevated TSH (>4.20 mIU/mL) with normal or low FT4 levels (<22.00 pmol/L).

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

clinical data of patients Research Data Deposit Management Committee https://www.researchdata.org.cn/

planning computed tomography Sun Yat-sen University cancer center N/A

dose distribution Sun Yat-sen University cancer center N/A

Software and algorithms

R 4.1.0 R Development Core Team https://cran.r-project.org/

Python 3.0.1 Python Development Core Team https://www.python.org/

ll
OPEN ACCESS

10 iScience 26, 108394, December 15, 2023

iScience
Article

mailto:chenchuny@sysucc.org.cn
http://ClinicalTrials.gov
https://www.researchdata.org.cn/
https://cran.r-project.org/
https://www.python.org/


Treatment and follow up

All participants were treated with radical intensity-modulated radiotherapy. The delineation of target volumes was consistent with the Inter-

national Commission on Radiation Units andMeasurements Reports 50 and 62. The prescribed doses were 66–72 Gy/28–33 fractions to gross

tumor and 64–70Gy/28–33 fractions to lymph node, 60–63Gy/28–33 fractions to the high-risk clinical target volume (CTV1), and 54–56Gy/28–

33 fractions to the low-risk clinical target volume (CTV2). The dose to organs at risk was restricted referring to the Radiation TherapyOncology

Group 02-25 protocol. The organs at risk were delineated according to recommendations by Sun et al.24 Radiotherapy alone was the main

treatment modality for stage I nasopharyngeal carcinoma, while concurrent chemotherapy with or without induction chemotherapy was rec-

ommended for stage II-IV disease based on the National Comprehensive Cancer Network (NCCN) guidelines.

After treatment, follow-up was performed every 3 to 6 months during the first 2 years and then every 6 to 12 months thereafter. The dura-

tion of follow-up was defined from the beginning of primary intensity-modulated radiotherapy to the onset of hypothyroidism or the final

examination of thyroid function. The endpoint was hypothyroidism-free survival, which was calculated from the start of radiotherapy to the

occurrence of hypothyroidism.

Planning CT and dose distribution protocol

All patients were immobilized in the supine position using a head-neck-shoulder thermoplastic mask. Planning CT images, which acquired

from CT simulation positioning system (Philips, Brilliance Big Bore), were ranged from the head to 2 cm below the sternoclavicular joint

with 3 mm slices, a matrix size of 5123 512, and voxel resolution of 0.973 0.973 3.0 mm in the left-right, anteroposterior, and craniocaudal

directions. The CT scanning parameters were as follows: voltage of 140 kV, scanning current of 280mAs, scanning slice thickness of 3mm, and

reconstruction layer thickness of 3 mm. The image reconstruction algorithm was iterative reconstruction algorithm, while the dose calculation

algorithm was Algorithm Architecture Adequation (AAA). And the CT value-to-tissue density conversion curve was employed for tissue inho-

mogeneity correction and absorbed dose distribution calculation.

Image segmentation and dosimetric parameters

Radiotherapy planning CT and dose distribution were obtained from the treatment planning system (Version 15.6, Eclipse, Varian, CA, USA).

All thyroids, as regions of interest, were re-delineated using ITK-SANP software (version 3.8.0; www.itksnap.org) on planning CT images by a

radiation oncologist (PYOY) with ten years of experience, and checked again by an expert radiation oncologist (FYX) with over 30 years of

experience.24 Dosimetric parameters were extracted from the treatment plan, including V5-V70 in V5 increments (Vx, the percentage of thyroid

receiving over X Gy), thyroid volume, the mean, maximum, minimum dose (Dmean, Dmax, Dmin), D0.5cc, and D1cc (dose to 0.5 ml or 1 ml of thy-

roid). All dosimetric parameters were rescaled to an equivalent dose of 2 Gy per fraction (EQD2Gy) by a linear quadratic model. The process

was performed by using MATLAB (MathWorks, Natick, MA).

To allow for direct comparison with previous studies, a linear quadratic model was used to rescale DVH to an equivalent dose of 2 Gy per

fraction (EQD2Gy).

EQD2Gy = Dx � ða =b + dxÞ=ða =b+ 2Þ

Dx = total dose;dx = dose per fraction; and a
�
b = 3 Gy

Feature extraction

Radiotherapy simulated CT and dose distribution were obtained from the treatment planning system (Version 15.6, Eclipse, Varian, CA, USA).

Radiomics features and dosiomics features were extracted from simulated CT and 3D dose distributions using the ‘‘pyradiomics’’ package in

Python (version 3.0.1). A filtering process was conducted tomake the image smooth and reveal the detailed information of the original image

from different directions and levels. The filtered images were generated by performing a low-/high-pass ‘‘Coiflet 1’’ wavelet filter on the orig-

inal image in the x-/y-/z-direction separately. Assume that L, H and X represent the low-pass function, high-pass function, and original images

respectively. Thus, eight filtered images were labeled as XLLL, XLLH, XLHL, XLHH, XHLL, XHLH, XHHL, and XHHH. In addition, the Laplacian of

Gaussian (LoG) filter was also applied to the original image, and the corresponding image was derived for each sigma. Since the sigma value

was specified as 1 mm to 5 mm in this study, five derived images were obtained. Finally, 1316 quantitative radiomics features and 1302 dos-

iomics features were extracted, including 14 shape features from original images, 14*18 first order features, and 14*75 texture features

(24 Gray Level Co-occurrenceMatrix, GLCM; 16 Gray Level Run LengthMatrix, GLRLM; 16 Gray Level Size ZoneMatrix, GLSZM; 14 Gray Level

Dependence Matrix, GLDM; 5 Neighboring Gray Tone Difference Matrix, NGTDM) from original images and corresponding filtered images.

Feature extraction was standardized according to the Image Biomarker Standardization Initiative (IBSI). For more information about formulas

for computing these features, please visit https://pyradiomics.readthedocs.io/en/latest/.

All extracted features were standardized by z-score method.

Z-score:

z = ðx � mÞ=s
x is the original feature value, z is the normalized feature value, m is the mean of the feature value, and s is the standard deviation of the

feature value.
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Feature selection and signature building

For each thyroid, 1316 radiomics features and 1302 dosiomics features were extracted from planning CT and dose distribution using Python

software, including shape, first order, and five kinds of texture features (Gray Level Co-occurrenceMatrix (GLCM), Gray Level Size ZoneMatrix

(GLSZM), Gray Level Dependence Matrix (GLDM), Gray Level Run Length Matrix (GLRLM), and Neighbouring Gray Tone Difference Matrix

(NGTDM)). First-order statistics describe the distribution of voxel intensities in the ROI without considering spatial relationships. Texture fea-

tures of image, including GLCM, GLDM, GLSZM, NGTDM, describe statistical interrelationships between voxels with contrast values. And

wavelets filter and Laplacian of Gaussian (LoG) filter were conducted to reveal the detailed information of the original image from different

directions and levels. Formore information, please visit https://pyradiomics.readthedocs.io/en/latest/. And radiomics features and dosiomics

features, which were standardized using z-score, were then selected for signature building. Feature selection and signature building were

conducted to remove irrelevant and redundant features. Both feature selection and model building were conducted in the training cohort.

First, univariate Cox proportional hazard regression model was applied to select features that were potential predictors for hypothyroidism-

free survival. Only features with p < 0.05 were chosen for the next step. Second, Pearson correlation analysis was conducted to remove the

redundant features using the ‘‘find Correlation’’ function of the ‘‘caret’’ package in R software. The Pearson correlation coefficients (r) of pair-

wise features and the mean absolute correlation of each feature were calculated. Highly correlated features were selected from a correlation

matrix. If the Pearson |r| of pairwise feature is greater than 0.8, the feature with the largest mean absolute correlation was removed. Next, the

least absolute shrinkage and selection operator (LASSO) Cox regressionmethodwas conducted to identify useful predictors for hypothyroid-

ism-free survival. The tuning parameter (l) in the LASSO model was determined using 10-fold cross-validation with minimum criteria

(Table S2). Finally, selected dosiomics features and radiomics features were combined into a dosiomics signature and a radiomics signature

based on a linear combination of selected features, which weighed by their coefficients, respectively (Table S3).

Dosiomics score= � 0:026�wavelet:HHH firstorder Kurtosis� 0:146�wavelet:LLL glcm ClusterProminence

� 0:030�log:sigma:3:0:mm:3D glcm Idn+ 0:005�wavelet:LHL glcm MaximumProbability

� 0:009�wavelet:LLL glcm MCC� 0:003�wavelet:LHH glcm MaximumProbability

� 0:074�wavelet:HLH gldm DependenceNonUniformityNormalized

� 0:046�wavelet:LHH gldm DependenceNonUniformityNormalized

� 0:046�wavelet:HHL gldm LargeDependenceLowGrayLevelEmphasis

� 0:044�original gldm DependenceNonUniformity� 0:031�wavelet:HHL gldm

DependenceNonUniformityNormalized� 0:024�wavelet:LLL gldm

LargeDependenceHighGrayLevelEmphasis� 0:017�wavelet:HLH
gldm LargeDependenceHighGrayLevelEmphasis� 0:024�wavelet:LHL glrlm

RunLengthNonUniformity� 0:052�log:sigma:5:0:mm:3D glszm SmallAreaHighGrayLevelEmphasis

� 0:044�wavelet:HHH glszm SmallAreaHighGrayLevelEmphasis� 0:002�wavelet:HHH glszm

SmallAreaLowGrayLevelEmphasis + 0:005�wavelet:LHH glszm SizeZoneNonUniformityNormalized

+ 0:008�original glszm SmallAreaLowGrayLevelEmphasis+ 0:018�wavelet:LHL glszm ZonePercentage

Radiomics score= � 0:005�original shape LeastAxisLength� 0:052�wavelet:LHH firstorder Median� 0:042�wavelet:HLH
firstorder Maximum� 0:018�wavelet:HLL firstorder 10Percentile� 0:008�wavelet:HHL firstorder

Skewness+ 0:035�wavelet:LLH firstorder Skewness+ 0:065�original firstorder
RobustMeanAbsoluteDeviation + 0:082�wavelet:LHL firstorder 90Percentile+ 0:029�wavelet:LHL
firstorder InterquartileRange� 0:058�original glcm MCC� 0:064�wavelet:HHH glcm

SumAverage� 0:057�log:sigma:3:0:mm:3D gldm DependenceEntropy� 0:020�wavelet:LHL gldm

SmallDependenceLowGrayLevelEmphasis� 0:010�wavelet:LHL gldm

DependenceVariance+ 0:003�wavelet:HHL gldm SmallDependenceHighGrayLevelEmphasis

+ 0:008�wavelet:HHH gldm LowGrayLevelEmphasis+ 0:029�wavelet:HLH gldm DependenceEntropy

+ 0:041�wavelet:LLH gldm DependenceEntropy + 0:054�log:sigma:5:0:mm:3D gldm

SmallDependenceHighGrayLevelEmphasis� 0:062�wavelet:HLL glszm SizeZoneNonUniformity

� 0:050�wavelet:HHH glszm SizeZoneNonUniformity� 0:045�wavelet:LHL glszm

LargeAreaLowGrayLevelEmphasis� 0:027�wavelet:HLH glszm LargeAreaHighGrayLevelEmphasis

� 0:004�wavelet:LHH glszm SizeZoneNonUniformity + 0:001�wavelet:HHL glszm

LowGrayLevelZoneEmphasis+ 0:128�log:sigma:2:0:mm:3D glszm SmallAreaLowGrayLevelEmphasis

� 0:007�log:sigma:5:0:mm:3D ngtdm Busyness
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Robustness evaluation of the selected features

Imaging and Segmentation (for thyroid) perturbations are performed for robustness evaluation of the selected features. The features ex-

tracted from the derived CTs and dose distributions were assessed by the intraclass correlation coefficient (ICC), and features with an ICC

higher than 0.8 were considered robustness.

Imaging perturbations were performed by modifying the reconstruction parameters of the planning CT, thus generating several sets of

derived CTs on the large-aperture CT simulation localizer (GE Discovery CT590RT). 1) Modify the field of view (FOV): set FOV to 50 and 60

respectively, while the rest of the reconstruction parameters are the same, thereby reconstructing two sets of derived CTs; 2) Modify the

reconstruction mode: set it to "Soft", "Stnd" and "Detail" respectively, and the rest of the reconstruction parameters are the same, gener-

ating three sets of derived CTs. Segmentation perturbations were conducted by test-retest and inter-rater analyses. For test-retest analysis, a

radiation oncologist (PYOY) delineated the thyroids on 38 randomly selected patients twice, with a 6-month interval between outlines. And

two radiation oncologists (PYOY and SSY) delineated the thyroids respectively, to perform the inter-rater analyses. To evaluate the robustness

of dosiomics features, we modified the dose calculation grid size to 0.2cm, 0.25cm, and 0.3cm, respectively. We recalculate the dose and

generate three sets of derived dose distributions.

QUANTIFICATION AND STATISTICAL ANALYSIS

The endpoint was primary hypothyroidism-free survival, which was calculated from the beginning of intensity-modulated radiotherapy to the

occurrence of primary hypothyroidism.

The chi-square test was used to compare the clinical variables. Potential clinical factors for predicting hypothyroidism were selected by

univariate Cox regression (Table S1). Since dosimetric parameters are highly correlated with each other, the most critical factor was select

according to themaximumarea under the receiver operating curve (AUC). The potentialmultiviewdata, which consisted of clinical risk factors,

dosimetric parameter, dosiomics signature, and radiomics signature were incorporated intomultivariable Cox regression to build amultiview

model for predicting hypothyroidism. The stepwise regressionmodel was performedwith Akaike’s information criterion, andmulticollinearity

of variables in the model was evaluated by the variance inflation factor (VIF). The variables with a VIF higher than 5 were removed.

To improve the stability and reproducibility of the model, the training and validation cohorts were randomly assigned using 10-fold cross-

validation. Harrell’s concordance index (C-index) and the AUC of receiver operating characteristic (ROC) curve were used to evaluate the per-

formance of themodel and compare it with Sommat’s model of V40
8 and Zhou’s model of thyroid volume plus N stage.7 Calibration curve was

plotted to access the agreement between the predicted probability of multiview radiomics riskmodel and the actual outcome.Decision curve

analysis was used to evaluate the net benefits of the model at specific threshold probabilities. The cutoff value of different risk groups was

determined by time-dependent ROC, and the survival curves were compared using Kaplan–Meier with log-rank test.

To further verify the clinical application of the multiview radiomics risk model, 50 test patients (29 hypothyroidism and 21 euthyroid pa-

tients) were randomly selected. Three different simulated treatment plans were redesigned for each patient, including a simulated plan

that was very similar to the irradiated treatment plan and two different simulated plans with the same DVH parameters but different dose

distributions. The predicted hypothyroidism-free probability of different simulated plans was compared by the Wilcoxon matched-pairs

signed rank test.

Statistical analysis was conducted in R software (https://cran.r-project.org/). The p values of the C-index were computed by the ‘‘Hmisc’’

package in R software. A p value < 0.05 (two-sided) was considered statistically significant. The C-index values of 0.5–0.7, 0.7–0.9, and 0.9–1

indicated low, medium, and high predictive accuracy, respectively.
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