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Lung cancer is the most prevalent cancer globally. It is also the leading cause of
cancer-related death because of the late diagnosis and the frequent resistance to
therapeutics. Therefore, it is impending to identify novel biomarkers and effective
therapeutic targets to improve the clinical outcomes. Identified as a new class of
RNAs, circular RNAs (circRNAs) derive from pre-mRNA back splicing with considerable
stability and conservation. Accumulating research reveal that circRNAs can function as
microRNA (miRNA) sponges, regulators of gene transcription and alternative splicing,
as well as interact with RNA-binding proteins (RBPs), or even be translated into proteins
directly. Currently, a large body of circRNAs have been demonstrated differentially
expressed in physiological and pathological processes including cancer. In lung cancer,
circRNAs play multiple roles in carcinogenesis, development, and response to different
therapies, indicating their potential as diagnostic and prognostic biomarkers as well as
novel therapeutics. In this review, we summarize the multi-faceted functions of circRNAs
in lung cancer and the underlying mechanisms, together with the possible future of these
discoveries in clinical application.
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Abbreviations: ADAR1, adenosine deaminase 1; CDK2, cyclin-dependent kinase 2; CDKN1, cyclin-dependent kinase
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circRNAs; CXCR4, C-X-C motif chemokine receptor 4; EcircRNAs, exonic circRNAs; EGF, epidermal growth factor; EGFR,
epidermal growth factor receptor; EIF3, eukaryotic initiation factor 3; ElciRNAs, exonic circRNAs with introns; EMT,
epithelial-to-mesenchymal transition; f-circRNAs, fusion circRNAs; FLI1, friend leukemia virus integration 1; FOXM1,
Forkhead Box (Fox) transcription factor 1; HIF, hypoxia-inducible factor; IRES, internal ribosome entry site; lncRNA,
long non-coding RNA; m6A, N6-methyladenosine; MBL, splicing factor muscleblind; miRNA, microRNA; NSCLC, non-
small cell lung cancer; ORF, open reading frame; PD-1, programmed cell death-1; PD-L1, programmed cell death-1 ligand;
PDPK, phosphoinositide-dependent protein kinase; PES1, pescadillo homolog 1; PFS, progression-free survival; Pol II, RNA
polymerase II; PTEN, phosphatase and tensin homolog deleted on chromosome 10; QKI, RNA-binding protein quaking; RBP,
RNA-binding protein; ROCK1, Rho-associated coiled-coil kinase 1; rRNA, ribosomal RNA; SCLC, small cell lung cancer;
snRNA, small nuclear RNA; snRNP, small nuclear ribonucleoprotein; TGF-β, transforming growth factor-β; TKI, tyrosine
kinase inhibitor; TME, tumor microenvironment; TNM, tumor node metastasis; tricRNAs, tRNA intronic circRNAs.
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INTRODUCTION

Nowadays, lung cancer is the most frequent cause of cancer-
related mortality (Siegel et al., 2017). Non-small cell lung cancer
(NSCLC), including lung adenocarcinoma, squamous cell lung
carcinoma, and large cell lung carcinoma, constitutes about
85% of lung cancer cases. Although the novel therapeutic
strategies such as targeting drugs toward the epidermal growth
factor receptor (EGFR), anaplastic lymphoma kinase (ALK), and
immune checkpoints programmed cell death-1 (PD-1) and/or
programmed cell death-1 ligand (PD-L1) have led to an great
progress of advanced NSCLC patients among the past decades,
the long-term survival of lung cancer remains unfavorable
because of the late diagnosis and the frequent resistance to
therapeutics (Chansky et al., 2017; Kris et al., 2017). Therefore,
the identification of sensitive biomarkers for early detection and
prognosis estimation, as well as effective therapeutic targets is
urgently needed to improve the clinical outcomes.

Circular RNAs (circRNAs) are identified as a new class
of endogenous RNAs derived from back splicing. Lacking
the 3′-poly(A) tails and 5′-end caps (Suzuki and Tsukahara,
2014), circRNAs have closed loop structures generated from
the ligation of exons, introns, or both (Wang et al., 2019b),
thus are divided into the three main subtypes as exonic
circRNAs (EcircRNAs), intronic circRNAs (ciRNAs), and exonic
circRNAs with introns (EIciRNAs), respectively. EcircRNAs exist
in the eukaryotic cytoplasm, while ciRNAs and EIciRNAs are
mainly in the nucleus. Other subtypes of circRNAs include
intergenic circRNAs, tRNA intronic circRNAs (tricRNAs),
antisense circRNAs, overlapping circRNAs, circRNA rRNAs
(circrRNAs), and intragenic circRNAs (Liang et al., 2020).
Owing to the absence of the 3′ and 5′ ends, circRNAs exhibit
much more stability and conservation than the linear RNAs
and are insusceptible to RNA exonuclease or RNase R-induced
degradation. In general, circRNAs are expressed at lower levels
than the host genes (Enuka et al., 2016). Although discovered
half a century ago (Sanger et al., 1976), circRNAs are recently
considered as the by-products from pre-mRNA back splicing
without important biological functions. Currently, a large body
of circRNAs have been demonstrated differentially expressed in
physiological and pathological states including cancer due to the
development of next-generation sequencing and bioinformatic
technologies (Dragomir and Calin, 2018). In lung cancer,
circRNAs reveal multiple roles in carcinogenesis, development,
and response to therapies, implying their potential roles as
not only the diagnostic and prognostic biomarkers but also
novel therapeutics.

BIOGENESIS OF circRNAs

RNA alternative splicing is a basic gene expression event
in eukaryotic cells. Unlike conventional splicing of mRNA,
circRNAs are mainly produced from back-splicing process by
ligating a downstream 5′ site with an upstream 3′ site and
forming a single-strand closed loop (Jeck et al., 2013). After
that, all or part of introns will be removed by the spliceosome

and the rest of sequences are to be connected, generating the
corresponding subtypes of circRNAs. Exon-skipping is another
mechanism for circRNA circularization. It is reported that exon-
skipping promotes the shaping process of the spliced lariat
containing the circularized exon (Kelly et al., 2015). Furthermore,
RNA-binding proteins (RBPs) are demonstrated to be able
to induce circRNAs formation. For example, splicing factor
muscleblind (MBL) has binding sites on flanking introns of
its pre-mRNA and is able to bring the two splicing sites close
together and facilitate circularization (Ashwal-Fluss et al., 2014).
Enzyme adenosine deaminase 1 (ADAR1) can inhibit circRNAs’
expression by Adenosine-to-Inosine editing to diminish RNA
pairing structure of flanking introns and diminish the back-
splicing efficiency (Ivanov et al., 2015). RNA-binding protein
quaking (QKI) is also proved to regulate circRNAs’ biogenesis by
binding to sites flanking circRNAs forming exons to induce exon
circularization during epithelial–mesenchymal transition (EMT)
(Conn et al., 2015).

FUNCTIONS AND MECHANISMS OF
circRNAs

Recently, increasing studies have focused on circRNAs’ biological
functions and their regulation. It is confirmed that circRNAs
can function as microRNA (miRNA) sponges to stop miRNAs
from regulating gene expression via a circRNA–miRNA–mRNA
pathway (Hansen et al., 2013). Moreover, circRNAs can act as
regulators of gene transcription and alternative splicing, as well
as interact with RBPs, or even be translated into peptides or
full-length proteins directly (Liu et al., 2017) (Figure 1).

circRNAs as miRNA Sponges
miRNAs are small non-coding RNAs that post-transcriptionally
regulate gene expression by base paring with specific mRNA
target sequences, thereby leading to translational inhibition
or mRNA degradation (Salmanidis et al., 2014). They can be
endogenously sponged by long non-coding RNAs (lncRNAs)
owing to the presence of the miRNA response element (MRE) in
lncRNA sequences (Cesana et al., 2011). It has been shown that
some circRNAs located in cytoplasm also have complementary
binding sites of miRNAs and can thus function as competing
endogenous RNAs (ceRNAs) to compete with miRNAs and
further regulate cellular functions (Zhong et al., 2018). For
instance, EcircRNA ciRS-7 is reported to harbor more than
60 conserved miRNA seed match segments for miR-7, thereby
antagonizing miR-7 biological activity and functions (Hansen
et al., 2013). Subsequent studies confirm the importance of ciRS-
7 as miR-7 sponges in many pathological processes including
myocardial infarction, insulin secretion, and carcinogenesis
(Pan et al., 2018).

circRNA–Protein Interactions
Recently, it is demonstrated that certain circRNAs can serve
as protein decoys through binding to RBPs and regulate
their interaction with DNAs, RNAs, and/or other proteins.
For example, with several MBL binding sites, circMbl is able
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FIGURE 1 | Biogenesis and regulatory functions of circRNAs. (A) circRNAs as miRNA sponges. (B) circRNA-protein interactions. (C) circRNAs and protein
translation. (D) circRNAs and gene transcription. (E) circRNAs and alternative splicing.

to sponge out the excessive MBL proteins and maintain its
expression balance (Ashwal-Fluss et al., 2014). circANRIL can
bind to pescadillo homolog 1 (PES1) and restrain exonuclease-
mediated pre-rRNA (ribosomal RNA) processing (Holdt et al.,
2016). circPABPN1 binds to HuR and prevents its binding to
PABPN1 mRNA, resulting in PABPN1 translation attenuation
(Abdelmohsen et al., 2017). circ-Foxo3 participates in the
composition of a ternary complex by binding to cyclin-dependent
kinase 2 (CDK2) and cyclin-dependent kinase inhibitor 1
(CDKN1), leading to impaired function of CDK2 and cell cycle
arrest (Du et al., 2016). However, not all the circRNAs interacting
with RBPs inhibit proteins functions. Particularly, circ-Amotl1
is reported to interact with and stabilize oncogene c-myc
and upregulate c-myc targets, thereby promoting tumorigenesis
(Yang Q. et al., 2017). The second action mode of circRNAs in
interacting with proteins is to serve as protein recruiters. They
can recruit not only transcription factors (Wang et al., 2019c),
but also chromatin remodelers (Ding et al., 2019) and DNA
or histone modifying enzymes (Chen N. et al., 2018) to the
promoters and alter transcription either positively or negatively.
Furthermore, circRNAs are able to alter interactions between
proteins. In detail, circRNAs can strengthen interactions between
proteins through direct binding to both of them (Huang S. et al.,
2019) or just one of them (Fang et al., 2018), or dissociate
interactions between proteins originally combined together by
direct binding to both of them (Fang et al., 2019). Interestingly,

it is reported that some circRNAs can also serve as protein
transporters. circRNAs transport proteins between nucleus and
cytoplasm (Yang Z. et al., 2017; Wang et al., 2019e), and to
the mitochondria (Liu et al., 2020) or membrane (Du et al.,
2020) (Figure 2).

circRNAs and Protein Translation
Although initially considered as non-coding RNAs (Jeck et al.,
2013), circRNAs are shown to be translatable in human
transcriptome in vivo by ribosome footprinting and mass
spectrometry analysis recently (Pamudurti et al., 2017). With
the help of internal ribosome entry site (IRES) which is a
non-circle structure, circRNA can be translated into either
small peptides or full-length proteins. For example, circ-
SHPRH is reported to encode the protein SHPRH-146aa,
protect full-length SHPRH from degradation by the ubiquitin
proteasome, and ultimately inhibit glioma tumorigenesis (Zhang
et al., 2018a). An endogenous circFBXW7 can be encoded
into a 21 kDa protein with suppressive roles in malignant
phenotypes of human glioblastoma (Yang et al., 2018). Moreover,
extensive N6-methyladenosine modification can drive the cap-
independent translation of circRNAs together with m6A reader
YTHDF3 and translation initiation factors eIF3A and eIF4G2
(Yang Y. et al., 2017).

Known circRNAs and their protein production are listed
in Table 1.
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FIGURE 2 | circRNA-protein interactions. (A) circRNAs block proteins from interacting with DNAs, RNAs or other proteins, thereby compromising their original
functions. (B) circRNAs recruit transcription factors, chromatin remodelers, and DNA or histone modifying enzymes to the promoters, altering transcription either
positively or negatively. (C) circRNAs strengthen interactions between proteins through direct binding to both of them or just one of them; or dissociate interactions
between proteins originally combined together by direct binding to both of them. (D) circRNAs transport proteins between nucleus and cytoplasm, and to the
mitochondria or membrane.

circRNAs and Gene Transcription
It is demonstrated that certain ElciRNAs and ciRNAs may
act as transcriptional regulators. For instance, ElciRNAs
circEIF3J and circPAIP2 are reported to promote their
parental genes promotion by a specific U1 small nuclear
RNA (snRNA)-ElciRNA interaction. Mechanically, EIciRNAs
bind to U1 small nuclear ribonucleoprotein (snRNP) through
interaction with U1 snRNA and to form EIciRNA–U1 snRNP
complexes, which will further interact with RNA polymerase
II (Pol II) transcription complex of the parental gene and

TABLE 1 | circRNAs and protein translation.

circRNA Peptide/protein References

circSHPRH SHPRH-146aa Zhang et al., 2018a

circFBXW7 FBXW7-185aa Yang et al., 2018

HPV16 circE7 E7 oncoprotein Zhao et al., 2019

circβ-catenin β-catenin-370aa Liang et al., 2019

circAKT3 AKT3-174aa Xia et al., 2019

circPPP1R12A PPP1R12A-73aa Zheng et al., 2019

circPIN-Texon2 PINT87aa Zhang et al., 2018b

circGprc5a circGprc5a-peptide Gu et al., 2018

circLgr4 circLgr4-peptide Zhi et al., 2019

enhance gene transcription (Li et al., 2015). Besides, ciRNA
ci-ankrd52 is able to accumulate to its transcription sites and
positively regulate elongation Pol II machinery, suggesting a
cis-regulatory role of ciRNAs in expression of their parental genes
(Zhang et al., 2013).

circRNAs and Alternative Splicing
RNA alternative splicing is a basic gene expression event
in eukaryotic cells. During this process, the backsplicing of
circRNAs competes with the linear splicing of pre-mRNAs for
splicing sites. For example, derived from the second exon of
splicing factor MBL, circMbl itself and its flanking introns
have conserved MBL binding sites, indicating that MBL may
have effects on alternative splicing and modulate the balance
between the backsplicing of circRNAs and the linear splicing of
pre-mRNAs (Ashwal-Fluss et al., 2014). Meanwhile, circRNAs
can act as “mRNA traps” during the back-splicing process by
sequestering the translation start site to prevent translation of
certain normal linear transcripts and reduce the expression of the
very proteins. For instance, EcircRNAs generated from Formin
(Fmn) and Duchenne muscular dystrophies traps (DMD) genes
are able to cause inactivation of RNA transcripts with certain
deletion mutations, thereby diminishing the expression levels
of the corresponding functional proteins (Chao et al., 1998;
Gualandi et al., 2003).
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circRNAs AND LUNG CANCER

Emerging evidence suggests that circRNAs are abnormally
expressed and playing endogenous regulatory roles in
carcinogenesis and development of lung cancer, including
cell viability, apoptosis, autophagy, invasion, migration,
tumor microenvironment (TME) regulation (such as tumor
immunosuppression, angiogenesis, hypoxia, and metabolic
abnormalities), and therapeutic sensitivities. Moreover, circRNAs
own relative specificity and stability compared to other non-
coding RNAs, making them more attractive as novel diagnostic
and prognostic biomarkers as well as promising therapeutics
in lung cancer management. With the development of high-
throughput sequencing technology, circRNA expressions in
cell lines, tissue samples, and liquid biopsies (especially blood)
from lung cancer patients have been detected (Wang et al.,
2019a; Zhang et al., 2020). Functional validation assays as well
as bioinformatic analysis have been performed to reveal the
interaction network of circRNAs and other regulatory factors in
lung cancer tumorigenesis and development.

circRNAs as Diagnostic and Prognostic
Biomarkers for Lung Cancer
With advantages such as non-invasion, specificity,
reproducibility, and sensitivity, circRNAs can act as biomarkers
for lung cancer pathological subtyping. For example,
hsa_circ_0013958 is indicated to be used as a potential biomarker
for screening and early detecting lung adenocarcinoma (Zhu
et al., 2017). In a recent work, circRNA expressions are profiled
in both lung adenocarcinoma and squamous cell carcinoma and
the result indicates that the two subtypes exhibit distinct circRNA
expression signatures (Wang et al., 2019a). Similarly, circNOL10
expression varies significantly between lung adenocarcinoma
and lung squamous cell carcinoma and has close relationship
with the degree of differentiation (Nan et al., 2018). Another
study confirms that circ-STXBP5L is selectively expressed in
small cell lung cancer (SCLC) samples compared with NSCLC
(Zhang et al., 2020). These results highlight the important
diagnostic value of circRNAs in pathological classification of
lung cancer.

Moreover, mounting studies demonstrate that circRNAs
can also serve as prognostic biomarkers for lung cancer
occurrence, development, tumor node metastasis (TNM) staging,
pathological grade, and lymphatic metastasis. Generally, many
circRNAs are upregulated in lung cancer and are considered to
be “onco-circRNAs” due to their positive roles in cancer cell
proliferation, invasion, and migration, as well as the negative
regulation on cancer cell apoptosis. Vice versa, circRNAs that are
downregulated in lung cancer with tumor-suppressive functions
are considered as “tumor-suppressive circRNAs.”

Onco-circRNAs in Lung Cancer
To date, a multitude of onco-circRNAs have been identified in
lung cancer and proposed as potential biomarkers for prognosis.

As is well-known that metastasis is one of the main
characteristics of malignant tumors including lung cancer. It is
reported that friend leukemia virus integration 1 (FLI1) exonic

circRNA FECR1 can promote SCLC metastasis by increasing
rho-associated coiled-coil kinase 1 (ROCK1) expressions through
direct inhibition of miR584-3p (Li L. et al., 2019). It is described
above that circ-STXBP5L participates in the carcinogenesis
of SCLC as an onco-circRNA by sponging miR-224-3p and
miR-512-3p and regulating a subset of target genes, including
Akts, NFκB and Pik3ca (Zhang et al., 2020). As for NSCLC,
the data are more detailed. For instance, over-expressed in
EGFR-resistant H1975 cells, circRNA CCDC66 is regulated by
HGF/c-Met to increase EMT process and drug resistance of
lung adenocarcinoma (Joseph et al., 2018). Produced from the
EML4-ALK fusion, circRNA F-circEA-2a reveals positive effect
on cell invasion and migration in NSCLC, highlighting its
critical role in EML4-ALK-positive NSCLC (Tan et al., 2018).
circRNA_102231 promotes cellular proliferation, invasion, and
migration in lung cancer. Highly expressed circRNA_102231
may serve as a biomarker for both diagnosis and prognosis
for lung cancer patients (Zong et al., 2018). It is demonstrated
that circHIPK3 can restore lung cancer cell survival and
proliferation via sponging miR-124 and regulating expression
of its potential targets such as SphK1, STAT3, and CDK4 (Yu
et al., 2018). Particularly, circHIPK3 also functions as a negative
autophagy regulator in lung cancer through the miR124-3p-
STAT3-PRKAA pathway which is dependent on STK11 status
(Chen et al., 2020). circHIPK3 regulates the EMT progress of
NSCLC through miR-149-mediated Forkhead Box transcription
factor FOXM1 expression regulation, closely correlated with
the aggressive potential and unfavorable prognosis (Lu et al.,
2020). CircPVT1 positively regulates NSCLC cell proliferation,
invasion, and metastasis by sponging miR-125b and activating
the corresponding E2F2 signaling pathway (Li X. et al., 2018). It
can also act as a competing endogenous RNA for miR-497 and
indirectly increase the expression of Bcl-2, leading to promoted
NSCLC progression and predicting poor survival of the patients
(Qin et al., 2019).

Hypoxia caused by the instability of the tumor-associated
microvasculature is one of the key reasons for cancer progression.
It is reported that circ_0000376 can promote NSCLC progression
by regulating the miR-1182/NOVA2 axis and is relative to the
poor overall survival of NSCLC patients. Hypoxia enhances
circ_0000376 expression and promotes the glycolysis, viability,
invasion and migration of NSCLC cells. Manipulated inhibition
of circ_0000376 suppresses the progressive activities of hypoxia-
induced NSCLC cells both in vitro and in vivo (Li C. et al., 2020).

Several circRNAs are verified to effect both cell proliferation
and apoptosis in lung cancer. For instance, upregulated
hsa_circ_0000064 demonstrates effect on cell proliferation,
metastasis, and apoptosis by regulating target genes such as
cell cycle regulators p21WAF1, cyclin D1, and CDK6, as well
as apoptotic factors caspase-3, caspase-9, and bax (Luo et al.,
2017). Serving as a sponge for miR-503, circ-BANP promotes
proliferation, invasion, and migration while attenuates apoptosis
of lung cancer cells through promotion of LARP1 expression
(Han et al., 2018). circ-FOXM1 works as a ceRNA to target
PPDPF and MACC1 by sponging miR-1304-5p in NSCLC. It
promotes cellular proliferation, invasion, and migration, and
suppresses apoptosis, thus playing oncogenic roles in progression
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of NSCLC. The elevation of circ-FOXM1 in NSCLC is proved to
be strongly linked to advanced TNM stages, lymph node invasion,
as well as dismal prognosis (Liu G. et al., 2019). Commonly
upregulated in NSCLC tissues and cell lines, circ_0026134
facilitates NSCLC proliferation and metastatic properties and
weakens cell apoptosis, dependent on the sponge and down-
regulation of miR-1287 and miR-1256 (Chang et al., 2019).
Similarly, circRNA 100146 is highly expressed and playing an
oncogenic role in the progression of NSCLC. It enhances NSCLC
cell proliferation and invasion and inhibits cell apoptosis through
direct binding to miR-361-3p and miR-615-5p and affections
on multiple downstream molecules such as NFAT5, COL1A1,
TRAF3, and MEF2C (Chen L. et al., 2019).

It is shown that lung cancer progression is also promoted
by increased glycolysis. For example, Enolase 1 (ENO1) is
a glycolysis enzyme which performs crucial roles in glucose
metabolism and contributes to progression of lung cancer.
Recently, circ-ENO1 and its host gene ENO1 are reported to
be upregulated in lung adenocarcinoma. Mechanistically, circ-
ENO1 acts as a ceRNA of miR-22-3p and upregulates ENO1
expression, promoting glycolysis and tumor progression in lung
adenocarcinoma. Silencing of circ-ENO1 inhibits glycolysis,
cell proliferation, migration and EMT of lung adenocarcinoma
(Zhou J. et al., 2019).

Tumor immune microenvironment is another pivotal factor
for the development of lung cancer where cancer cells interact
with immune cells to facilitate immune evasion. For example,
NSCLC-derived intracellular and extracellular PD-L1 can not
only promote cancer progression and drug resistance but also
facilitate tumor immune evasion (Li Y. et al., 2019). It is recently
demonstrated that circ-CPA4 is high-expressed in NSCLC
and can regulate cell growth, metastasis, stemness and drug
resistance as well as inactivate CD8+ T cells in tumor immune
microenvironment through miRNA let-7/PD-L1 regulatory axis.
Inhibition of circ-CPA4 suppresses NSCLC cell growth, mobility
and EMT, while enhances cell death via downregulation of let-
7/PD-L1 axis. Furthermore, circ-CPA4 can positively regulate
the expression of exosomal PD-L1 which promotes NSCLC
cell stemness and increases the resistance toward cisplatin
(Hong et al., 2020).

Dysregulated onco-circRNAs in lung cancer, their functions,
and the underlying mechanisms are listed in Table 2.

Tumor-Suppressive circRNAs in Lung Cancer
A series of circRNAs have been found downregulated in
lung cancer and thus considered as tumor suppressors. For
instance, downregulated in SCLC and chemo-resistant NSCLC
cells, circRNA cESRP1 enhances drug sensitivity by directly
binding to and repressing miR-93-5p, thereby up-regulating the
expression of Smad7 and p21, forming a negative feedback loop
to regulate EMT process dependent of transforming growth
factor-β (TGF-β) (Huang W. et al., 2019).

In NSCLC, circRNA ITCH is reported markedly decreased
in cancer tissues with negative regulation on the proliferation
of cancer cells by down-regulating oncogenic miR-7 and
miR-214 as well as up-regulating T-cell factor, β-catenin,
c-Myc, and cyclin D1, thereby enhancing the activation of

the Wnt/β-catenin signaling pathway (Wan et al., 2016).
circ_0001649 is demonstrated to have a decreased expression
in NSCLC tissues and cell lines with suppressive functions
on cell growth and metastasis both in vitro and in vivo
partially by sponging out miR-331-3p and miR-338-5p. The
down-regulation of circ_0001649 is highly interrelated with
advanced TNM stage, positive lymph node metastasis, and poor
prognosis of NSCLC patients (Liu T. et al., 2018). circPTK2
promotes TIF1γ expression and inhibits TGF-β-induced EMT
and metastasis in NSCLC dependent on miR-429/miR-200b-
3p sponging (Wang et al., 2018). circRNA-FOXO3 expression
is also found decreased in NSCLC and correlated with clinical
outcomes. circRNA-FOXO3 inhibits NSCLC cell proliferation,
invasion, and migration by acting as a ceRNA to sponge miR-155
and release FOXO3 expression (Zhang et al., 2018c).

Cell apoptosis is also regulated by certain tumor-suppressive
circRNAs in lung cancer. For example, acting as an endogenous
sponge for miR-1252, has_circ_0043256 can upregulate the
expression of ITCH and finally inhibit Wnt/β-catenin pathway,
leading to suppression of cell proliferation and enhancement
of apoptosis in NSCLC (Tian et al., 2017). circNOL10 is
downregulated in both lung cancer tissues and cells and
conducive in differentiating lung adenocarcinoma and lung
squamous cell carcinoma. Furthermore, circNOL10 inhibits
lung cancer by enhancing transcriptional regulation of the
HN polypeptide family, which exerts pivotal functions on
biological processes such as proliferation, apoptosis, and cell cycle
progression (Nan et al., 2018).

Dysregulated tumor-suppressive circRNAs in lung cancer,
their functions, and the underlying mechanisms are listed
in Table 3.

circRNAs and the Therapeutic Response
of Lung Cancer
Except for chemotherapy, targeted therapies and
immunotherapies have revolutionized the lung cancer
management within the last decades. However, drug-resistance
still develops after the treatment. Considering the multiple roles
of circRNAs in lung cancer progression, it is not surprising to
apply them as predictive biomarkers for the follow-up of patients.
Furthermore, the detection of circRNAs in liquid biopsies has
provided a more convenient method for the management of
post-treatment follow-up.

Chemotherapy
With the assistance of a high-throughput circRNA microarray,
a significant upregulation of 2,909 circRNAs as well as
downregulation of 8,372 circRNAs are discovered in taxol-
resistant A549 lung adenocarcinoma cells compared with the
parental cells (Xu et al., 2018). Functional validation assays
highlight the circRNA/miRNA networks in this context. The
most pronouncedly enriched pathways for aberrant circRNA-
related host genes include VEGFR, EGFR, integrin, and rho
GTPase signaling, which are all involved in the progression of
chemo-resistance.

Eukaryotic initiation factor 3 (EIF3) is one of the largest
translation initiation factors. Previous studies have suggested
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TABLE 2 | Dysregulated onco-circRNAs in lung cancer.

circRNA Function Mechanism References

circFECR1 Metastasis of SCLC miR584-3p/ROCK1 Li L. et al., 2019

circSTXBP5L Carcinogenesis of SCLC miR-224-3p and miR-512-3p/Akts,
NFκB, and Pik3ca

Zhang et al., 2020

circ_100876 Prognosis values ? Yao et al., 2017

circCCDC66 EMT and drug resistance of lung adenocarcinoma ? Joseph et al., 2018

circF-circEA-2a Invasion and migration of NSCLC ? Tan et al., 2018

circRNA_102231 Proliferation, invasion, and migration of lung cancer ? Zong et al., 2018

hsa_circRNA_103809 Proliferation and invasion of lung cancer miR-4302/ZNF121/ MYC Liu W. et al., 2018

circHIPK3 Cell survival and proliferation of lung cancer miR-124/SphK1, STAT3, and CDK4 Yu et al., 2018

Autophagy of lung cancer miR124-3p/STAT3/PRKAA Chen et al., 2020

EMT and aggressiveness of NSCLC miR-149/FOXM1 Lu et al., 2020

circPVT1 Proliferation, invasion, and metastasis of NSCLC miR-125b/E2F2 Li X. et al., 2018

NSCLC progression miR-497/Bcl-2 Qin et al., 2019

circMAN2B2 Proliferation and invasion of lung cancer miR-1275/FOXK1 Ma et al., 2018

circ_0067934 Tumorigenesis, EMT, and metastasis of NSCLC ? Wang and Li, 2018

hsa_circ_0020123 Proliferation, invasion, and migration of NSCLC miR-144/ZEB1 and EZH2 Qu et al., 2018

Growth, invasion, migration, and apoptosis of NSCLC miR-488e3p/ADAM9 Wan et al., 2019

circFADS2 Proliferation and invasion of lung cancer miR-498/ FOXO1/KLF6 Zhao et al., 2018

circ_0016760 Progression of NSCLC miR-1287/GAGE1 Li Y. et al., 2018

circPRKCI Proliferation and tumorigenesis of lung adenocarcinoma miR-545 and miR-589/E2F7 Qiu et al., 2018

circCMPK1 Cell proliferation of NSCLC miR-302e/cyclin D1 Cui et al., 2020

circFGFR1 Proliferation, migration, invasion, and immune evasion abilities of
NSCLC

miR-381-3p/CXCR4 Zhang P. et al., 2019

circP4HB EMT and metastasis of NSCLC miR-133a-5p/vimentin Wang et al., 2019f

hsa_circ_000984 Proliferation and metastasis of NSCLC Wnt/β-catenin signaling Li X. et al., 2019

circ_0003645 NSCLC progression miR-1179/TMEM14A An et al., 2019

circZFR NSCLC progression miR-101-3p/CUL4B Zhang H. et al., 2019

hsa_circ_0023404 Proliferation, invasion, and migration of NSCLC miR-217/ZEB1 Liu C. et al., 2019

F-circSR1 and 2 Migration and invasion of NSCLC ? Wu et al., 2019

circPRMT5 NSCLC progression miR-377, miR-382, and miR-498/EZH2 Wang et al., 2019h

circPIP5K1A Proliferation and metastasis of NSCLC miR-600/HIF-1α Chi et al., 2019

circATXN7 Proliferation and invasion abilities of NSCLC ? Huang Q. et al., 2019

circFGFR3 Proliferation and invasion of NSCLC miR-22-3p/Gal-1, p-AKT and
p-ERK1/2

Qiu et al., 2019

circ_0043278 Proliferation, invasion and migration of NSCLC miR-520f/ROCK1, CDKN1B and AKT3 Cui et al., 2019

circRAD23B Progression of NSCLC miR-593e3p/CCND2 and
miR-653e5p/TIAM1

Han et al., 2019

circNT5E Cell growth, proliferation, and migration of NSCLC miR-134 Dong et al., 2020

hsa_circ_0013958 Proliferation, invasion, and apoptosis of lung adenocarcinoma miR-134/cyclin D1 Zhu et al., 2017

circ_0000376 Glycolysis, cell viability, invasion and migration of NSCLC miR-1182/NOVA2 Li Y. et al., 2020

hsa_circ_0000064 Proliferation, apoptosis, and metastasis of lung cancer Cell cycle regulators (p21WAF1, cyclin
D1, and CDK6) and apoptotic factors
(caspase-3, caspase-9, and bax)

Luo et al., 2017

hsa_circ_0007385 NSCLC progression miR-181/Bcl-2 and CDK1 Jiang et al., 2018

circBANP Proliferation, invasion, migration, and apoptosis of lung cancer miR-503/LARP1 Han et al., 2018

circVANGL1 Proliferation, migration, invasion, and apoptosis of NSCLC miR-195/Bcl-2 and Bax Wang et al., 2019d

circFOXM1 Proliferation, invasion, migration, and apoptosis of NSCLC miR-1304-5p/ PPDPF and MACC1 Liu G. et al., 2019

circ_0026134 Proliferation, metastasis, and apoptosis of NSCLC miR-1287/PIK3R3 and
miR-1256/TCTN1

Chang et al., 2019

circRNA 100146 Proliferation, invasion, and apoptosis of NSCLC miR-361-3p and miR-615-5p/ NFAT5,
COL1A1, TRAF3, and MEF2C

Chen L. et al., 2019

circCDR1 Cell viability, migration, invasion, and apoptosis of NSCLC miR-219a-5p/SOX5 Li Y. et al., 2020

circ-ENO1 Glycolysis, proliferation, apoptosis, migration and EMT of lung
adenocarcinoma

miR-22-3p/ENO1 Zhou J. et al., 2019

circ-CPA4 Cell growth, mobility, stemness, drug resistance, and CD8+ T cell
inactivation in the tumor immune microenvironment of NSCLC

let-7/PD-L1 Hong et al., 2020
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TABLE 3 | Dysregulated tumor-suppressive circRNAs in lung cancer.

circRNA Function Mechanism References

circESRP1 EMT and drug sensitivity of SCLC miR-93-5p/Smad7/p21(CDKN1A)/TGF-β Huang W. et al., 2019

circITCH proliferation of NSCLC miR-7 and miR-214/ T-cell factor, β-catenin,
c-Myc, and cyclin D1

Wan et al., 2016

circ_0001649 growth and metastasis of NSCLC miR-331-3p and miR-338-5p Liu T. et al., 2018

circPTK2 EMT and metastasis of NSCLC miR-429 and miR-200b-3p/TIF1γ/TGF-β Wang et al., 2018

circFOXO3 Proliferation, invasion, and migration of NSCLC miR-155/FOXO3 Zhang et al., 2018c

hsa_circ_100395 Proliferation, invasion, and migration of lung cancer miR-1228/TCF21 Chen D. et al., 2018

hsa_circ_0033155 Proliferation and migration of NSCLC PTEN Gu et al., 2019

circSMARCA5 Proliferation and chemo-sensitivity of NSCLC miR-19b-3p/HOXA9 Wang et al., 2019g; Tong, 2020

hsa_circ_0007059 Proliferation and EMT of lung cancer miR-378/Wnt/β-catenin and ERK1/2 Gao et al., 2019

circARHGAP10 NSCLC progression miR-150-5p/GLUT1 Jin et al., 2019

circPTPRA EMT and metastasis of NSCLC miR-96-5p/RASSF8 Wei et al., 2019

has_circ_0043256 Proliferation and apoptosis of NSCLC miR-1252/ITCH/Wnt/β-catenin Tian et al., 2017

circNOL10 Proliferation, apoptosis, and cell cycle progression
of lung cancer

SCLM1/the HN polypeptide family Nan et al., 2018

the involvement of EIF3a in tumorigenesis and drug resistance
of lung cancer. Recently, it is found that the expression of
hsa_circ_0004350 and hsa_circ_0092857, both derived from
EIF3a, varies prominently in cisplatin-resistant lung cancer cell
line and the parental cell line. Manipulated regulation of the
two circEIF3as affects cisplatin sensitivity of lung cancer cells.
Further bioinformatic analysis indicates that the two circEIF3as
are not only related to translational regulation, but also showing
functional synergy with their parental gene EIF3a, thus serving
as potential therapeutic targets during lung cancer management
(Huang M.S. et al., 2019).

Targeted Therapy
EGFR-tyrosine kinase inhibitors (EGFR-TKIs) have become
important constituents for NSCLC treatment these years.
Despite the good initial responses, tumor progression is
systematically observed due to the emergence of acquire
resistance. Furthermore, detection for EGFR driver mutation is
hindered by problems such as cancer heterogeneity and lack
of cancer tissues. By screening circRNAs expression profile
via circRNA microarray, it is found that hsa_circ_0109320
and hsa_circ_0134501 are upregulated in gefitinib-effective
NSCLC patients. Moreover, hsa_circ_0109320 expression is
associated with better progression-free survival (PFS), indicating
its potential role as a prognostic biomarker for gefitinib-treated
NSCLC patients (Liu Y. et al., 2019). Similarly, hsa_circ_0004015
is identified to be highly expressed in NSCLC cells and tissues.
Patients with high expression of hsa_circ_0004015 often have
a worse overall survival rate. Further study indicates that
hsa_circ_0004015 promotes NSCLC progression and gefitinib
resistance through sponge for miR-1183 and induction of 3-
phosphoinositide-dependent protein kinase 1 (PDPK) as well as
the downstream AKT pathway (Zhou Y. et al., 2019). Recently,
circRNA expression profiles have been explored in Osimertinib
(AZD9291)-resistant NSCLC cells and the result shows that the
most modulated circRNAs are involved in regulation of cancer-
related pathways including proliferation, invasion, apoptosis,

and resistance to chemotherapeutic drugs as well as γ-radiation
(Chen T. et al., 2019).

Another role of circRNAs during tumorigenesis is the
formation of fusion circRNAs (f-circRNAs) derived from
chromosomal translocations (Guarnerio et al., 2016). It is
demonstrated that f-circEA-2a which derived from back splicing
of the EML4-ALK fusion gene promotes cell invasion and
migration but not cell proliferation in NSCLC. Interestingly,
f-circEA-2a is detected in tumor tissues but not plasma of EML4-
ALK-positive NSCLC patients (Tan et al., 2018).

Immunotherapy
Anti-PD-1-based immunotherapy has led to an effective
response in multiple advanced cancers, lung cancer included.
However, more than half of NSCLC patients lack a long-
term response to this immunotherapy (Melosky et al., 2019).
Emerging evidence show that dysregulated chemokine receptor
expression is one of the critical intrinsic reasons for tumor-
promotion and immune system evasion (Adrover et al.,
2019). Recently, it is found that circFGFR1 may act as a
sponge for miR-381-3p, thereby promoting NSCLC progression
and resistance to anti-PD-1 therapy by up-regulating CXCR4
expression. CircFGFR1 is upregulated in NSCLC tissues with
its expression closely correlated with unfavorable prognosis
of NSCLC patients. Manipulated upregulation of circFGFR1
promotes the proliferation, invasion, migration, and immune
evasion of NSCLC cells, while knockdown of CXCR4 resensitizes
NSCLC cells to anti-PD-1 immunotherapy (Zhang P. et al.,
2019). As is mentioned above, circ-CPA4 can regulate cell
growth, mobility, stemness and drug resistance in NSCLC
cells and inactivates CD8+ T cells in the tumor immune
microenvironment through the let-7 miRNA/PD-L1 axis. On the
one hand, PD-L1 selfregulates NSCLC cell malignant activities.
On the other hand, secreted PD-L1 by exosomes inactivates
CD8+ T cells by activating extracellular and intracellular
pathways and mediates cell death to facilitate immune evasion
(Hong et al., 2020).
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circRNAs as Promising Therapeutics for
Lung Cancer
Regarding the onco- and tumor suppressive- roles in lung
cancer, circRNAs provide insight into the exploration of novel
strategies in lung cancer management. Moreover, as mentioned
above, circRNAs are more suitable for targeted molecular therapy
because of their stable, tissue specific, and ceRNA-equivalent
characteristics. Further investigation is needed to translate
circRNAs into clinics and provide a foundation for developing
novel potential therapeutic strategies for lung cancer and improve
the prognosis of the patients.

DISCUSSION

Despite significant advances in diagnosis and treatment, lung
cancer remains the leading cause of death worldwide with its
underlying mechanisms remaining largely undiscovered. A major
obstacle of improving clinical outcomes is to identify sensitive
biomarkers and novel therapeutics for individualized diagnosis
and treatment of lung cancer. In recent years, thousands of
circRNAs have been identified with the rapid development of
NGS technology and bioinformatics. Although considered as
splicing by-products initially, circRNAs are now becoming a
hotspot in the field of cancer owing to their conservation
across species, the relative high stability and abundance, and
the accessibility in body fluids, especially blood. They reveal
diverse regulatory functions on genes and proteins involved in
cancer cell proliferation, invasion, migration, cell cycle, apoptosis,
and drug sensitivity. Moreover, recent studies have shown that
the role of circRNAs in cancer is mainly dependent on the
circRNA–miRNA–mRNA regulatory network, indicating their
potential functions in the regulation of transcriptional and post-
transcriptional levels. Other mechanisms include interacting with
RBPs, translating into either peptides or full-length proteins,
and regulating transcription. This provides novel biomarkers
for lung cancer prognosis prediction, especially considering
the lack of reliable clinical biomarkers in SCLC. In addition,

engineered circRNAs can be applied to effectively sequester
not only RNAs (including miRNAs), but also DNAs and RBPs
with specific sequences both in vitro and in vivo, providing
promising molecular targets for the therapy of lung cancer
(Lasda and Parker, 2014).

However, it should be noted that the study on circRNAs
in lung cancer is still in the early stage. The functions and
underlying mechanisms of circRNAs in the regulatory network
of tumorigenesis and progression remains largely unknown and
needs to be further studied in more cell lines and clinical
samples. Moreover, problems such as the high cost of experiment,
difficulties in detection and monitoring, and the potential side
effects, are still limiting the application of circRNAs in clinic.
We hope that in the future, with the rapid development of
bioinformatic technology and universal studies in patient tissue
samples, circRNAs could help to achieve better individualized
diagnosis and treatment of lung cancer.
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