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Abstract

Interspecific hybridization is common in plants and animals, particularly in waterfowl (Anatidae). One factor shown to
contribute to hybridization is restricted mate choice, which can occur when two species occur in sympatry but one is rare.
The Hubbs principle, or ‘‘desperation hypothesis,’’ states that under such circumstances the rarer species is more likely to
mate with heterospecifics. Here we report interspecific hybridization between two waterfowl species that coexist in broad
sympatry and mixed flocks throughout southern South America. Speckled teal (Anas flavirostris) and yellow-billed pintails
(Anas georgica) are abundant in continental South America, but in the Falkland Islands speckled teal outnumber yellow-
billed pintails approximately ten to one. Using eight genetic loci (mtDNA and 7 nuclear introns) coupled with Bayesian
assignment tests and relatedness analysis, we identified a speckled teal x yellow-billed pintail F1 hybrid female and her
duckling sired by a male speckled teal. Although our sample in the Falkland Islands was small, we failed to identify
unequivocal evidence of hybridization or introgression in a much larger sample from Argentina using a three-population
‘‘isolation with migration’’ coalescent analysis. While additional data are needed to determine if this event in the Falkland
Islands was a rare singular occurrence, our results provide further support for the ‘‘desperation hypothesis,’’ which states
that scarcity in one population and abundance of another will often lead to hybridization.
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Introduction

Interspecific hybridization is an important mechanism of

lineage diversification and adaptation in plants [1,2,3], and it

has also been shown to be an important evolutionary force in

animals [4,5,6]. Birds are no exception; at least one in ten species

is known to hybridize [7,8,9,10]. The waterfowl (Anatidae)

comprise more than half of known avian hybrids [11,12,13].

Numerous factors have been implicated in the ability of the

Anatidae to hybridize [12,14], including Haldane’s [15] rule. One

factor in particular is that hybridization is encouraged by restricted

mate choice, and is therefore common in areas where two species

occur in sympatry but one species is rare [14]. This concept was

first formalized by Hubbs [16]: ‘‘Great scarcity of one species

coupled with the abundance of another often leads to hybridiza-

tion: the individuals of the sparse species seem to have difficulty in

finding their proper mates.’’ Hubbs referred to this principle as the

‘‘desperation hypothesis,’’ for which empirical support has now

been found among numerous species of birds, including waterfowl

[14].

Here, using multi-locus genetic data, we report an example of

interspecific hybridization between two waterfowl species that exist

in widespread sympatry throughout southern South America, but

which show hybridization in a numerically imbalanced situation

on the Falkland Islands. Both species, speckled teal (Anas flavirostris)

and yellow-billed pintails (Anas georgica) are common throughout

continental South America, but in the Falkland Islands one species

is common and the other is rare [17,18,19]. Speckled teal are

estimated to number approximately 6,000–11,000 breeding pairs

in the Falkland Islands, whereas yellow-billed pintail breeding

pairs likely number 600–1,000 [20]. The order-of-magnitude

numerical imbalance in speckled teal and yellow-billed pintail

population sizes in the Falkland Islands thus stands in contrast to

continental South America, where each species is common and

populations likely exceed 1,000,000 individuals.

Using data from eight genetic loci and Bayesian assignment tests

and coalescent models, we identified an F1 female hybrid and her

duckling in a small sample of 15 speckled teal banded in the

Falkland Islands, but we found no evidence of hybridization or

introgression among 56 speckled teal and 64 yellow-billed pintails

collected over an area of sympatry in southern Argentina. Our

results provide further support for Hubbs’s [16] principle, the

‘‘desperation hypothesis.’’ Our study also revealed significant

haplotype and allele frequency differences between speckled teal

populations in the Falkland Islands and Argentina, suggesting that

gene flow is restricted.
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Materials and Methods

Specimen Collection
Speckled teal (n = 56) and yellow-billed pintails (n = 64) were

collected at widespread localities in Argentina between 2001 and

2005, and blood samples were obtained from speckled teal banded

on East Falkland Island (n = 15) in 2002. Localities of speckled teal

are illustrated in Figure 1. Localities for yellow-billed pintails are

illustrated in figure 1 of McCracken et al. [21]. All specimens in

Argentina were collected at elevations ,2,100 meters, and all of

the speckled teal in our study were identified as the nominate

subspecies Anas f. flavirostris. Vertebrate collecting activities were

approved by the University of Alaska Fairbanks Institutional

Animal Care and Use Committee (IACUC 02-01, 05-05) and by

federal and provincial governments in Argentina and the Falkland

Islands (D.F.S. No. 3209/01, 13168/03, 13169/03, 20419/05,

20420/05).

One adult female from the Falkland Islands (REW 325) and her

duckling (REW 324) were identified in the field as possible hybrids.

An unsampled male speckled teal was observed tending the brood

with the female. Yellow-billed pintails are larger than speckled

teal, and REW 325 was more similar to yellow-billed pintail in

wing chord, culmen, and tarsus measurements. Along with body

size, the female had some plumage characteristics typical of a

yellow-billed pintail (Fig. 2). The back was uniform brown with

large, dark scales, and the brown head feathers seemed more like

pintail feathers. However, the speculum was bright green as found

in speckled teal, but extended further out on the secondaries like

yellow-billed pintail. The body, head, and neck shapes were more

similar to a speckled teal, which is stockier than the more slender

appearance of the yellow-billed pintail.

DNA Extraction, PCR, and Sequencing
DNA was isolated from frozen muscle or blood using standard

protocols with DNeasy Tissue Kits (QIAGEN, Valencia, California).

Eight gene regions including the mitochondrial DNA (mtDNA)

control region and seven nuclear loci were sequenced (Table 1).

Methods describing PCR and DNA sequencing protocols are

described in McCracken et al. [21]. Sequences and specimen

voucher information, including geo-referenced localities, are avail-

able in GenBank (accession numbers FJ617587–FJ617592,

FJ617597–FJ617598, FJ617634–FJ617670, FJ617677–FJ617694,

FJ617702, FJ617703–FJ617708, FJ617713–FJ617714, FJ617750–

FJ617784, FJ617791–FJ617808, FJ617816, FJ617817–FJ617822,

FJ617827–FJ617828, FJ617864–FJ617900, FJ617907–FJ617924,

FJ617932, FJ617933–FJ617938, FJ617943–FJ617944, FJ617980–

FJ618016, FJ618023–FJ618040, FJ618048, FJ618049–FJ618054,

FJ618059–FJ618060, FJ618096–FJ618132, FJ618139–FJ618156,

FJ618164, FJ618165–FJ618170, FJ618175–FJ618176, FJ618212–

FJ618248, FJ618255–FJ618272, FJ618280, FJ618281–FJ618286,

FJ618291–FJ618292, FJ618328–FJ618364, FJ618371–FJ618388,

FJ618396, FJ618397–FJ618402, FJ618407–FJ618408, FJ618444–

FJ618480, FJ618487–FJ618504, FJ618512, GQ269874–GQ269943,

GQ270014–GQ270084, GQ270155–GQ270225, GQ270296–GQ27-

0372, GQ270476–GQ270546, GQ271325–GQ271395, GQ272063–

GQ272132, and JN223305–JN223375).

Allelic Phase Determination
The allelic phase of each nuclear sequence that was heterozy-

gous at two or more nucelotide positions was determined

independently for each species using allele-specific priming and

the software PHASE 2.1 [22]. PHASE uses a Bayesian method to

infer haplotypes from diploid genotypic data while incorporating

recombination and the decay of linkage disequilibrium (LD) with

distance. We first analyzed each composite sequence of both alleles

using the default software settings (100 main iterations, 1 thinning

interval, 100 burn-in) followed by 1,000 main iterations and 1,000

burn-in (2610 option) for the final iteration. The PHASE

algorithm was run five times (265 option) from different starting

points, selecting the result with the best overall goodness of fit. For

individuals with allele pair probabilities ,80%, we then designed

allele-specific primers to selectively amplify a single allele [23,24].

The resulting haploid allele sequence was then subtracted from the

Figure 1. Localities of 71 speckled teal sampled in Argentina
and the Falkland Islands.
doi:10.1371/journal.pone.0023173.g001

Hybridization - Numerically Imbalanced Populations

PLoS ONE | www.plosone.org 2 August 2011 | Volume 6 | Issue 8 | e23173



diploid composite sequence to obtain the gametic phase of the

second allele. Each data set was then analyzed five more times

using PHASE and the additional known allele sequences (2k

option). PHASE analyses and allele specific priming were

performed for the complete sequences of the ODC1, ENO1,

FGB, GRIN1, and PCK1 introns and the HBA2 gene. For the

HBB gene, which was shown to exhibit high levels of

recombination in speckled teal [25], we analyzed a subset of the

39 HBB sequence consisting of the last 291 bp of intron two and

exon three. The gametic phase of each autosomal sequence was

identified experimentally or with .95% posterior probability for

approximately 95% of the inviduals included in each data set.

Analysis of Genetic Differentiation between and within
Species

To characterize genetic differentiation between speckled teal

and yellow-billed pintails and examine how these patterns varied

among loci, we calculated WST between species using the software

Arlequin 3.5 [26] and illustrated networks for each locus using the

median-joining algorithm in the software NETWORK 4.6 ([27];

Fluxus Technology, Ltd.). Additionally, we calculated WST

between the Falkland Islands and Argentina for speckled teal, as

well as other measures of genetic diversity such as the total number

of polymorphic positions, frequency of the most common allele in

each population, and nucleotide diversity (p/site). Because

speckled teal sampling was unbalanced between the island and

mainland sites, allelic richness was standardized to the smallest

sample size (30 alleles for autosomal loci and 15 haplotypes for

mtDNA).

Identification of Admixed Individuals
We used the software Structure 2.2 [28] to identify speckled teal

and yellow-billed pintail individuals with admixed ancestry and

compute their probability of assignment to respective populations.

The eight-locus sequence data were first converted to numerical

genotypic data using the software Collapse [29], with missing data

coded in place of a second allele for the mtDNA. In the first step of

the analysis, a simple two-population model (K = 2) was conducted

using the admixture model (a = 1) with independent allele

frequencies (l = 1) and no a priori population information

(POPFLAG = 0). In the second step, individuals with assignment

probabilities .0.99 as determined in the first analysis were pre-

assigned to their respective clusters corresponding to populations 1

and 2 (POPFLAG = 1). The ancestry of individuals with

assignment probabilities ,0.99 in the first analysis was then re-

estimated (POPFLAG = 0) using allele frequencies defined by

individuals previously determined to have posterior probabilities

.0.99. Information about the allele frequencies from pre-defined

individuals was thus used to improve the accuracy of inference

about the admixture of unknown individuals. We used RE-RAT

[30] to estimate Queller and Goodnight’s [31] pairwise, symmetric

relatedness statistic (rxy) and compute the average relatedness for

each population.

We also used Structure’s two-population model (K = 2) to

compute the probability of assignment for speckled teal individuals

inhabiting the Falkland Islands and Argentina (yellow-billed

pintails excluded). No prior population information was incorpo-

rated into this analysis, and the same run parameters described

above were used, with the analysis repeated five times.

Isolation with Migration Analysis
We further assessed evidence for hybridization between

speckled-teal and yellow-billed pintails using ‘‘Isolation with

Migration’’ in IMa2 [32], which allows for analysis of divergence

and gene flow between two or more populations. In this case, we

estimated the effective population size parameters (h), time since

divergence (t), and gene flow rates (M) in both directions between

two populations of speckled teal and one population of yellow-

billed pintails (Table 2).

Because the IM model assumes that all sequences are free from

intra-locus recombination, we tested for recombination using the

four-gamete test [33] implemented in DNAsp 4.10 [34]. Evidence

Figure 2. F1 speckled teal x yellow-billed pintail hybrid (REW
325).
doi:10.1371/journal.pone.0023173.g002

Table 1. Genes sequenced and their chromosomal positions in the chicken genome.

Locus Base pairs sequenced Chicken chromosome

mtDNA control region (mtDNA) 976–981 mtDNA

Ornithine decarboxylase intron 5 (ODC1) 352 3

a enolase intron 8 (ENO1) 314 21

b fibrinogen intron 7 (FGB) 246 4

N-methyl D aspartate 1 glutamate receptor intron 11 (GRIN1) 328–744 17

Phosphoenolpyruvate carboxykinase intron 9 (PCK1) 345–351 20

aA hemoglobin subunit (HBA2) 677–678 14

bA hemoglobin subunit (HBB) 1,576–1,582 1

Location in the chicken genome as defined by Hillier et al. [68].
doi:10.1371/journal.pone.0023173.t001
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of recombination was detected for all nuclear loci except FGB.

The other loci were therefore truncated to include the longest

fragment with no apparent recombination. For ODC1 this

included positions 1–151, ENO1 positions 1–172, GRIN1

positions 75–178, PCK1 positions 1–254, and HBA2 positions

412–678. HBB was not included in the analysis as few segregating

sites were retained after removing recombining blocks of sequence.

The mtDNA was omitted because it was highly divergent and

reciprocally monophyletic between speckled teal and yellow-billed

pintails; no mtDNA haplotypes were shared between species (see

below). A total of six nuclear loci were thus included in the IMa2

analysis. The HKY [35] substitution model was used in the IMa2

analysis, as opposed to the infinite-sites model, because all six loci

possessed three or more alleles at one or more sites.

IMa2 was first run with wide priors to explore the sensitivity of

parameter estimates to different upper bounds. The analyses were

then conducted with uniform priors that encompassed the full

posterior distribution of each parameter from the preliminary runs

(h = 5, t = 2, and M = 100). The upper bound for t was selected

based on the assumption that time since divergence could not

exceed TMRCA (time to most recent common ancestor of all

sequences). The Markov chain Monte Carlo was run for 15

million steps, sampling the posterior distribution every 50 steps for

a total of 300,000 sampled genealogies, with a burn-in of 500,000

steps. All runs included 20 chains with a geometric heating

scheme. Autocorrelation was monitored during the run, and

analyses were repeated five times with different random number

seeds to ensure that parameter estimates converged.

Parameter estimates for h and t were converted to biologically

meaningful values using published estimates of generation time

and the geometric mean of the substitution rate (m per locus)

calculated for the same six loci in Anas ducks using fossil dates

calibrated to the duck/snow goose (Anser caerulescens) split (see

McCracken et al. [21,25]). The number of effective migrant

individuals per generation was obtained by multiplying h (4Nem) by

M (m/m) to obtain 4Nem.

To determine whether yellow-billed pintail alleles had intro-

gressed into speckled teal or vice versa, we examined the resulting

posterior distribution for the four pertinent gene flow estimates

shown in Table 2. Estimates of MAR.YP, MYP.AR, MFK.YP, or

MYP.FK (see Table 2 for definitions) with a lower 95% confidence

interval that did not overlap zero were interpreted as quantita-

tively strong evidence for hybridization, whereas estimates of M

that overlapped zero could not be decisively interpreted as

evidence of gene flow. Finally, the timing of each inferred

interspecific gene flow event was recorded for all loci in each

sampled genealogy, and the posterior distribution of timing of

these events was compared to the posterior distribution of t

between the speckled teal and pintail lineages.

Results

Genetic Differentiation between Speckled Teal and
Yellow-billed Pintails

Speckled teal and yellow-billed pintails were significantly

differentiated at all loci, with WST values ranging from 0.11 to

0.94 (Table 3). MtDNA haplotype groups were reciprocally

monophyletic (WST = 0.94), and uncorrected divergence between

species clusters was 5.6% (Fig. 3). The two aforementioned

individuals (REW 325, 324) possessed speckled teal mtDNA

haplotypes, not yellow-billed pintail haplotypes. ODC1

(WST = 0.81) was quasi-reciprocally monophyletic; two apparent

species clusters were separated by 2.6% uncorrected sequence

divergence. One yellow-billed pintail (KGM 750) that was

morphologically indistinguishable from other yellow-billed pintails

possessed a private singleton ODC1 allele that was one to three

bases divergent from three other alleles in the speckled teal cluster,

and REW 325 and 324 each possessed one identical allele that was

shared with eight yellow-billed pintails, but not speckled teal. PCK1

(WST = 0.77) possessed no shared alleles, except for REW 325, which

possessed the most common allele found in yellow-billed pintail on

one chromosome and an allele shared by speckled teal on the other

chromosome. Among the other loci, ENO1 and FGB had low allelic

diversity and two and three alleles shared between species,

respectively, whereas GRIN1, HBA2, and HBB had higher allelic

diversity and two to six shared alleles. In total, REW 325 had five

alleles at five loci that were shared exclusively with yellow-billed

pintails, and REW 324 had four such alleles at three loci.

Identification of Admixed Individuals
In the Structure analysis with no prior population information,

one yellow-billed pintail (KGM 1250) that was morphologically

Table 2. Estimated parameters in the three-population IMa2 analysis.

Parameter Symbol Population/divergence/gene flow

Population size parameter (4Nem) hAR Speckled teal in Argentina

hFK Speckled teal in Falkland Islands

hYP Yellow-billed pintail

h0 h ancestral at t0

h1 h ancestral at t1

Time since divergence (t) t0 Between Argentine speckled teal and Falkland Islands speckled teal

t1 Between speckled teal and yellow-billed pintail

Gene flow (m/m) MAR.FK Into Argentine speckled teal from Falkland Islands speckled teal

MFK.AR Into Falkland Islands speckled teal from Argentine speckled teal

MAR.YP Into Argentine speckled teal from yellow-billed pintails

MYP.AR Into yellow-billed pintails from Argentine speckled teal

MFK.YP Into Falkland Islands speckled teal from yellow-billed pintails

MYP.FK Into yellow-billed pintails from Falkland Islands speckled teal

doi:10.1371/journal.pone.0023173.t002

Hybridization - Numerically Imbalanced Populations

PLoS ONE | www.plosone.org 4 August 2011 | Volume 6 | Issue 8 | e23173



Table 3. Patterns of allele sharing and WST between speckled teal and yellow-billed pintails.

Locus
No. alleles (speckled teal/
yellow-billed pintail)

No alleles shared
between species WST

mtDNA control region 21/37 0 0.94

Ornithine decarboxylase 7/16 1 (1) 0.81

a enolase 7/13 3 (0) 0.34

b fibrinogen 6/6 2 (1) 0.20

N-methyl D aspartate 1 glutamate receptor 35/34 3 (1) 0.11

Phosphoenolpyruvate carboxykinase 10/9 1 (1) 0.77

aA hemoglobin 48/40 2 (1) 0.28

bA hemoglobin 32/39 6 (0) 0.15

All WST values were significant (P,0.000001). Tamura-Nei [69] substitution model was used to calculate WST. Number in parentheses indicates the number of speckled
teal alleles from Falkland Islands shared exclusively with yellow-billed pintails (and not speckled teal from Argentina).
doi:10.1371/journal.pone.0023173.t003

Figure 3. Networks for eight genetic loci. Speckled teal alleles are illustrated in black (Argentina) and grey (Falkland Islands), and yellow-billed
pintail alleles are illustrated in white. Circle area is proportional to the number of shared alleles. Asterisks indicate the positions of putatively
introgressed yellow-billed pintail alleles for two individuals (REW 325 and REW 325) in the Falkland Islands.
doi:10.1371/journal.pone.0023173.g003
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indistinguishable from other yellow-billed pintails was assigned to

population cluster 1 with ,0.99% posterior probability

(P = 0.978). Two speckled teal (REW 325 and 324) were assigned

to cluster 2 with ,0.99% posterior probability (P = 0.812 and

0.978, respectively). In the second analysis in which prior

assignments were used to preassign all but these three individuals,

KGM 1250 was assigned to the yellow-billed pintail population

with P = 0.961, and REW 325 and 324 were assigned to the

speckled teal population with P = 0.630 and P = 0.860, respective-

ly. The KGM 1250 individual was thus assigned to the yellow-

billed pintail cluster with high probability, whereas REW 325 and

REW 324 exhibited admixed ancestry.

REW 325 and 324 shared the same mtDNA haplotype as

expected and one allele each at five of seven nuclear loci. Both

pairs of alleles were identical at the other two loci. Based on this

finding and the above referenced results, REW 325 was likely an

F1 hybrid sired by a male yellow-billed pintail and female speckled

teal that then successfully backcrossed to a male speckled teal and

produced the REW 324 duckling. Queller and Goodnight [31]

relatedness (rxy) for REW 325 and 324 was 0.564. Average

relatedness for the speckled teal population as a whole was

0.00960.004 (SE) and 0.01360.002 (SE) for the yellow-billed

pintail population.

Gene Flow between Speckled Teal and Yellow-billed
Pintails

The three-population IMa2 coalescent analysis corroborated

the results of the assignment tests. In proceeding further, it is useful

to note that all estimates of the gene flow rate parameter M in

coalescent genealogy samplers like IM are scaled to the mutation

rate (M = m/m), so M is thus the ratio of gene flow to mutation.

The number of effective immigrants (4Nem) is obtained by

multiplying the scaled gene flow rate M by h. Confidence intervals

are reported for the 95% highest posterior density (HPD).

Gene flow from yellow-billed pintails into the Falkland Islands

speckled teal population was statistically greater than zero

(MFK.YP = 4.75, HPD95% = 0.25–98.65; Fig. 4A), suggesting that

yellow-billed pintails have introduced new mutations into the

Falkland Islands specked teal population at rate equivalent to

approximately five times the substitution rate. Furthermore, the

timing of inferred gene flow events (t) between Falkland Islands

speckled teal and pintails peaked sharply at zero time before

present (HPD95% = 0.000–0.049). Interspecific gene flow there-

fore postdated the confidence intervals for the timing of divergence

(t) between the speckled teal and pintail lineages (Fig. 5) by a wide

margin. Identical alleles therefore could not be attributed to

ancient coalescence of ancestral polymorphisms but could only be

explained by recent gene flow. By contrast, gene flow between

yellow-billed pintails and speckled teal in Argentina could not be

distinguished from zero (MAR.YP = 0.25, HPD95% = 0.00–14.55;

Fig. 4B), and has likely occurred at a rate lower than the

substitution rate. It is difficult to estimate the total number of

yellow-billed pintails hybridizing with speckled teal in the Falkland

Islands from this type of data because variance in M and h must be

considered jointly. Multiplying the point estimate of MFK.YP (4.75)

by the point estimate of hFK (0.0075) suggests that the number of

effective yellow-billed pintail immigrants is less than one per

generation. But if the upper 95% HPD of both M (98.65) and h
(0.2875) are considered, the number could be as high as 28

immigrants per generation.

Gene flow between speckled teal in Argentina and the Falklands

Islands was asymmetric. Gene flow from Argentina to the Falkland

Islands (MFK.AR) peaked at the upper prior (M = 100), so the true value

is likely higher (Fig. 4C). Gene flow in the opposite direction, from the

Falkland Islands to Argentina could not be distinguished from zero, but

could just as well be greater as the tail did not asymptotically approach

the x-axis (MAR.FK = 0.05, HPD95% = 0.00–99.45). The posterior

density distributions for MFK.AR and MAR.FK were not smooth, which

is a common outcome in IM when low WST values are observed for

most loci (see below).

Given equal substitution rates among populations, which is likely

a valid assumption for closely related species, the effective

population size (Ne) of the Argentine population was 17 times

greater than the Falkland Islands, and Ne for yellow-billed pintails

was more than ten times greater than speckled teal (Fig. 5A). Time

since divergence between the Argentine and Falklands Islands

populations of speckled teal is likely very recent, the posterior

probability of t peaked sharply at zero (t = 0.001, HPD95% = 0.00–

0.495; Fig. 5B). The peak was bimodal, however, suggesting that

divergence could be older (t = 0.007). By contrast, divergence

between speckled teal and yellow-billed pintails was much deeper

(t = 0.585, HPD95% = 0.301–1.121; Fig. 5C). Based on a point

estimate substitution rate of 3.9361027 substitutions/locus/year

obtained for the same six loci from five species of Anas ducks [25],

divergence between speckled teal and yellow-billed pintails might

date between approximately 0.77 and 2.85 million years.

Genetic Differentiation between the Falkland Islands and
Argentina

Speckled teal exhibited highly significant mtDNA differentiation

between the Falkland Islands and Argentina (WST = 0.45; Table 4).

Sixteen mtDNA haplotypes were found in Argentina, whereas six

haplotypes were sampled in the Falkland Islands (Fig. 3). Two

haplotypes were shared between the Falkland Islands and

Argentina, and the other four, including the most common

haplotype in the Falklands, were not observed in Argentina (Fig. 6,

Table 4). MtDNA allelic richness was greater in Argentina, but

nucleotide diversity (p/site) was greater in the Falklands.

In contrast to the mtDNA, most nuclear loci showed less

population differentiation. Three loci (ODC1, PCK1, and HBA2)

yielded significant WST values ranging from 0.02 to 0.23 (P,0.05;

Table 4). Eight private alleles were observed for HBA2 in the

Falklands, and three and one private alleles were found in GRIN1

and HBB, respectively. In all but one case (ODC1), the most

common allele occurred in Argentina at lower frequency than in

the Falklands (Fig. 6). Nuclear allelic richness either did not differ

or was greater in Argentina.

For speckled teal, the average assignment probabilities (6SD) to

the Falkland Islands and Argentina were 0.5960.04 and

0.5560.03, respectively. Despite strong differentiation in the

mtDNA, low differentiation and evidence of high gene flow in the

nuclear DNA resulted in little power to discriminate between

island and continental populations of speckled teal.

Discussion

Interspecific hybridization is not uncommon in birds, especially

the waterfowl. Indeed, the majority of known avian hybrids are

represented by the Anatidae [13], and hybridization has been

studied previously in a variety of waterfowl species using genetic

assays [36,37,38,39,40,41,42]. Key factors contributing to hybrid-

ization in the waterfowl have been shown to include a tendency for

hybridization to occur among more closely related species and

between species that coexist in sympatry [12]. Randler [14],

likewise, found that hybridization occurs more frequently when

one species is common and the other species is rare, thus

indicating that ‘‘scarcity of conspecifics facilitates hybridization in
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general.’’ But in the same study Randler [14] found no evidence to

suggest that females prefer mates of a larger species.

Haldane’s [15] rule states that hybrid inviability occurs more

frequently in the heterogametic sex. This phenomenon likely

applies to all species that have sex chromosomes, and support for

Haldane’s rule has been demonstrated for F1 hybrid waterfowl.

Kirby et al. [43] found evidence of post-mating isolation

mechanisms in American black ducks (Anas rubripes) and mallards

(A. platyrhynchos). Sixty-five percent of captive F1 hybrids were male,

but the sex ratio did not differ for F16F1 offspring or for F1

individuals backcrossed to parentals. Similar patterns are observed

among domestic ducks [44]. Haldane’s rule thus likely reduces the

proportion of F1 female hybrids, but its effects may have only a

minimal effect retarding interspecific gene flow, and identifying

hybrid individuals other than F1 is generally not possible [45].

Tubaro and Lijtmaer [12] found that hybrid males outnumbered

hybrid females, but this pattern was not found to be significant

after correcting for male-biased sex ratios observed in adult duck

populations.

The capacity for genes to introgress from one species to another

has also been investigated in a variety of waterfowl species.

Muñoz-Fuentes et al. [40] found that ruddy ducks (Oxyura

jamaicensis) and white-headed ducks (O. leucocephala) hybridized

frequently and produced viable offspring, but like our study in

Argentina they did not find evidence of extensive introgression.

On the other hand, Mank et al. [37] found evidence of extensive

introgression between American black ducks and mallards. Peters

et al. [38] likewise found an interesting example of ancient

hybridization in the gadwall (Anas strepera), in which 5.5% of

individuals sampled from North America possess heterospecific,

falcated duck (Anas falcata) mtDNA haplotypes. Several other

instances of mtDNA haplotype sharing have also been attributed

to hybridization in waterfowl [24,42,46]. Such patterns are

common in both mtDNA and nuclear DNA for a wide variety

of other species in which hybridization has been examined using

molecular methods [47,48,49,50,51,52,53].

In this regard our discovery of an F1 hybrid speckled teal x

pintail and her duckling is not unusual. It is possible that it was just

an isolated rare occurrence, but what is noteworthy is where it

occurred, under what circumstances, and additionally where

evidence of hybridization was not detected. Speckled teal and

yellow-billed pintails are not sister taxa [54]. Nonetheless, they

occur in widespread sympatry and are abundant thoughout their

range in South America. Moreover, they frequently occur in

Figure 4. Gene flow (M = m/m) estimates from the IMa2 analysis of six nuclear loci.
doi:10.1371/journal.pone.0023173.g004
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mixed flocks, and to the casual observer, they are similar in

appearance. Unlike any other waterfowl in South America, both

species have yellow bills and brown plumage. In the Falkland

Islands, however, yellow-billed pintails are outnumbered by

speckled teal by approximately ten to one. It is not known

whether yellow-billed pintails were formerly more abundant or if

they always existed on the islands at low densities. Woods and

Woods [19] reported that they have been uncommon since at least

1860. Only a couple pintails were observed in the Falkland Islands

during our study period, and none were captured or banded.

Nonetheless, we identified an F1 hybrid and her duckling with only

a small sample of speckled teal (n = 15), compared to a much larger

sample of both yellow-billed pintails and speckled teal (n = 120) in

Argentina, in which no such hybrids were detected. Nor was firm

evidence of introgression detected in Argentina with the three-

population ‘‘isolation with migration’’ coalescent analysis. Our

Figure 5. Three-population IMa2 model for speckled teal (AR = Argentina, FK = Falkland Islands) and yellow-billed pintails (YP) for
six nuclear loci. A) Effective population size parameter h. B) Time since divergence index (t) between speckled teal in the Falkland Islands and
Argentina. C) Time since divergence index (t) between speckled teal and yellow-billed pintails. The 95% highest posterior densities (HPD) for each
parameter are shown in parentheses (see Table 2 for definitions). Arrows depict the six gene flow parameters (M = m/m). HPD95% estimates of M that
overlap zero are shown with dashed lines (as shown in Figure 4).
doi:10.1371/journal.pone.0023173.g005

Table 4. Genetic diversity measures (Argentina/Falkland Islands) and WST between mainland and island populations of speckled
teal.

Locus Variable sites Alleles

Standardized allelic
richness in Argentina
(±SD)

Nucleotide
diversity (p/site)

Private alleles
in the Falkland
Islands WST

mtDNA control region 20/10 16/6 961 0.002121/0.004014 4 0.42

Ornithine decarboxylase 5/12 6/5 561 0.002177/0.006800 0 0.05

a enolase 7/1 7/2 461 0.002358/0.000217 0 0.05

b fibrinogen 4/2 5/3 464 0.003074/0.002284 0 0.05

N-methyl D aspartate 1 glutamate receptor 28/13 31/14 1662 0.009604/0.007949 3 0.00

Phosphoenolpyruvate carboxykinase 7/5 9/4 661 0.003535/0.003295 0 0.23

aA hemoglobin 20/15 39/19 1962 0.005497/0.005012 8 0.02

bA hemoglobin 21/11 31/10 1662 0.012179/0.013172 1 0.01

WST values in bold text were significant (P,0.05). Tamura-Nei [69] substitution model was used to calculate WST.
doi:10.1371/journal.pone.0023173.t004
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results thus provide further support for Hubbs’ [16] ‘‘desperation

hypothesis,’’ which states that scarcity in one population and

abundance of another will often lead to hybridization. Our

findings are also relevant to Haldane’s [15] rule, because the F1

hybrid that was identified in this case was female (the

heterogametic sex), and she successfully hatched a duckling. Based

on her mtDNA she resulted from a pairing between a male yellow-

billed pintail and female speckled teal. Yellow-billed pintails are

among the two largest Anas dabbling duck species in South

America, whereas speckled teal is the smallest. So although

Randler [14] found no support for the hypothesis that females

should prefer bigger males when mating heterospecifically, this

was not necessarily the case in our study.

Finally, our study raises questions about small populations

inhabiting oceanic islands. Island endemic populations are well

known for their demographic properties and unique adaptations to

insular environments [55,56,57,58]. Island populations have

additionally been shown to have lower genetic diversity, which

may contribute to empirically higher rates of extinction [59,60].

Speckled teal in the Falkland Islands were found to be significantly

differentiated from populations in Argentina in their mtDNA and

at three nuclear loci (Table 4, Fig. 3). Similar patterns of allelic

endemism have recently been found among other island duck

populations, including several species that have excellent dispersal

capabilities and otherwise exhibit minimal geographic structure at

continental scales: mallards [61], red-breasted mergansers (Mergus

serrator; [62]), and green-winged teal (Anas crecca; J. Peters, pers.

comm.). Speckled teal and yellow-billed pintails have excellent

dispersal capabilities, and our study found that gene flow from

Argentina to the Falkland Islands, in the direction of the strong

prevailing winds in Patagonia [57,63], is likely .100-fold greater

than background rates of mutation. But given the small effective

population size on the Falkland Islands, this may still equate to a

small number of annual immigrants. Even if M were 1,000-fold

greater than the mutation rate, the number of immigrants would

be less than ten per generation. Gene flow in the opposite direction

is likely occuring at substantially lower levels relative to mutation.

Given that the number of effective immigrants is not high, it is thus

no surprise that differention was found in mtDNA and other loci,

particularly as female waterfowl have been repeatedly shown to

exhibit high levels of philopatry and breeding site fidelity [64,65].

In sum, speckled teal inhabiting the Falkland Islands likely

comprise a distinct demographic unit, and while significant

numbers of immigrants probably arrive from Argentina annually,

gene flow is likely restricted and it may be that the Falkland Islands

population is predominantly resident and non-migratory.

Similar information about yellow-billed pintails in the Falkland

Islands is not yet available because of their scarcity. It is not known

whether the species experienced a bottleneck prior to the first

acounts in 1860 or always occurred at low densities. Regardless,

the effect of hybridization on the yellow-billed pintail population

would be of interest because of their small population size in the

Falkland Islands. Hybridization has been shown to be an

important factor leading to population declines [3,66]. Its effects

may be exacerbated in island ecosystems, particulary when one

species is common but another is rare, and when pre- and post-

zygotic barriers are porous or weakly developed [67]. Hybridiza-

tion and backcrossing to speckled teal such as we observed here

could potentially be one factor that has contributed to persistently

low population numbers of yellow-billed pintails. More work in the

Figure 6. Frequency of the most common speckled teal allele in
the Falkland Islands and Argentina.
doi:10.1371/journal.pone.0023173.g006
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Falkland Islands is clearly needed to answer these questions and

determine the full extent of introgression.
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