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COVID-19 has affected the whole world drastically. A huge number of people have lost their lives due to this pandemic. Early
detection of COVID-19 infection is helpful for treatment and quarantine. )erefore, many researchers have designed a deep
learning model for the early diagnosis of COVID-19-infected patients. However, deep learning models suffer from overfitting and
hyperparameter-tuning issues. To overcome these issues, in this paper, a metaheuristic-based deep COVID-19 screening model is
proposed for X-ray images.)emodified AlexNet architecture is used for feature extraction and classification of the input images.
Strength Pareto evolutionary algorithm-II (SPEA-II) is used to tune the hyperparameters of modified AlexNet. )e proposed
model is tested on a four-class (i.e., COVID-19, tuberculosis, pneumonia, or healthy) dataset. Finally, the comparisons are drawn
among the existing and the proposed models.

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) causes this disease. Several other viruses like MERS,
flu, and SARS [1–3] have also been detected in the past few
decades, but they have not affected the world as COVID-19
does. Many countries are working on preparing a vaccine to
get over this pandemic. Since this is an infectious disease and
appropriate treatment is not available to date, it is highly
required that the disease is detected in the early stages so that
its further spreading can be prevented [4]. )e symptoms of
COVID-19 are sore throat, fever, headache, breathing issues,
and cough [5]. Some other symptoms like tiredness, aches,
loss of taste, and smell have also been found in some

patients. However, in many of the infected patients, no
symptoms were reported [6]. Because of the absence of
symptoms, it became much difficult to detect the COVID-19
infection. Hence, many countries declared lockdown so that
the chain of the disease can be broken. But still, for treating
the disease, efficient screening of patients is needed.

Real-time reverse transcription-polymerase chain reac-
tion (RT-PCR) is widely accepted as a COVID-19 detection
tool [7]. It can provide results ranging from hours to two
days. But, because of the unavailability of kits and RT-PCR’s
low sensitivity, the imaging techniques utilizing radiography
emerged as another option for COVID-19 detection [8].
Several research articles also validate the suitability of chest
scans for the detection of COVID-19 [7, 8]. Among available
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radiography techniques, the chest CT scan and X-ray are
extensively utilized techniques. But the availability of ma-
chines and lesser impact of radiations on patients make
X-rays more preferable over CT [9]. It takes much time and
can lead to erroneous reports when the X-rays are examined
manually by radiological experts [10]. )is problem can be
resolved by analyzing the X-ray automatically by using the
machine/deep learning models. In recent times, deep
learning techniques have been favorites among researchers
to diagnose diseases in the field of medical imaging [11].
)ese techniques can extract the image features automati-
cally without any manual involvement [12] which makes
them suitable for the classification process of COVID-19
imaging patterns.

)is paper proposes a metaheuristic-based deep
COVID-19 screening model for X-ray images. )e modified
AlexNet architecture is used for feature extraction and
classification of the input images. Strength Pareto evolu-
tionary algorithm-II (SPEA-II) is used to tune the hyper-
parameters of modified AlexNet. )e proposed model is
tested in a four-class (i.e., COVID-19, tuberculosis, pneu-
monia, or healthy) dataset. Finally, the comparisons are
drawn among the existing and the proposed models.

)e remaining structure of the paper is as follows.
Section 2 describes the related work in the field. )e pro-
posed work for detecting COVID-19 using chest X-rays is
presented in Section 3. Section 4 discusses the experimental
results and discussions. )e proposed work is concluded in
Section 5.

2. Literature Review

In the last few months, several deep learning techniques have
been rigorously used for the classification of chest X-rays for
COVID-19 diagnosis. Among these techniques, convolu-
tional neural networks (CNNs) and transfer learning have
been explored a lot. Hemdan et al. [13] proposed an automatic
framework named “COVIDX-Net” to identify the COVID-19
infection in chest X-rays. )e proposed model used seven
deep learning architectures, out of which DenseNet201 and
VGG19 achieved 90% accuracy. )e authors used only fifty
chest X-rays to test the proposedmodel. In [14], deep learning
architectures are studied by Luz et al., and the efficiency of the
proposed model is presented using the COVIDx dataset. )e
accuracy of 93.9% with 96.8% sensitivity is achieved by the
Flat EfficientNet model. Ozturk et al. [15] developed Dark-
CovidNet, an automaticmodel for detecting COVID-19 using
chest X-rays.)emodel is trained using 125 chest images and
provided 98.08% accuracy with binary cases and 87.02%
accuracy with multiclass cases.)e use of a limited number of
COVID-19-infected chest X-ray images for training and
validation purposes is the main drawback of this model. Basu
and Mitra [16] proposed a model for identifying abnormality
caused by COVID-19 in chest X-rays. )is model is based on
transfer learning; they used Gradient Class Activation Map
for extracting features from X-ray images. Validation is also
done with the help of the NIH chest X-ray dataset. Results
achieved are also promising with an overall accuracy of 95.3%.
Das et al. [17] proposed a model for the detection of COVID-

19 infection with the help of X-ray images. In this work, the
developed model is based on the deep learning technique.)e
experimental results show an overall classification accuracy of
97.40%.

Tuncer et al. [18] proposed a model to identify the
COVID-19 pattern from the X-ray images. In this, features
are extracted with Residual Exemplar Local Binary Pattern
(ResExLBP). Feature selection is done with iterative ReliefF.
In this work, a total of 321 chest X-ray images are used to
achieve the classification accuracy of 99% with an SVM
classifier. Wang and Wong [19] implemented a COVID-Net
framework for identifying coronavirus infection. )e pro-
posed framework reports the classification accuracy as 92.4%
for normal, pneumonia+ve, and COVID+ve classes, which
are better than VGG19 and ResNet-50 architecture. Toğaçar
et al. [20] converted the original X-rays of COVID-19 pa-
tients into a useful structured dataset with the help of fuzzy
color technique; then, an image stacking technique has been
used to create a stacked dataset. In this, the classification
accuracy of MobileNetV2 and SqueezeNet is 98.25% and
97.81%, respectively.

Apostolopoulos and Mpesiana [21] proposed a COVID-
19 identification system. In this work, five pretrained deep
learning architectures were used to develop the system for
the processing of chest X-ray images. VGG19, MobileNet,
Inception, Xception, and Inception_ResNet_V2 are the
pretrained deep learning architectures. Classification accu-
racy is also very good for a binary class as compared with
multiclass. Mahmud et al. [22] developed an automatic
system CovXNet for COVID-19. )e proposed system de-
tects the COVID-19 patterns from chest X-rays. A total of
915 X-ray images were used to validate the model. )e
proposed system is optimized with the help of a stacking
algorithm. Classification is also done with binary and three
classes with an accuracy of 97.4% and 89.6%, respectively. In
Narin et al. [23], the work performance of three pretrained
deep learning architectures is analyzed for COVID-19.
ResNet50, Inception_V3, and Inception-ResNet_V2 were
executed and concluded that ResNet50 is the best among all
with 98% accuracy. Shelke et al. [24] proposed a diagnosis
model for COVID-19 based on chest X-ray images. In this
work, 22 X-ray images were used to calculate the classifi-
cation accuracy and it is 98.9%.

Rahimzadeh and Attar [25] proposed a hybridized
model for COVID-19 by combining Xception and
ResNet50_V2 models. A dataset of 6054 X-ray images was
used, and 91.4% accuracy has been achieved. In Chouhan
et al. [26], an ensemble approach has been proposed for
AlexNet, DenseNet121, Inception_V3, ResNet18, and
GoogleNet architectures. )ese pretrained deep learning
architectures show good accuracy for COVID-19 pattern
identification. Abbas et al. [27] developed a DeTraC model
for predicting COVID-19 with the help of 105 chest X-ray
images. CNN model has been used for deep feature ex-
traction. Also, class decomposition is implemented to ex-
tract the local structures. 95.12% classification accuracy is
achieved with Gradient descent. Das et al. [28] used an open-
source chest X-ray dataset for the identification of COVID-
19. A model is implemented using the InceptionNet model
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and achieved promising results. From the above literature, it
has been found that the existing model suffers from the
overfitting and hyperparameter-tuning issue [29].

3. Proposed Methodology

)is section discusses the proposed work. CNN is discussed
followed by modified AlexNet architecture and SPEA-II-
based hyperparameter- tuning approach.

3.1. Convolutional Neural Network (CNN). CNN emulates
the human brain’s functioning. )e layers in CNN work like
layers of the human brain. It can be termed as a deep
learning neural network [30, 31]. CNN has proven its effi-
cacy in pattern recognition, face recognition, and other
image processing applications. Different layers in the CNN
process the input image [32]. In the initial convolution layer,
the input image is fed; then, different layers of the proposed
architecture extract the features. In the convolutional layer,
the input image goes through different filters; then, the
output of this layer is passed as input to the next layer called
the maximum pooling layer which removes the unwanted
pixels [33].

In this paper, AlexNet architecture is used for CNN
because it is computationally better to use the AlexNet
architecture to address the complexities than Conv-Net, Le-
Net, ResNet, and other architectures [27]. Initially, a set of
images are assigned to the first layer of AlexNet. Hidden
layers apply multiple filters to extract the features. Finally,
the last layer is used for the classification process [34].

3.2.AlexNetArchitecture. As stated earlier, AlexNet is better
than the other available architectures in terms of efficiency
and computational ability. )ese are also used extensively to
cope up with the problems in the process of image classi-
fication. )is paper uses the modified AlexNet architecture
[35] for image classification. Figure 1 shows the detailed
architecture used for image classification.

)e implementation of the modified architecture is
comprised of the following steps:

Step 1: initially, the input image is resized to 259× 259
pixels representing the length and breadth.)e depth is
represented by three color channels.
Step 2: next operation carried out in the convolutional
layer computed the output of neurons by performing
the scalar product of the image’s small portions with
their respective weights.)is operation is iterated along
length and breadth.
Step 3: then, the ReLU layer employs an activation
function that works element-wise. It also incorporates
the nonlinearity in the system and applies the function
due to which the negative activation is replaced by 0.
Step 4: the decimation operation is performed at the
pooling layer which reduces the samples along with the
spatial coordinates.

Step 5: at last, the prediction is given by a fully
connected (FC) layer based on a class score of each
image. For each prediction class, the probability
score is computed and the class with the maximum
probability score is considered to be the predicted
class.

3.3. Strength Pareto Evolutionary Algorithm (SPEA). To
optimize CNN, SPEA-II [36] is used in this work.)e idea of
SPEA [37] was introduced in 1999. But to understand SPEA-
II, we need to understand the working of SPEA. In SPEA,
Strength Pareto depicts how much the solutions are close to
the first rank. )e nondominated solutions or a set of Pareto
optimal solutions are identified and preserved with SPEA. A
set containing all Pareto optimal solutions is called Pareto
optimal set, and it contains the best nondominated solu-
tions. For each solution, two parameters named Strength
Pareto (S) and fitness (F) are considered.)e Strength Pareto
is represented as

S(i) �
np

NP + 1
, (1)

where S(i) represents the Strength Pareto of individual i.
NP represents the size of the population and np is the
number of individual vectors that are dominated by in-
dividual i or having equal strength as i. )ese dominated
individuals possess less strength than the nondominated
solutions. )e second parameter, i.e., fitness, is repre-
sented as [38]

F(a) � 1 + 􏽘
i< a

S(i). (2)

)e fitness of an individual a is the addition of Strength
Pareto values of all individuals which dominate or equal
individual a. Hence, the solution with a lower value of fitness
is assumed to be better [38]. Consider G as the maximum
number of generations and g as the iteration number. )e
steps involved in the optimization process of SPEA are
described as follows.

Step 1: the population is initialized and an empty ex-
ternal set is created for Pareto optimal solutions.
Step 2: the size of Pareto optimal is defined; if it exceeds
that limit, then based on the average linkage-based
hierarchical clustering method, Pareto sets are deleted
and brought back to a manageable size. )is clustering
technique combines the adjacent clusters iteratively
until the desired number of groups is obtained [38].
Step 3: next, the fitness of the population and external
Pareto optimal set is calculated [39].
Step 4: in this step, binary tournament selection is
implemented by combining the individuals in an ex-
ternal set and the population. )en, two individuals are
chosen randomly and one having better fitness is
moved to the mating pool. In the mating pool,
crossover operation and mutation operations are
performed so that a new population is obtained for the
next iteration.
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Step 5: a new population is assumed to have better
individuals than the previous one generated by per-
turbation and crossover.
Step 6: increase g as g � g + 1 and check for the ter-
mination condition. If the termination condition is not
satisfied, then go to Step 2; else, represent the archive
members as Pareto optimal set [39].

3.4. SPEA-II. Figure 2 shows the ith generation of SPEA-II.
Having Tg (as the population at gth iteration), Tg (as the
archive population at gth iteration),G (as the max number of
generations), and A as archive size, the steps of the opti-
mization process followed by SPEA-II are as follows [36].

Step 1 (initialization): initialize an empty archive Tg �

φ and an initial population T0 and set g � 0.
Step 2 (fitness calculation): in this step, the fitness of

the population and the archive set individuals
are calculated.)e strength S(i) of individual i in
population and the archive is calculated as

S(i) � a|a ∈ Tg + Tg∧i> a􏽮 􏽯
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (3)

Here, “+” represents the multiset union, “∧”
represents the AND operation, and “>” repre-
sents the Pareto dominance relation.

Fitness F(i) for SPEA-II is calculated using raw
fitness P(i) and density Q(i) of an individual as

F(i) � P(i) + Q(i), (4)

where

P(i) � 􏽘

a∈Tg+Tg,a> i

(a),
(5)

Q(i) �
1

σj
i + 2

. (6)

)e individuals having the same raw fitness
values are distinguished by calculating their
individual density using the K-nearest neighbor
method as shown in equation (6). In equation
(6), the objective space distance among ith and
jth nearest neighbors is represented by σj

i , where
j �

�����
A + A

􏽰
.

Step 3 (selection): this operation copies the non-
dominated solutions from Tg and Tg to Tg+1.
)e following truncation operator is used to
reduce Tg+1 if its size exceeds the limit of A:

i≤ da, a ∈ Tg+1⟶ : a ∈ Tg+1: ⇔ 0< j<Tg+1: σ
j
i � σj

a∨∃0< j

<Tg+1: ∀0< 1< j: σl
i � σl

a􏼐 􏼑∧σj
i < σ

j
a􏽨 􏽩.

(7)

Else Tg+1 is filled with dominated individuals
from Tg and Tg. i≤ da denotes that i individual
dominates a [40].

Step 4 : in this step, binary tournament selection is
implemented by creating a mating pool. In the
mating pool, crossover and mutation operations
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are performed on the individuals selected from
Tg+1 through tournament selection so that a
new population Tg+1 is obtained for the next
iteration.

Step 5 : increase g as g � g + 1, and if the termination
condition g≥G is not satisfied, then go to Step
2; else, represent the archive members as Pareto
optimal set [36].

4. Performance Analysis

In this paper, MATLAB 2020b online servers with 64-bit, 8-
core, and 32GB RAM are utilized to evaluate the

effectiveness of the proposed and the competitive models.
)e information about the used dataset can be found in [41].

Figure 3 shows the accuracy and loss analysis of the
proposed automated diagnosis model. It shows that the
proposed diagnosis model achieves significantly better
training accuracy and lesser loss value. )e proposed model
shows a significantly good convergence speed. )e proposed
model achieves 100% training accuracy during the 150th it-
eration. )e validation accuracy of 99.26% indicates that the
proposed model does not suffer from the overfitting issue.

Figure 4 shows the confusion matrix analysis of the
proposed metaheuristic-based automated diagnosis model.
It depicts that the proposed model achieves significantly
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Figure 4: Confusion matrix analysis of the proposed metaheuristic-based deep learning model on a four-class dataset.

Table 1: Training analysis of the metaheuristic-based deep learning models.

Models Accuracy F-measure Sensitivity Specificity Area under the curve
SPEA-II-based VGG19 0.97227 0.97623 0.97565 0.97292 0.97427
SPEA-II-based VGG16 0.99127 0.98302 0.98269 0.99143 0.98709
SPEA-II-based ResNet50 0.98601 0.99151 0.99121 0.98648 0.98880
SPEA-II-based AlexNet 0.99304 0.99660 0.99651 0.99323 0.99484
SPEA-II-based ResNet-34 0.98786 0.99830 0.99824 0.98823 0.99313
SPEA-II-based GoogleNet 0.98952 0.98641 0.98608 0.98977 0.98795
SPEA-II-based InceptionNet 0.99825 0.98981 0.98961 0.99828 0.99397
SPEA-II-based DenseNet201 0.98257 0.98981 0.98947 0.98313 0.98624
SPEA-II-based Xception 0.99475 0.94906 0.94991 0.99466 0.97157
Proposed SPEA-II-based model 0.99976 0.99890 0.99976 0.99890 0.99883
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good accuracy of 98.55%, 100%, 99.2%, and 99.75%, for
COVID-19, healthy, pneumonia, and tuberculosis subjects,
respectively. Overall, the proposed model achieves 99.5%
training accuracy.

Tables 1 and 2 depict the training and validation analysis
of the proposed and the existing SPEA-II-based deep transfer
learning models on a four-class chest X-ray dataset.)e lower
difference among Table 1 and 2 values indicates that the
SPEA-II-based deep transfer learning models do not suffer
much from the overfitting issues. Overall, the proposedmodel
outperforms the competitive SPEA-II-based deep transfer
learning models on validation data in terms of accuracy,
F-measure, sensitivity, specificity, and area under the curve by
1.23%, 1.18%, 1.26, 1.6%, and 1.13%, respectively.

Table 3 shows the comparison among the existing and
proposed SPEA-II-based automated diagnosis models in
terms of accuracy. It clearly indicates that the proposed
SPEA-II-based automated diagnosis model outperforms the
existing models.

5. Conclusion

In this paper, a metaheuristic-based deep COVID-19
screening model was proposed for X-ray images. )e

modified AlexNet architecture was utilized for feature ex-
traction and classification of the input images. Strength
Pareto evolutionary algorithm-II (SPEA-II) is used to tune
the hyperparameters of modified AlexNet. )e proposed
model has been tested on a four-class (i.e., COVID-19,
tuberculosis, pneumonia, or healthy) dataset. Finally,
comparisons were drawn between the existing and the
proposed models. Extensive experimental results reveal that
the proposed model outperforms the competitive COVID-
19 classification models. Overall, the proposed model out-
performs the competitive SPEA-II-based deep transfer
learning models on validation data in terms of accuracy, F-
measure, sensitivity, specificity, and area under the curve by
1.23%, 1.18%, 1.26, 1.6%, and 1.13%, respectively. [42]
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