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ABSTRACT
Introduction  To date, there is no robust enough test to 
predict small-for-gestational-age (SGA) infants, who are at 
increased lifelong risk of morbidity and mortality.
Objective  To determine the accuracy of metabolomics in 
predicting SGA babies and elucidate which metabolites are 
predictive of this condition.
Data sources  Two independent researchers explored 
11 electronic databases and grey literature in February 
2018 and November 2018, covering publications from 
1998 to 2018. Both researchers performed data extraction 
and quality assessment independently. A third researcher 
resolved discrepancies.
Study eligibility criteria  Cohort or nested case–control 
studies were included which investigated pregnant women 
and performed metabolomics analysis to evaluate SGA 
infants. The primary outcome was birth weight <10th 
centile—as a surrogate for fetal growth restriction—by 
population-based or customised charts.
Study appraisal and synthesis methods  Two 
independent researchers extracted data on study design, 
obstetric variables and sampling, metabolomics technique, 
chemical class of metabolites, and prediction accuracy 
measures. Authors were contacted to provide additional 
data when necessary.
Results  A total of 9181 references were retrieved. Of 
these, 273 were duplicate, 8760 were removed by title 
or abstract, and 133 were excluded by full-text content. 
Thus, 15 studies were included. Only two studies used 
the fifth centile as a cut-off, and most reports sampled 
second-trimester pregnant women. Liquid chromatography 
coupled to mass spectrometry was the most common 
metabolomics approach. Untargeted studies in the second 
trimester provided the largest number of predictive 
metabolites, using maternal blood or hair. Fatty acids, 
phosphosphingolipids and amino acids were the most 
prevalent predictive chemical subclasses.
Conclusions and implications  Significant heterogeneity 
of participant characteristics and methods employed 
among studies precluded a meta-analysis. Compounds 
related to lipid metabolism should be validated up to the 
second trimester in different settings.
PROSPERO registration number  CRD42018089985.

Introduction
Fetal growth restriction (FGR) and 
small-for-gestational-age (SGA) infants are 

major concerns in modern obstetrics.1–3 SGA 
is commonly used as a proxy for FGR,4 despite 
the subtle differences between these two 
pathological conditions. The prevalence of 
both varies according to the criteria applied 
and on the population and setting, although 
it reaches as much as 25% in low-income and 
middle-income countries.5 SGA newborns 
may have adverse health effects, such as still-
birth,4 perinatal asphyxia,6 impaired neuro-
development7 and increased cardiovascular 
risk.8 9 To date, there are no robust prediction 
tools for SGA using clinical factors,10 11 ultra-
sound data12 13 or placental biomarkers.14

For hypothesis-generating or validation 
purposes, metabolomics is a novel area of 
biomarker, discovery, development and 
clinical diagnostics in translational medi-
cine.15 16 Metabolomics is the study of all 
metabolites15 16 in a given sample, that is, low 
molecular weight compounds (50–2000 Da) 
that are intermediates of biochemical 
reactions and metabolic pathways, consid-
ered to directly reflect cellular activity and 
phenotype.15 16 Recent studies have evalu-
ated the pathophysiology17–20 of SGA with 

Strengths and limitations of this study

►► To our knowledge, this is the first systematic review 
to assess the predictive accuracy of metabolomics 
for an adverse pregnancy outcome.

►► Using small for gestational age (SGA) as surrogate 
for fetal growth restriction—just as in epidemio-
logical investigations—improves the translational 
potential of metabolomics.

►► Identification of techniques, types of maternal 
samples and chemical classes paves the way for 
future metabolomics investigations on fetal growth 
patterns.

►► Available data could not support a meta-analysis; 
further studies should include accuracy measures 
of individual metabolites or chemical subclasses in 
predicting SGA.
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metabolomics. However, little is known about the poten-
tial of metabolomics to identify predictive compounds of 
SGA.

Since metabolomics can identify multiple metabolites 
from low volume samples and create a model from a 
collection of these samples,15 it is a promising technology 
for hypothesis generation in a heterogeneous condition 
such as SGA. The prediction of SGA in pregnancy would 
help refer women to specialised care facilities, improving 
maternal and neonatal outcomes.21 22

In this context, our review question was ‘What is the 
accuracy of metabolomics for predicting FGR?’. The main 
objective of this systematic review was to assess the accu-
racy of metabolomics techniques in predicting SGA. As a 
secondary aim, we intended to determine which metabo-
lites are predictive of this condition.

Methods
The protocol for this systematic review was published 
previously.23 This study follows international guidelines 
for transparency (International Prospective Register 
of Systematic Reviews) and respects the Preferred 
Reporting Items for Systematic Reviews and Meta-Anal-
yses statement.24

Literature search strategy
Two independent researchers (DFBL and A-CM) assessed 
11 electronic databases (PubMed, EMBASE, Latin Amer-
ican and Caribbean Health Sciences Literature, Scientific 
Electronic Library Online, Health Technology Assess-
ment, Database of Abstracts of Reviews of Effects, Aggres-
sive Research Intelligence Facility, Cumulative Index of 
Nursing and Allied Health Literature, Maternity and Infant 
Care, Scopus, and Web of Science) and grey literature. 
There were no limits or language constraints; the search 
strategy covered published documents between 1998 and 
2018. The keywords ‘small for gestational age’, ‘metab-
olomics’, ‘prediction’ and ‘antenatal’, and variations of 
each, were combined with Boolean operators depending 
on each database requirements. The full EMBASE litera-
ture search was as follows: (‘fetal growth retardation’ OR 
‘fetal growth restriction’ OR ‘intrauterine growth restric-
tion’ OR ‘intrauterine growth retardation’ OR ‘small 
for gestational age’) AND (‘metabolomic*’ OR ‘meta-
bonomic*’ OR ‘metabolit* ‘H NMR’ OR ‘proton NMR’ 
OR ‘proton nuclear magnetic resonance’ OR ‘liquid 
chromatogra*’ OR ‘gas chromatogra*’ OR ‘UPLC’ OR 
‘ultra-performance’ OR ‘ultra performance liquid chro-
matograph*’) AND (‘pregnan*’ OR ‘antenat*’ OR ‘ante 
nat*’ OR ‘prenat*’ OR ‘pre nat*’) AND (‘screen*’ OR 
‘predict*’ OR ‘metabolic profil*’). Please check online 
supplementary material 1 for more details.

Outcomes and subgroup analysis
The primary outcome was SGA, as a surrogate for FGR and 
defined as birth weight <10th centile, by population-based 

or customised charts. The secondary outcomes were birth 
weight ≤5th or ≤3rd centile.

The intended subgroup analysis comprised the type 
of metabolomics technique applied (nuclear magnetic 
resonance, NMR; gas or liquid chromatography coupled 
with mass spectrometry, GC-MS or LC-MS, respectively); 
maternal health status before pregnancy (women with 
vs without any chronic health condition); type of SGA 
suspected during pregnancy (early vs late SGA); and type 
of pregnancy (singleton vs multiple pregnancy).

Selection criteria of studies, data collection and analysis
Cohort or case–control studies were included if maternal 
samples were collected before the clinical diagnosis of 
SGA, if any metabolomics technique was applied and if 
the results of SGA were presented. Articles presenting 
data from the same research project but analysing distinct 
metabolites or showing data from different countries 
were included. Studies were excluded (1) according 
to study design; (2) if they had not applied any metab-
olomics technique; (3) if they were only experimental 
studies; (4) if it was not possible to extract data on SGA; 
or (5) if they presented duplicate data, in which case the 
most complete publication was included for final analysis.

Two researchers (DFBL and A-CM) independently 
selected studies, extracted data and discussed discrepan-
cies. One additional reviewer (EFMJ or RTS) helped to 
decide, by majority, when no consensus was reached.

Piloted standardised forms were applied for data 
extraction, including pregnancy characteristics and 
experimental details. The Human Metabolome Database 
(HMDB)25 and the Kyoto Encyclopedia of Genes and 
Genomes26 were used for matching chemical class and 
metabolic pathways of each metabolite, respectively.

Risk of bias and assessment of concerns regarding 
applicability
Two researchers (DFBL and A-CM) independently eval-
uated individual studies using the Quality Assessment of 
Diagnostic Accuracy Studies-2 (QUADAS-2) tool.27 One 
of the third reviewers (EFMJ or RTS) helped in deci-
sion-making when no consensus was achieved.

Each study was classified as high, low or unclear risk of 
bias in four domains (patient selection, index test, refer-
ence standard, and flow and timing), and as high, low or 
unclear concerns regarding applicability in the first three 
domains. We did not consider two signalling questions 
(‘Was a case-control design avoided?’ and ‘Was there an 
appropriate interval between the index test and reference 
standard?’). The nested case–control design was an inclu-
sion criterion, and maternal samples should have been 
collected during pregnancy, that is, before the SGA diag-
nosis. Studies were considered ‘low risk’, for example, (1) 
if pregnancy or neonatal complications were not excluded 
in just one group of participants or data on participant 
selection had been provided; (2) if methods for sample 
preparation and interpretation were standardised or 
metabolite threshold was defined before the experiments 
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Figure 1  PRISMA flow chart of study identification, 
screening and selection. PRISMA, Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses. From Moher D, 
et al24 For more information, visit www.prisma-statement.org.

(for targeted analysis); (3) if the adequacy and reasons 
for choosing the reference birthweight chart had been 
explained; or (4) if large-for-gestational-age babies had 
been excluded from the final comparative analysis.

Data synthesis
A quantitative summary of data was performed when any 
predictive accuracy measures could be extracted. Authors 
were contacted to provide additional information, when 
necessary. However, only Delplancke et al28 replied. The 
estimation of likelihood ratios and hierarchical summary 
receiver operator characteristic curve29 was planned, 
as well as assessment of heterogeneity and publication 
bias.30 However, due to lack of data, a meta-analysis could 
not be performed.

Patient and public involvement
There was no patient or public involvement in conducting 
this systematic review.

Results
Literature search characteristics
The literature search for this systematic review was 
performed in February 2018 and rerun in November 
2018. A total of 9181 references were retrieved (figure 1). 
After the removal of duplicate records (n=273), title and 
abstract screening, and analysis of the remaining 148 
full-text articles, 15 articles were included.17 18 28 31–42 See 
online supplementary material 2 for the excluded studies.

Characteristics of the included studies
The characteristics of the included studies are shown in 
table  1. The prevalence of SGA ranged from 7.3%33 to 
21.5% in cohort studies.28 There were no studies using 
birth weight ≤3rd centile to define SGA. The time interval 

between initial participant enrolment and publication 
varied from 317 to 54 years,40 although these data were 
unclear in 38% of the reports.18 28 32 33 37 In nested case–
control studies, participants were matched by maternal 
age,17 18 38 42 ethnicity,17 18 42 parity,38 body mass index17 18 42 
or infant gender.18 38

Participant characteristics varied between studies. 
Regarding gestational age at assessment, samples 
were collected in the second trimester in half of the 
studies.17 18 33 35 37 39 42 In three reports, women were 
assessed at least twice.34 38 41 In one study, maternal blood 
was drawn either in the first or second trimester,40 and 
in another three studies only samples from the third 
trimester were considered.28 36 41 In the latter case, 
maternal hair was divided according to length, allowing 
evaluation of second-trimester and third-trimester 
metabolites.28 Studies considering the fifth centile as 
the cut-off sampled women in the first trimester.31 32 
Twin pregnancy was a clear exclusion criterion in most 
studies.17 18 31 33–35 37 40–42 Pregnancy aided by assisted 
reproduction18 37 or women with pre-existing condi-
tions17 18 35 37 42 were also excluded, although these data 
were incompletely reported.28 32 36 38 39 41 When both 
nulliparous and multiparous women were enrolled, there 
was no data analysis according to parity. Half of the studies 
considered term deliveries exclusively,18 28 36 38–41 and the 
remaining studies did not differentiate results according 
to gestational age at birth.

Regarding clinical risk factors for SGA, only one 
paper mentioned a history of SGA, but findings were 
not adjusted for this variable.32 All studies, except one,28 
cited participants’ smoking status. The rate of smoking 
habit ranged from 2.4%18 to 47.5%.40 It is important to 
note that Gernand et al40 analysed samples from women 
recruited between 1959 and 1965, when smoking while 
pregnant was encouraged, which explains the high rate 
of smoking participants. The duration of smoking or any 
differences in birth weight (absolute measures or centiles) 
were not clearly stated. Although more prevalent in SGA 
pregnancies, the results did not change with this variable 
control.31 32 35 37 40 Only Gong et al41 mentioned the suspi-
cion of SGA in pregnancy, exhibiting decreasing abdom-
inal circumference growth velocity between 20 and 36 
weeks. However, on final analysis, these babies were 
grouped with infants not suspected during pregnancy.

Subgroup analysis
Due to unavailable data, the only subgroup analysis 
performed was related to the metabolomics approach 
applied (table  2). There was no mention of adherence 
to metabolomics reporting data guidelines. LC-MS was 
the leading technique used. Three studies have investi-
gated metabolites related to environmental exposure, 
from contaminated water,31 consumer products36 or 
pesticides,42 while others have analysed endogenous 
compounds.32–35 37–40 Only Luthra et al38 conducted a 
biomarker validation study, while Gong et al41 chose 
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to analyse the top 10 statistically different metabolites 
according to infant sex.

Maternal blood was the most common biological sample 
analysed by LC-MS in all studies,17 32 34–37 39–41 except for 
one which used GC-MS.39 Maternal urine was analysed by 
NMR,38 GC-MS36 or LC-MS.42 There was only one report 
using amniotic fluid33 and two using maternal hair,18 28 
all applying GC-MS. The period of laboratory analysis was 
rarely specified, which made it impossible to estimate the 
total time of sample storage.

Untargeted studies reported diverse metabolic features. 
Authors matched the peaks with an inhouse library18 28 
or HMDB-related database.17 42 Horgan et al17 found 785 
compounds both in maternal and newborn samples; their 
predictive model included 19 metabolites (only 5 could 
be putatively identified; table  2) and used second-tri-
mester maternal blood. Sulek et al18 and Delplancke et 
al28 prepared and analysed samples with GC-MS using 
similar protocols. Sulek et al18 identified 32 statistically 
different chromatographic features from which they built 
a predictive model using five metabolites, including two 
fatty acids (2-methyloctadecanoate and margarate). In 
contrast, Delplancke et al28 identified 198 metabolites, 
including three fatty acids (margaric, pentadecanoic and 
myristic acid) showing significantly higher levels in SGA 
cases, when second-trimester maternal hair segments 
were studied.

Analysis of identified metabolites
The identified compounds refer to 11 HMDB chemical 
classes. Fatty acids18 28 39 comprised the most prevalent 
chemical class, followed by amino acids18 33 and phos-
phosphingolipids17 (table 3).

A total of 5974 women were assessed for vitamin D status. 
The results were presented as total vitamin D,32 35 37 40 
although vitamin D2, D3 or 3-epi-25(OH)D3

35 metabolites 
were measured. The results were stratified according to 
season of maternal sampling or latitude. Either <15 ng/
mL (<37.5 nmol/L)40 or <20 ng/mL (<50 nmol/L)32 35 37 
levels characterised vitamin D deficiency, but were statis-
tically different in SGA pregnancies only in the first 
trimester.32 Horgan et al17 found a metabolite that could 
represent a vitamin D derivative, but it was only predictive 
in combination with 18 other compounds; this model had 
an area under the curve (AUC) of 0.90 (optimal OR, 44; 
95% CI 9 to 214).17

The second most frequent targeted metabolite was 
homocysteine,33 34 although levels were only differentiated 
between normal and SGA pregnancies when measured in 
second-trimester amniotic fluid, with a multiple linear 
regression model of r2=0.012 and p=0.029.33 Compar-
atively, the only common metabolite in the second-tri-
mester maternal hair was margarate, with conflicting 
results since it was found to be either increased (AUC 0.72, 
95% CI 0.58 to 0.86)28 or decreased.18 The N1,N12-dia-
cetylspermine and the perfluorocarboxylic acids were 
associated with female SGA babies, not males. The 
former presented a fivefold decreased risk of SGA across 
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quintiles. The perfluorodecanoic and perfluoroundeca-
noic acids presented OR of 3.14 (95% CI 1.07 to 9.19) 
and 1.83 (95% CI 1.01 to 3.32).36 Tyrosine, an essential 
amino acid for infants, was part of the predictive model of 
maternal hair, combining five metabolites with an AUC of 
0.998 (95% CI 0.992 to 1.0).18 However, tyrosine did not 
predict SGA when urine samples were studied.38 Methyl-
malonic acid,34 acetate, formate or trimethylamine38 did 
not differentiate SGA when compared with uncompli-
cated pregnancies (p>0.05).

Risk of bias and applicability concerns
Figure 2 shows synthesised data for all included studies. 
See online supplementary material 3 for individual 
QUADAS-2 data.

Regarding the risk of bias, all cohort studies conducted 
a consecutive participant inclusion.28 33–37 39 Nested case–
controls matched cases and controls randomly33–35 41 or 
according to maternal and infant characteristics.17 18 38 42 One 
study41 failed to mention matching procedures (‘Patient 
Selection’ domain). Researchers were not blinded to SGA 
status when interpreting metabolomics results,17 18 28 32 35–41 
and thresholds of targeted metabolites were not prespec-
ified31 33 36 38 39 (‘Index Test’ domain). Conversely, SGA 
identification was not influenced by the metabolomics 
test, although it was unclear when laboratory experiments 
were performed in some studies.18 28 31 33 34 41 Birthweight 
charts were adequate, except for two studies. The first did 
not report which centile was chosen,18 and the second 
used a centile designed for a different population33 
(‘Reference Test’ domain). Two studies were ranked as 
‘high risk’ because not all participants were included in 
the analysis31 37 (‘Flow and Timing’ domain).

The QUADAS-2 tool also highlights the importance 
of how the findings of the included studies are suitable 
to the review question. In the patient selection domain, 
it was ranked as ‘high applicability concerns’ when 
infants born between the 4th and the 10th centile, but 
with normal abdominal circumference growth velocity, 
were not included in the final analysis.41 It was ‘unclear’ 
when the gestational age of maternal assessment was not 
standardised,34 or was inferred by hair segment length,28 
or when few metabolites from untargeted studies were 
chosen for interpretation41 (‘Index Test’ domain). Finally, 
it was ‘high’ when the birthweight charts applied did not 
correspond to the study population18 33 (‘Reference Stan-
dard’ domain).

Meta-analysis
From the 15 included studies, only 3 were designed 
for prediction purposes17 18 42 and provided the AUC. 
The remaining reports described statistical differ-
ences of metabolites between SGA pregnancies and 
controls.28 31–41 Accuracy measures were extracted when 
available (table  2). However, due to marked heteroge-
neity (tables 1 and 2) of gestational age at sampling, type 
of samples used, type of birthweight chart chosen, thresh-
olds for vitamin D deficiency, metabolomics approach 

https://dx.doi.org/10.1136/bmjopen-2019-031238
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Table 3  Predictive metabolites summarised according to their chemical class, subclass and biological process

Predictive metabolites Chemical class Chemical subclass Metabolic pathway

Margarate Fatty acyls Fatty acids and conjugates Lipid transport, metabolism, peroxidation

Pentadecanoic acid Fatty acyls Fatty acids and conjugates Lipid transport, metabolism, peroxidation; 
fatty acid metabolism and biosynthesis

Myristic acid Fatty acyls Fatty acids and conjugates Lipid transport, metabolism, peroxidation; 
fatty acid metabolism and biosynthesis

Eicosatetraenoic acid Fatty acyls Fatty acids and conjugates Lipid transport, metabolism, peroxidation; 
lipid metabolism pathway

Docosapentaenoic acid Fatty acyls Fatty acids and conjugates Lipid transport and metabolism, fatty acid 
metabolism, alpha linolenic acid and linoleic 
acid metabolisms

Tyrosine* Carboxylic acids and 
derivatives

Amino acids, peptides and 
analogues

Catecholamine biosynthesis, phenylalanine 
and tyrosine metabolism, thyroid hormone 
synthesis, transcription and translation

Homocysteine Carboxylic acids and 
derivatives

Amino acids, peptides and 
analogues

Glycine and serine metabolism, methionine 
metabolism

Hexacosanedioic acid Carboxylic acids and 
derivatives

Dicarboxylic acid and 
derivatives

Fatty acid biosynthesis

Sphinganine 1-phosphate Sphingolipids Phosphosphingolipids Sphingolipid signalling pathway, neuroactive 
ligand-receptor interaction

Sphingosine 1-phosphate Sphingolipids Phosphosphingolipids Lipid metabolism pathway, sphingolipid 
metabolism

PFDeA Alkyl halides Alkyl fluorides Not reported†

PFUnDA Alkyl halides Alkyl fluorides Not reported†

25,OH,vitamin D Steroids and steroids 
derivatives

Vitamin D and derivatives Lipid metabolism pathway

Diglyceride Glycerolipids Diradylglycerols Adipocytokine signalling pathway

Lactate Hydroxy acids and 
derivatives

Alpha hydroxy acids and 
derivatives

Gluconeogenesis, glycogenosis types IB and 
IC, pyruvate metabolism, triosephosphate 
isomerase

N1,N12-diacetylspermine Carboximidic acids and 
derivatives

Carboximidic acids  �

Lyso-phosphocholine Glycerophospholipids Glycerophosphocholines Not reported†

2-methyloctadecanoate Saturated hydrocarbons Alkanes Not reported†

Levulinate Keto acids and 
derivatives

Gamma-keto acids and 
derivatives

Not reported†

*Essential amino acid for infants.
†No human metabolic pathways reported at KEGG.
KEGG, Kyoto Encyclopedia of Genes and Genomes; PFDeA, perfluorodecanoic acid; PFUnDA, perfluoroundecanoic acid.

and identified compounds, a meta-analysis could not be 
performed.

Discussion
Main findings
In this first systematic review of metabolomics and adverse 
pregnancy endpoints, we presented techniques and 
metabolites which were studied for the prediction of SGA. 
Any effect on birth weight has important implications for 
perinatal research, since it is related to short-term and 
long-term outcomes,43–46 and in different generations.47 48 
Intrauterine environment influences fetal growth through 

epigenetic processes: altered gene expression potentially 
leads to distinct phenotypes.49 Metabolomics is the most 
adequate approach to study this outcome since it is most 
directly related to phenotype.50

Interpretation of metabolomics findings in pregnancy 
can be challenging. First, maternal metabolite concentra-
tions are influenced by placental transfer to and from the 
fetus. The ‘mirror effect’, seen for maternal plasma and 
venous cord blood metabolites at birth,51 cannot be ruled 
out when only maternal specimens are studied. Second, 
maternal exposure to distinct compounds may affect 
metabolite levels. Statistically significant differences 
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Figure 2  Assessment of risk of bias (A) and applicability 
concerns (B) of individual studies.

between SGA infants and controls may not express the 
totality of underlying pathological pathways and have no 
clinical meaning. Finally, it is unclear when the processes 
leading to SGA are initiated. The disruption in maternal 
metabolism can theoretically occur at any time. In 
general the lower the gestational age at which the condi-
tion is suspected, the more severe the phenotype will 
be at birth.52 53 Thus, the description of clinical data in 
translational studies must deal with all these confounding 
factors.

Gestational age at sampling is probably the most 
important parameter for prediction purposes. With 
timely prediction, women could be referred to special-
ised care and have increased surveillance, and this in turn 
may lead to a reduction in perinatal mortality. There are 
temporal changes in the maternal metabolome during 
pregnancy28 54–57; therefore, it is reasonable to expect 
distinctive metabolites at different stages of pregnancy, 
as reported here. Unfortunately, a wide or unclear defi-
nition of gestational age of sampling34 36 38 40 renders a 
more precise interpretation impossible and may limit the 
clinical application of these results.

In contrast, gestational age at birth and birthweight 
centile seem to be the hallmarks of severity and prognosis 
of growth restriction.6 58 Indeed, term and preterm SGA 
babies show distinct clinical phenotypes, and there are 
concerns that some babies <10th centile of birth weight 
are constitutionally small infants.59–61 If only term deliv-
eries are evaluated, the most severe cases of growth restric-
tion may be potentially missed. Moreover, when term 
and preterm births are analysed together, or when lower 
cut-offs are not specified (eg, ≤3rd or ≤5th centile), the 
lack of predictive metabolites might mean that they are 

distinct conditions. Thus, we hypothesise that the predic-
tive performance of metabolomics may be improved if 
data are analysed by gestational age at delivery and by 
different cut-offs of birthweight centiles.

Evidence suggests that tobacco smoke has an impact on 
birth weight,62–64 although it is uncertain how and when 
fetal growth is impaired. It is possibly related to oxida-
tive stress,65 and both maternal and fetal metabolism may 
be disturbed at delivery.66 67 Studies that were included 
did not investigate cigarette-related chemicals or quantify 
exposure to tobacco smoke. Therefore, no relationship 
between SGA and tobacco was found. Hence, we suggest 
that tobacco interferes with ongoing metabolic patholog-
ical processes, or its disturbance is related to additional 
metabolic pathways other than the one examined by the 
included studies.

Subgroup and metabolite findings
No reports have explored data on any maternal chronic 
condition, suspicion of SGA in pregnancy or number of 
fetuses. The lack of clear statements about participant 
selection has hindered data interpretation and precluded 
these analyses.

The majority of included studies performed a targeted 
approach, that is, a hypothesis-testing evaluation,16 50 
driven by epidemiological or experimental data regarding 
SGA newborns. None of the targeted metabolites31–40 
were in common with those found by ‘hypothesis-gener-
ating’ metabolic profiling17 18 28 41 42 investigations. This 
reinforces the suggestion that various maternal metabolic 
pathways may be triggered by the SGA condition and be 
detected by different biological samples. However, since 
blood is a very complex sample and GC-MS only evaluates 
volatile molecules,50 our findings may be biased by study 
methodologies.

Untargeted studies, as expected, have characterised 
several metabolites that may be validated in future investi-
gations. Nine lipids and fatty acid metabolites,17 18 28 39 two 
amino acids18 33 and a steroid17 32 have been identified as 
potential biomarkers of SGA.

All lipid-related metabolites identified are intermediates 
for energy storage and breakdown. Most metabolites were 
found in maternal blood17 or hair of the SGA group.18 28 
Blood levels of saturated and monounsaturated non-es-
terified fatty acids apparently remain stable throughout 
pregnancy, while long-chain polyunsaturated fatty acid 
(docosahexaenoic acid and eicosapentaenoic acid, for 
example) measurements seem to show ethnicity-related 
changes.57 Experimental data show the importance of 
hypoxia and oxidative stress to placental function, and 
ultimately to birth weight.68 69 Findings from included 
studies may represent a dysregulation of lipid pathways 
at the placental level, but an association with maternal 
background is unclear. Therefore, we hypothesise that 
disorders of lipid metabolism may be the ‘metabolic snap-
shot’ of defective deep placentation70 and might reflect 
maternal efforts to respond to impaired fetal growth.



11Leite DFB, et al. BMJ Open 2019;9:e031238. doi:10.1136/bmjopen-2019-031238

Open access

Recommendations on the assessment of vitamin D 
and cut-offs to define vitamin D deficiency in pregnancy 
are controversial.71 However, vitamin D supplementa-
tion decreases SGA risk.72 In early pregnancy, vitamin 
D status has been related to SGA,73 74 which is in accor-
dance with this review, despite the inconsistent findings.75 
There is evidence that trophoblasts actively produce and 
secrete vitamin D metabolites,76 but it is not clear how 
they mediate fetal growth impairment. Altered hepatic 
gene expression and liver function in vitamin D-deficient 
female rats77 and single nucleotide polymorphisms78 in 
vitamin D receptor gene have been suggested as mech-
anisms to be explored by a multidimensional omics 
approach.

Finally, homocysteine is an intermediate metabolite of 
the folate cycle. It is indirectly involved with DNA methyla-
tion and is a marker of folate deficiency.79 Maternal levels 
rarely reach hyperhomocysteinaemia limits,80 but folate 
depletion81–83 and homocysteine itself80 are thought to be 
associated with a higher SGA risk. In this review, homo-
cysteine was only statistically different in SGA pregnan-
cies when measured in amniotic fluid,33 although within 
the normal ranges proposed for 17–21 weeks.84 Since 
amniocentesis is generally performed in women at higher 
obstetrical risk, future studies should investigate whether 
homocysteine in amniotic fluid represents a confounding 
factor or a new biomarker.85

Methodological quality
Most studies were ranked as ‘low risk’ of bias or applica-
bility to the review question. However, the lack of clear 
descriptions of laboratory experiments, including sample 
preparation and storage, and blinding of the researchers 
to the case/control status are major pitfalls of the 
included studies.

Strengths and limitations
To our knowledge, this is the first systematic review of 
metabolomics and an adverse pregnancy outcome (SGA). 
We presented possible biomarkers of SGA pathophysi-
ology, metabolites implicated in lipid transport and meta-
bolic pathways, as well as gluconeogenesis.

However, this analysis has some limitations. First, 
included studies showed heterogeneity, which is funda-
mental in systematic reviews. Indeed, there was a wide 
variety of participant characteristics and methods used, 
and not all authors provided a detailed description of 
methods employed. Although the Metabolomics Stan-
dards Initiative was released in 2007,86 there is still poor 
adherence to guidelines.87 88 Clear reporting15 87 88 and 
data sharing in repositories are crucial steps in identifying 
features of interest, specifically possible biomarkers to be 
validated in the clinical studies.15 Second, we could not 
perform a meta-analysis of the extracted data, impacting 
the translational potential of metabolomics.

Third, we considered that birth weight was a surrogate 
measure of intrauterine development. SGA and FGR are 
not interchangeable concepts. However, SGA has been 

used as a surrogate for FGR in many clinical studies due 
to difficulties in defining optimal intrauterine growth: (1) 
FGR diagnosis relies mostly on ultrasound measurements 
of fetal biometry,3 89 which in turn is subject to systematic 
errors90; (2) intrauterine development is adaptive, rather 
than uniform91 or only genetically driven49; and (3) growth 
impairment at birth better identifies adverse neonatal 
outcomes than during pregnancy.58 It is recognised that 
changes in obstetric care occur when growth restriction 
is suspected, and neonatal outcomes are improved.21 22 
Thus, an accurate prediction of SGA during pregnancy 
will be a turning point in modern obstetrics.

Conclusions and implications for practice
Using the available clinical tools, efforts to predict SGA 
remain disappointing. Since SGA is a heterogeneous 
condition, it benefits from metabolomics. This novel area 
of research allows analysis of numerous types of biological 
fluids and detects thousands of metabolites in complex 
samples.15 16 25 However, findings of this systematic review 
must be interpreted with caution. The type of samples 
used may have influenced LC-MS (second-trimester 
maternal blood) and GC-MS (second-trimester maternal 
hair) findings in individual studies. Furthermore, the 
prediction of SGA in the context of maternal disorders, 
suspected FGR and twin pregnancies is an open field for 
future metabolomics studies, and environmental expo-
sure investigation as well.

Surprisingly, none of the studies used ≤3rd centile of 
birth weight as a cut-off or analysed preterm deliveries 
and hypertensive syndromes. Considering our findings 
and the different phenotypic manifestations of SGA, we 
envision a better performance when (1) cut-offs other 
than the 10th centile are tested; (2) data on gestational 
age at sampling and at birth are standardised; and (3) 
other pregnancy-related syndromes are considered, espe-
cially hypertension. Thus, future metabolomics results 
should advance in these critical points.

Finally, all detected biomarkers were related to 
lipid pathways and energy metabolism. We consider 
that research efforts to predict SGA should focus on 
compounds involved in these pathways, up to the second 
trimester of pregnancy.
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