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Palmitate impairs circadian transcriptomics in muscle
cells through histone modification of enhancers

Nicolas ) Pillon'®, Laura Sardon Puig? Ali Altintas®®, Prasad G Kamble? Salvador Casani-Galdon®,
Brendan M Gabriel'®, Romain Barrés®, Ana Conesa®, Alexander V Chibalin’®, Erik Naslund®®, Anna Krook’,
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Obesity and elevated circulating lipids may impair metabolism by
disrupting the molecular circadian clock. We tested the hy-
pothesis that lipid overload may interact with the circadian clock
and alter the rhythmicity of gene expression through epigenomic
mechanisms in skeletal muscle. Palmitate reprogrammed the
circadian transcriptome in myotubes without altering the
rhythmic mRNA expression of core clock genes. Genes with en-
hanced cycling in response to palmitate were associated with
post-translational modification of histones. The cycling of his-
tone 3 lysine 27 acetylation (H3K27ac), a marker of active gene
enhancers, was modified by palmitate treatment. Chromatin
immunoprecipitation and sequencing confirmed that palmitate
exposure altered the cycling of DNA regions associated with
H3K27ac. The overlap between mRNA and DNA regions associated
with H3K27ac and the pharmacological inhibition of histone
acetyltransferases revealed novel cycling genes associated with
lipid exposure of primary human myotubes. Palmitate exposure
disrupts transcriptomic rhythmicity and modifies enhancers
through changes in histone H3K27 acetylation in a circadian
manner. Thus, histone acetylation is responsive to lipid overload
and may redirect the circadian chromatin landscape, leading to
the reprogramming of circadian genes and pathways involved in
lipid biosynthesis in skeletal muscle.
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Introduction

Obesity is characterized by increased circulating fatty acids and
lipid accumulation in central and peripheral tissues, with associ-
ated metabolic disturbances and insulin resistance (Kelley et al,
1999). Obesity is also tightly linked to disrupted circadian
rhythms—endogenous 24-h cycles that allow organisms to

anticipate diurnal changes in physiology and behavior (Hsieh et al,
2010; Tahira et al, 2017; Vieira et al, 2014; Sardon Puig et al, 2020).
Circadian misalignment increases circulating levels of glucose, free
fatty acids, and triglycerides (Wefers et al, 2018) and adversely
affects circulating leptin and ghrelin levels (Qian et al, 2019), which
collectively can have deleterious consequences on whole-body
glucose and energy homeostasis.

The disruption of the circadian rhythms in humans by sleep
deprivation or shift work increases the risk of cardiometabolic
diseases, including type 2 diabetes and obesity (van Drongelen
et al, 2011; Rajaratnam et al, 2013; Dominguez et al, 2019). Similarly,
simulated chronic jet lag in mouse models disturbs circadian
rhythms and leads to leptin resistance and obesity (Kettner et al,
2015). Moreover, mice expressing a dysfunctional splice variant of the
core circadian gene Clock are hyperphagic and develop obesity, with
systemic alterations in glucose and energy homeostasis (Turek et al,
2005). Collectively, these results provide evidence to suggest that
crosstalk exists between metabolic health, nutritional status, and
circadian rhythms. Nevertheless, the relationship between biological
clocks and metabolism is complex and bidirectional, and dietary
interventions or metabolic diseases can disrupt circadian rhythms.

Circadian rhythms are controlled by transcriptional regulation
and post-translational modifications (Young, 2018; Kim & Lazar, 2020).
The core clock is composed of cell-autonomous transcription-
translation feedback loops, comprised of a CLOCK:BMAL1 hetero-
dimer that transcribes feedback repressors PER, CRY, and NR1D1
(Young, 2018; Kim & Lazar, 2020). The CLOCK:BMAL1 heterodimer can
also be coupled to epigenomic mechanisms via histone modifiers, with
CLOCK acting as a histone acetyltransferase (HAT), thereby altering
gene expression through post-translational modifications (Naruse
et al, 2004; Doi et al, 2006; Hirayama et al, 2007; Katada & Sassone-
Corsi, 2010; Koike et al, 2012; Aguilar-Arnal et al, 2015). Intimate links
between epigenetic regulation and the circadian clock exist that are
likely to contribute to the plasticity of insulin-sensitive organs and
metabolic control.
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Figure 1. Palmitate alters the pattern of rhythmic transcripts.

(A) Graphic representation of data collection and RNA-seq of synchronized primary human skeletal muscle myotubes (n = 7) treated with palmitate (0.4 mM) or BSA-
vehicle. (B) Proportion of rhythmic genes (RAIN analysis, FDR < 0.1) cycling only in the BSA condition (repressed by palmitate), only in the palmitate condition (enhanced
by palmitate), or in both conditions (unaffected by palmitate). (C) Core clock gene expression in synchronized myotubes. Data are the mean + SE, n = 7.

Circadian transcription is synergistically regulated by different
environmental factors, including energetic states, levels of me-
tabolites, and availability of fuel substrates (Lamia et al, 2009;
Eckel-Mahan et al, 2012; Vollmers et al, 2012; Adamovich et al, 2017,
Krishnaiah et al, 2017: Greco et al, 2020; Manella et al, 2020). Calorie
restriction enhances the amplitude of clock genes and results in an
accumulation of histone acetylation (H3K9/K14 and H3K27) at cir-
cadian hepatic promoters (Sato et al, 2017). Long-term high-fat diets
alter the core clock machinery and clock-controlled genesin mouse
tissues (Feng et al, 2011; Tognini et al, 2017). Thus, dietary factors
reprogram the circadian clock through epigenetic processes,
leading to the circadian dysregulation of metabolic homeostasis
and the onset of metabolic diseases.

Men and women with obesity present altered mRNA expression
of core clock genes in skeletal muscle, blood cells, and visceral
adipose tissue (Tahira et al, 2011; Vieira et al, 2014; Sardon Puig et al,
2020). Moreover, the altered core clock gene expression in skeletal
muscle from men and women with obesity correlates with circulating
fatty acid levels (Sardon Puig et al, 2020). In mouse model, diet-
induced obesity reprograms circadian gene regulation through the
rewiring of lipid metabolic pathways (Eckel-Mahan et al, 2013; Guan
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et al, 2018). Given the link between clock gene expression, lipid
metabolism, and metabolic disease, we tested the hypothesis that
saturated fatty acids may alter the rhythmicity of gene expression in
skeletal muscle. We discovered that the saturated fatty acid pal-
mitate regulates enhancer activity through the regulation of histone
H3 lysine K27 acetylation and alters skeletal muscle circadian
transcriptomics.

Results

Palmitate treatment alters circadian oscillations in primary
human myotubes

Primary skeletal muscle cells were synchronized, treated with
palmitate or BSA-vehicle, and harvested every 6 h (Fig 1A). The RAIN
algorithm was used to determine rhythmic oscillations of genes
and identified 37% of all transcripts as cycling (Fig 1B). Genes cycling
in the control condition, but not after palmitate treatment, were
considered repressed by palmitate and represented 20% of all
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Figure 2. Palmitate alters the pattern of rhythmic transcripts.
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(A) MTT assay to estimate metabolic activity in response to palmitate. Data are the mean * SE, n = 6. (B) Cytotoxicity of palmitate estimated by the release of LDH in the
supernatant of cultured cells. Data are the mean + SE, n = 6. (C) DNA content per well over the 54 h of treatment with palmitate. Data are the mean + SE, n = 7.(D) Differential
expression analysis of rhythmic genes in palmitate-treated myotubes (limma, FDR < 0.1). (E) Gene set enrichment analysis of gene ontology biological processes for
differentially expressed genes. (F) Overlap between genes differentially regulated by palmitate (limma, FDR < 0.1) and genes with cycling repressed or enhanced by

palmitate (RAIN, FDR < 0.1).

transcripts and >50% of cycling transcripts (Fig 1B). Conversely,
genes not cycling in the control condition, but cycling after
palmitate treatment, were induced by palmitate and represented
11% of all transcripts. Genes cycling in both BSA-vehicle- and
palmitate-treated conditions were considered unaffected by
palmitate and only represented 6% of all detected transcripts (Fig
1B). Core clock genes, including BMAL1, CIART, DBP, CRY1, CRY2,
NR1D1, NR1D2, PER1, PER2, and PER3, were unaffected by palmitate
(Fig 1C). Only CLOCK and its paralog NPAS2 were rhythmic in BSA-
vehicle-treated, but not in palmitate-treated, myotubes (Fig 1C).
Thus, palmitate influenced the number of rhythmic genes, with
minimal effect on the mRNA expression of core clock machinery
components.

Lipids impair circadian transcriptomics Pillon et al.

In human primary skeletal muscle cells, the palmitate (0.4 mM)
exposure reduced NAD(P)H oxidoreductase activity (Fig 2A), dem-
onstrating that palmitate induced metabolic stress early, in re-
sponse to treatment. Cell death was not detectable at these early
time points, and the release of LDH into the extracellular milieu was
triggered only after 54 h of palmitate exposure (Fig 2B). Accordingly,
DNA content per well remained constant throughout the experi-
ment (Fig 2C). Collectively, these control experiments provide ev-
idence that cytotoxicity is unlikely to account for the differences in
palmitate-induced transcriptional rhythmicity.

Changes in gene expression after exposure to saturated fatty
acids have been extensively described in multiple model systems
(Georgiadi & Kersten, 2012). To test whether genes where cycling was
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affected by palmitate overlapped with genes where total mRNA
abundance is typically changed in response to fatty acids, we per-
formed a differential expression analysis after blocking for the effect
of time. Changes in total mMRNA abundance after palmitate exposure
were observed in 9% of all transcripts (Fig 2D). Palmitate-responsive
genes were associated with gene ontology pathways related to lipid
metabolism (Fig 2E). Little overlap was observed between genes
differentially expressed and genes with dysregulated cycling (Fig 2F),
suggesting that an alteration in circadian rhythmicity by palmitate
treatment involves mechanisms separate from the canonical lipid
metabolic pathways activated by fatty acids.

Distinct rhythmic gene ontologies in palmitate-treated human
myotubes

Gene ontology overrepresentation analysis for biological processes on
the cycling genes unaffected by palmitate showed an enrichment for
rhythmic processes and circadian regulation (Fig 3A). Most core clock
genes belong to these pathways, confirming the absence of effect of
palmitate on the mRNA cycling of the core clock and suggesting that
palmitate reprograms circadian transcriptome independently of the
core clock machinery. Genes where cycling was repressed by palmitate
were associated with pathways involved in transcription and protein
targeting to membrane (Fig 3A). Genes where cycling was induced in
response to palmitate were annotated to pathways related to post-
translational modifications of histones (Fig 3A).

To explore a potential mechanism for the altered temporal
regulation of transcription, we investigated whether palmitate
treatment altered cyclic histone modifications in synchronized
primary human myotubes. The relative abundance of total histone
H3, total acetylated lysine, and the marker of active enhancers,
histone H3 lysine 27 (H3K27ac), was assessed over a 48-h period in
BSA-vehicle- and palmitate-treated myotubes (Fig 3B). Histone H3
protein abundance was unaffected by time or palmitate treatment,
whereas the acetylation of histone 3 on lysine 27 (H3K27ac) was
affected by palmitate in a time-dependent manner (RAIN, P < 0.05;
Fig 3C). Total lysine acetylation exhibited similar palmitate-affected
rhythms (RAIN, P < 0.05), but this regulation was opposite to that of
H3K27ac (Fig 3D), suggesting palmitate exposure led to a specific
enrichmentin histone H3K27ac over total cellular lysine acetylation.

Dysregulated lipid homeostasis is associated with metabolic
diseases. Individuals with obesity exhibit elevated levels of cir-
culating free fatty acids concomitant with disturbances in circadian
rhythmicity (Sardon Puig et al, 2020). To test whether obesity di-
rectly affects the acetylation of histones in skeletal muscle, the
abundance of H3K27ac was measured in vastus lateralis biopsies
from men with obesity versus normal weight (Fig 3E and F). We
found that the acetylation of H3K27 was unaffected by obesity in
biopsies obtained in the morning after an overnight fast. In publicly
available datasets, gene ontology pathways related to histone
modifications were enriched in skeletal muscle biopsies obtained
from participants before and after a meal rich in saturated fat (Fig
3G). Conversely, pathways related to histone modifications were not
significantly enriched in skeletal muscle obtained from participants
after a meal rich in polyunsaturated fatty acids. In biopsies col-
lected from fasted individuals after 3 d of high-fat feeding or from
individuals with obesity versus normal weight, pathways related to
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histone modifications were not significantly enriched (Fig 3G).
Collectively, these data in human skeletal muscle provide indirect
evidence that changes in histone acetylation may be a conse-
quence of acute fatty acid exposure rather than chronic obesity.

Palmitate attenuates the rhythmic behavior of H3K27-acetylated
regions

Genome-wide analysis of histone H3K27ac was performed by
chromatin immunoprecipitation (ChIP) and sequencing of syn-
chronized primary human muscle cells treated with palmitate or
BSA-vehicle (Fig 4A). We identified more than 127,000 regions with
acetylated peaks that were distributed throughout the genome.
From these, 6,132 regions were annotated to a gene and used for
further analysis. In BSA-vehicle-treated myotubes, we identified
1,018 rhythmic regions, compared with 429 rhythmic regions in
palmitate-treated myotubes (Fig 4B). Acetylation regions were not
only predominant in promoter and transcription starting sites but
also present in exons and gene bodies (Fig 4C).

Like the changes observed in mRNA, regions differentially
acetylated after palmitate treatment were distinct from the regions
with changes in cycling (Fig 4D), suggesting different mechanisms
involved in the regulation of cycling compared with simple mRNA
transcription. These results suggest that the palmitate-induced
acetylation of specific H3K27ac enhancer regions is regulated in
a circadian manner, and this may be responsible for changes in the
rhythmicity of gene expression in response to fatty acids.

Our analysis revealed that palmitate affects the circadian rhythm
of many genes, independent of changes in differential expression.
Furthermore, we provide evidence that palmitate regulates the
acetylation of H3 on lysine 27, a hallmark of enhancers. Thus, we next
identified genes with coincident rhythmic mRNA profiles and en-
hancer regions. Manhattan plots demonstrated that cycling genes
and enhancer regions were distributed across the entire genome,
with no enrichment localized to any specific chromosome (Fig 4E).

Changes in rhythmic acetylation of enhancers affect palmitate-
responsive genes

We identified 52 genes in BSA-vehicle-treated and 12 genes in
palmitate-treated myotubes with cycling at both the mRNA and the
H3K27ac regions (Fig 5A). Of those, only eight genes were also
differentially expressed in myotubes (Fig 5B), confirming that
changes in mRNA rhythms can occur independently of changes in
total mRNA abundance.

HATs have a significant role in the acetylation of histones and
could therefore be responsible for the palmitate-induced changes
in rhythmic transcription. Synchronized myotubes were exposed to
the HAT inhibitor C646 throughout the palmitate treatment (Fig 5C)
to inhibit the acetylation of histone H3K27 (Fig 5D). The mRNA
expression of genes was assessed by quantitative PCR. HAT inhi-
bition differentially altered the mRNA expression of several genes
(Fig 5E-L). ADIPOR2, CLCN6, and NAALAD2 were nominally affected
by HAT inhibition (Fig 5E-G). The overall mRNA expression of MME
and PARD3B was similarly elevated by C646 in both the BSA-
vehicle- and the palmitate-treated myotubes (Fig 5H and ). Con-
versely, mRNA levels of P3H4 and SVIL were decreased by HAT
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Figure 3. Palmitate alters the circadian acetylation of histone H3 on lysine 27.

(A) Gene ontology overrepresentation analysis of biological processes on genes cycling only in BSA-vehicle, only in palmitate, or in both conditions. (B) Immunoblots of
histone 3 acetylation from BSA-vehicle- and palmitate-treated myotubes every 8 h after synchronization. (C, D) Quantification of lysine 27 acetylation and pan-lysine
acetylation. Results are the mean + SEM, n = 6, paired two-way ANOVA (time, palmitate), followed by the pairwise Wilcoxon comparisons. (E, F) Relative abundance of total
histone H3 and histone H3K27ac in skeletal muscle biopsies obtained from men with normal weight (n = 6) or obesity (n = 6). Results are the mean + SEM, n = 6. (G)
Enrichment of pathways related to histone modification in skeletal muscle biopsies collected before and after a saturated fat meal (SFA), a polyunsaturated fat meal
(PUFA), at the fasted state after 3 d of a high-fat diet, or at the fasted state in men with obesity versus normal weight. Data from the publicly available datasets were
processed as described in the Materials and Methods section.
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Figure 4. Palmitate treatment reduces the cycling of H3K27-acetylated regions.

H3K27ac ChIP-seq of synchronized primary human skeletal muscle myotubes (n = 4) treated with palmitate (0.4 mM) or BSA-vehicle. (A) Graphic representation of data
collection. (B) Proportion of rhythmic regions identified (RAIN analysis, FDR < 0.1). (C) Location of acetylated regions in gene body, transcription starting site, exons, or promoter
regions of their associated genes. (D) Differential acetylation analysis compared with regions cycling in BSA-vehicle- or palmitate-treated myotubes. (E) Manhattan plot of
cycling genes and regions associated with H3K27ac. From top to bottom: cycling H3K27ac in BSA-vehicle, cycling H3K27ac in palmitate, mRNA cycling in BSA-vehicle,and mRNA
cycling in palmitate. Grey areas highlight regions of the genome with cycling at both mRNA and H3K27ac in either BSA-vehicle or palmitate.

inhibition, without any significant difference between BSA-
vehicle- and palmitate-treated myotubes (Fig 5] and K). HAT
inhibition slightly reduced the effect of palmitate on the mRNA
expression of IDI1 (Fig 5L), with the strongest effect observed
36 h after synchronization. Collectively, these changes in mRNA
demonstrate that HAT inhibition has wide, diverse, and selective
effects on the expression of genes, suggesting complex inter-
actions between histone acetylation and the response to fatty
acids.

Lipids impair circadian transcriptomics Pillon et al.

Inhibition of histone acetylation prevents palmitate-induced
activation of lipid biosynthesis pathways

PARD3B and P3H4 are associated with body fat, and CLCNG6 is as-
sociated with low-density lipoprotein cholesterol in GWAS (Buniello
et al, 2019). ADIPOR2 signals to PPARA activity to increase fatty acid
oxidation, whereas IDI1 is involved in cholesterol synthesis. The
overlap between our results generated by RNA-seq and H3K27ac-
ChlIP-seq suggests that HAT inhibition may regulate lipid-related
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Figure 5. Changes in enhancer rhythmic acetylation and rhythmic transcriptomics in myotubes.

(A) Overlap between rhythmic genes (RNA-seq, FDR < 0.05) and genes associated with rhythmic regions (H3K27ac ChIP-seq, FDR < 0.05) in BSA-vehicle-treated (blue) and
palmitate-treated (pink) myotubes. (B) Genes with both cycling mRNA and H3K27ac-associated regions and differentially expressed in myotubes. (C) Graphic
representation of data collection. (D) Efficiency of inhibition of histone 3 lysine 27 acetylation by the histone acetyltransferase inhibitor C646. Representative blots and
quantification (n = 2). (E, F, G, H, 1, J, K, L) mRNA expression of cycling genes identified as regulated by palmitate in panel (B). Data are the mean + SEM, n = 8; results of a
three-way ANOVA (palmitate, C646, time) are presented under the gene names.

pathways in response to fatty acid exposure. Palmitate exposure also increased the mRNA expression of pyruvate dehydrogenase
increased the mRNA expression of multiple genes involved in lipid kinase 4 (PDK4; Fig 6F). However, HAT inhibition prevented the effect
biosynthetic pathways, including lipid transporter (CD36; Fig 6A), of palmitate on the mRNA expression of only two enzymes, namely,
fatty acid synthase (FASN; Fig 6B), fatty acid desaturases (FADS1/2; lipid acetyl-CoA carboxylase (ACACA; Fig 6G) and 3-hydroxy-3-
Fig 6C and D), and stearoyl-CoA desaturase (SCD; Fig 6E). Palmitate methylglutaryl-CoA reductase (HGMCR; Fig 6H). Because these
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Figure 6. Inhibition of histone acetyltransferases affects the mRNA expression of palmitate-responsive genes.

(A, B, C, D, E, F, G, H) mRNA expression of genes involved in lipid uptake and synthesis. Data are the mean + SEM, n = 8; results of a three-way ANOVA (palmitate, C646,
time) are presented under the gene names. (I) Schematic representation of genes affected by palmitate and the HAT inhibitor C646. Created with BioRender.com.

enzymes are rate-limiting for lipid and cholesterol synthesis
pathways, respectively, this suggests that the palmitate-induced
acetylation of histones could have major effects on lipid biosyn-
thesis (Fig 61).

Discussion

Acute saturated fatty acid exposure disrupts rhythmic gene ex-
pression in skeletal muscle (Sardon Puig et al, 2020), consistent
with fatty acid-induced clock disturbances in liver and adipose
tissues (Vieira et al, 2014; Tal et al, 2019b). Here, we show that the
saturated fatty acid palmitate triggers transcriptomic and epi-
genomic changes in skeletal muscle cells that involve alterations in
the histone acetylation and activation of enhancers, leading to the

Lipids impair circadian transcriptomics Pillon et al.

disruption of circadian gene expression. Palmitate treatment re-
pressed the rhythmicity of genes involved in protein translation
and transport, and enhanced the rhythmicity of genes involved in
histone modifications. Palmitate changed the rhythmicity of en-
hancers via the modification of histone H3K27ac, leading to changes
in the circadian rhythmicity of selective subsets of genes. Our
findings provide insight into mechanisms by which saturated fatty
acids alter metabolic homeostasis via circadian misalignment.
Long-term palmitate exposure has cytotoxic effects and in-
duces insulin resistance (Makinen et al, 2017; Pillon et al, 2018).
These disturbances coincide with changes in transcription and
altered lipid metabolism (Dimopoulos et al, 2006; Hall et al, 2014;
Tal et al, 2019b). Increased fatty acid levels promote lipid oxi-
dation, which is the primary contributor to the global acetyl-CoA
pool (McDonnell et al, 2016). Increased acetyl-CoA levels promote
histone acetylation (McDonnell et al, 2016), one of the most
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prominent marks leading to the activation of gene expression
(Kim & Lazar, 2020). Here, we demonstrate that in myotubes,
palmitate treatment decreased total lysine acetylation, con-
comitant with changes in rhythmicity and increased histone
H3K27ac. Thus, acute exposure to saturated fatty acids imparts
post-transcriptional modifications to histone proteins, supporting
emerging evidence for lipid-induced epigenomic control of genes
important for homeostatic/lipotoxic programs (Yoon et al, 2021).

HATs and histone deacetylases are enzymes that regulate the
lysine acetylation of proteins, in particular, histones. HATs are
linked to the circadian control of metabolism (Kim & Lazar, 2020).
We found that HAT inhibition alters palmitate-induced changes in
the rhythmic expression of genes related to lipid biogenesis, in-
dicating that the modification of histone acetylation by saturated
fatty acids affects the transcriptomic regulation of selective subsets
of genes. Several metabolic sensors act as intermediates to couple
circadian rhythms and metabolism. Sirtuins (SIRTs) are NAD"-de-
pendent histone deacetylases that sense cellular energy meta-
bolism and whose activity follows a circadian pattern (Nakahata
et al, 2008). Components of the core clock machinery, CLOCK:BMALT,
coexist with SIRTT in a chromatin regulatory complex (Nakahata
et al, 2008). CLOCK can act as a HAT, with specificity for histones H3
and Hz (Doi et al, 2006), and interact with SIRT1 to regulate the
acetylation and deacetylation of BMALT, respectively, which is es-
sential for the circadian regulation of gene expression (Hirayama
et al, 2007). In hepatocytes and adipocytes, palmitate exposure
disrupts circadian gene oscillations by preventing BMAL1 deace-
tylation and activation and interfering with the CLOCK:BMALT1 in-
teraction (Tong et al, 2015; Tal et al, 2019a, 2019b). Thus, palmitate
may alter NAD" levels, SIRT1 activity, and CLOCK:BMAL1 action, which
may consequently alter histone H3K27ac. Fluctuations of NAD"
levels are linked to peripheral clocks (Nakahata et al, 2009; Ramsey
et al, 2009; Peek et al, 2013). The extent to which other metabolites
and co-factors fluctuate throughout the day to maintain metabolic
homeostasis is an emerging topic of research. Nutrient overload
associated with high-fat feeding alters tissue-specific metabolomic
profiles and leads to circadian misalignment (Dyar et al, 2018).
Exercise and nutritional state at different times of the day also
influence tissue-specific metabolomic profiles and enrichment of
H3K9ac and H3K27ac target genes within myotubes, suggesting that
epigenetic modifications of chromatin are influenced by energetic
states and fuel substrates (Sato et al, 2019). The nature of the
palmitate-induced intercellular metabolite that governs the epi-
genetic control of the clock machinery requires further interro-
gation. Nevertheless, our results have physiological implications by
linking an oversupply of nutrients in the form of saturated fatty
acids to the circadian machinery and the control of metabolism.

We observed circadian oscillations in the levels of histone
H3K27ac in primary human muscle cells, supporting the notion that
histone modifications are under circadian regulation (Feng et al,
2011; Koike et al, 2012; Sato et al, 2017; Kim et al, 2018). Palmitate
treatment altered global H3K27ac levels, consistent with evidence
that palmitate acetylates enhancer regions regulating lipid meta-
bolism in skeletal muscle and liver cells (Nammo et al, 2018;
Williams et al, 2020). Changes in histone H3 acetylation are an
underlying mechanism regulating rhythmic transcriptional activity
in mouse liver (Etchegaray et al, 2003). However, histone
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acetylation and specifically histone H3K27ac are likely accompanied
by parallel changes in other covalent modifications that also
regulate transcription (Orphanides & Reinberg, 2002). Changes in
other histone marks, DNA methylation, mRNA stability, and/or post-
transcriptional RNA processing, may also contribute to the tran-
script oscillations, even in the absence of enhancer regulation.

Our finding that palmitate treatment increased H3K27ac in
cultured myotubes suggests that an acute elevation in circulating
lipids may be a contributing factor to this histone modification.
Changes in histone H3K27ac in skeletal muscle have been described
in the context of aging, with an increased expression of genes
regulating extracellular matrix structure and organizations (Zhou
et al, 2019). We found histone H3K27ac was associated with changes
in genes involved in fatty acid metabolism, consistent with earlier
reports in the pancreas and colon of diet-induced obese mice (Li
et al, 2014; Nammo et al, 2018). Conversely, histone H3K27ac was
unaltered in skeletal muscle of men with obesity as compared to
normal weight. Because the biopsies were taken in the morning, we
cannot exclude the possibility that diurnal signaling of histone
H3K27ac may differ between the groups. The biopsies were also
taken in fasted individuals, and given that histone acetylation is
transiently induced by fatty acids, our results may differ in fed
individuals or in those after a high-fat meal. Nevertheless, our data
suggest that lipid-induced changes, rather than obesity per se, may
directly contribute to the metabolic dysregulation of histone
H3K27ac observed in skeletal muscle.

In summary, the saturated fatty acid palmitate disrupts circadian
transcriptomics in primary human myotubes. Our results provide a
link between nutrient overload, disruptions of circadian rhythms,
and metabolic pathways. Increased histone H3K27ac in palmitate-
treated primary human myotubes suggests a specific role for this
epigenetic mark in the transcriptional changes that occur in pe-
ripheral tissues in response to lipid overload. The disruption of
circadian rhythms in skeletal muscle because of lipid overload may
lead to epigenomic changes that influence metabolism. Thus, a
dietary or therapeutic modulation of lipid levels, a cornerstone in
the treatment of metabolic disorders, may prevent circadian
misalignment in peripheral tissues.

Materials and Methods
Subjects

V. lateralis muscle biopsies were obtained from seven healthy men
to establish primary skeletal muscle cell cultures to determine the
effects of palmitate on circadian transcriptomics, histone H3
protein abundance, and histone H3 lysine 27 acetylation (H3K27ac).
V. lateralis muscle biopsies were obtained from a cohort of men
with normal weight (n = 6) or obesity (n = 6), and a portion of the
biopsy was processed for immunoblot analysis of H3 protein
abundance and H3K27ac. Biopsies were collected in the morning
after an overnight fast. Clinical characteristics of men with normal
weight or obesity are presented in Table 1. Studies were approved
by the regional ethics committee of Stockholm and conducted in
accordance with the Declaration of Helsinki (2012/1955-31/1, 2013/
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Table 1. Clinical characteristics of the study participants.

Normal weight (men [n = 6])

Obesity (men [n = 6])

Age (yr) 53 +3 48 + 2
Body weight (kg) 798 + 2.4 1033 + 1.5*
BMI (kg/m?) 242+ 02 319 + 0.6*
fP-glucose (mmol/l) 54+ 0.1 55+ 03
fP-insulin (pmol/L) 39.0 + 6.5 116.3 + 24.5*
HOMA-IR 1402 44 +12*
HbA1c (mmol/mol) 357 + 14 33.0+27
fP-cholesterol (mmol/L)

Total 49+ 0.2 52+ 0.4

LDL 33+02 29+ 05

HDL 13+ 0.1 16 + 03
fP-triglycerides (mmol/l) 09+ 0.1 1.8 + 0.3*

Results are the mean + SEM for normal-weight men and men with obesity. Differences between normal-weight men and men with obesity were determined

using an unpaired t test. *P < 0.05 versus normal weight.

647-31/3, 2012/1047-31/2, and 2016/355-31/4). Participants gave
informed consent before enrolment.

Primary human skeletal muscle cell cultures

Primary myoblasts were grown in DMEM/F12+GlutaMAX with 16%
FBS and 1% Antibiotic-Antimycotic. Cells were regularly tested for
mycoplasma contamination by PCR. At 80% confluence, myoblasts
were differentiated into myotubes by culturing in a fusion medium
consisting of 76% DMEM and GlutaMAX with 25 mM glucose, 20%
M199 (5.5 mM), 2% Hepes, and 1% Antibiotic-Antimycotic (100x), with
0.03 pg/ml zinc sulfate and 1.4 mg/ml vitamin B12. Apo-transferrin
(100 pg/ml) and insulin (0.286 1U/ml) were added to the fusion
medium. After 4-5 d, the medium was switched to the same medium
without apo-transferrin or insulin, with 2% FBS (post-fusion media),
and the cultures were continued for 3-5 d.

Palmitate treatment

Palmitate stock solution (200 mM) (C16, P9767; Sigma-Aldrich) was
prepared in 50% ethanol and then diluted 25 times in a 10.5% BSA
solution. BSA (A8806; Sigma-Aldrich) in serum-free essential
a-medium was used as a carrier and control. Myotubes were
incubated in 5.5 mM glucose media for 22 h before the experi-
ments. Myotubes were synchronized by serum shock (50% FBS,
2 h), washed with PBS, and incubated in a 5.5 mM glucose medium
containing palmitate (0.4 mM) or BSA (vehicle). Cultures were
collected every 6 h for mRNA analysis and every 8 h for DNA
and immunoblot analyses, starting from 12 to 54 h after
synchronization.

Cell viability
The viability of the cells was tested after synchronization and

exposure to palmitate. NAD(P)H oxidoreductase activity was
measured using the MTT assay. Skeletal muscle cells were exposed
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to palmitate and incubated with 0.5 mg/ml thiazolyl blue tetra-
zolium bromide diluted in a culture medium. After 1.5 h, the medium
was removed, and formazan crystals were dissolved with DMSO.
Absorbance was read at 550 using a microplate reader. Lactate
dehydrogenase activity in the supernatant from the cells was
measured using the Cytotoxicity Detection Kit (Roche) according to
the manufacturer's instructions. LDH activity was normalized to the
total LDH activity obtained after permeabilizing cells with 0.1%
Triton X-100. DNA was extracted using the E.Z.N.A. tissue extraction
kit following the manufacturer’'s instructions, and DNA concen-
tration was measured with a NanoDrop 1000 spectrophotometer
(Thermo Fisher Scientific).

Immunoblot analysis

Myotube cultures were lysed in ice-cold buffer A (1% protease
inhibitor cocktail, 137 mmol/l NaCl, 2.7 mM KCl, T mM MgCl,, 5 mM
Na,P,07 0.5 mM NasVO,, 1% Triton X-100, 10% glycerol, 20 mM Tris,
10 mM NaF, 1 mM EDTA, and 0.2 mM phenylmethylsulfonyl fluoride,
pH 7.8), followed by end-over-end rotation for 60 min (4°C) and
centrifugation at 12,000g for 15 min (4°C). Skeletal muscle biopsies
were pulverized in liquid nitrogen and lysed in homogenization
buffer A supplemented with 0.5% of NP-40 and 0.02% of SDS, fol-
lowed by end-over-end rotation for 60 min (4°C) and centrifugation
at 3,000g for 10 min (4°C). Protein concentration was determined
using a Pierce BCA protein assay kit (#23225; Thermo Fisher Sci-
entific). Samples were prepared for SDS-PAGE with Laemmli buffer,
separated on Criterion XT Bis-Tris 4-12% gradient gels (Bio-Rad),
and transferred to PVDF membranes (Merck). Ponceau staining was
performed, and the results were normalized to the total amount of
protein per lane. Western blot was performed using primary an-
tibodies (1:1,000 concentration) in TBS containing 0.1% BSA and
0.1% NaNs. Antibodies for acetyl-histone H3 lysine 27 (#8173),
acetylated lysine (#9441), and histone H3 (#4499) were from Cell
Signaling Technology. Mouse monoclonal GAPDH (#sc-47724; Santa
Cruz Biotechnology) and rabbit monoclonal B-tubulin (#2128; Cell
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Signaling Technology) were used as a loading control. The acetyl-
histone H3 lysine 27 (#8173) antibody was validated in primary human
skeletal muscle cells using the histone acetyltransferase inhibitor C646
(Fig 5D). Species-appropriate horseradish peroxidase-conjugated
secondary antibodies were used at a concentration of 1:25,000 in 5%
skimmed milk in TBS-Tween. Proteins were visualized by chem-
iluminescence (#RPN2232 ECL and #RPN2235 ECL Select Western
Blotting Detection Reagent; GE Healthcare) and quantified using the
Image Lab software, v. 5.2.1 (Bio-Rad).

RNA extraction and RNA sequencing

RNA sequencing from myotube cultures was performed as de-
scribed (Gabriel et al, 2021). Briefly, RNA was extracted with TRIzol
Reagent and miRNeasy kit (Cat #217004; Qiagen) and processed
using the Illumina TruSeq Stranded Total RNA with Ribo-Zero Gold
protocol (Illumina). Ribosomal RNA was removed, and an RNA
sample was fragmented and subjected to first-strand cDNA syn-
thesis. cDNA was subjected to AMPure beads (Beckman Coulter) and
adenylated to prime for adapter ligation followed by PCR ampli-
fication. Single-end sequencing was performed on the X Ten
platform (Illumina) at the Beijing Genomics Institute (BGI). RNA-seq
reads (7 = 38.5 M) from FASTQ files were quality-trimmed using
Trim_Galore (v0.43) and aligned using STAR (v2.5.3a) (Dobin et al,
2013) with Ensembl human annotation (GRCh38, release 92). Gene
features were counted using featureCounts (Liao et al, 2014) from
the subread (v1.5.2) package and analyzed with edgeR (Robinson
et al, 2010). The logCPM (count per million) values for each gene
were calculated using the limma'’s voom function while correcting
for batch effect from participants using the duplicateCorrelation
function (Ritchie et al, 2015). For the time series data, each gene was
normalized using the “scale” function in R. For each gene, data were
centered by subtracting the mean value for that gene and scaling
was done by dividing the centered data by the SD.

Acetylated H3K27 chromatin immunoprecipitation and
sequencing (ChIP-seq)

Acetylated H3K27 ChIP-sequencing was performed as described
(Williams et al, 2020). Myotubes were cross-linked in 1% formal-
dehyde in PBS for 10 min at room temperature followed by
quenching with glycine (0.125 M). Cells were washed with PBS and
harvested in 1 ml SDS buffer (50 mM Tris—HCl [pH 8], 100 mM NaCl, 5
mM EDTA [pH 8.0], 02% NaNs, 05% SDS, and 0.5 mM phenyl-
methylsulfonyl fluoride) and subjected to centrifugation (6 min at
2509). Pelleted nuclei were lysed in 1.5 ml ice-cold IP buffer (67 mm
Tris—=HCL [pH 8], 100 mM NaCl, 5 mM EDTA [pH 8.0], 0.2% NaNs, 0.33%
SDS, 1.67% Triton X-100, and 0.5 mM phenylmethylsulfonyl fluoride)
and sonicated (Diagenode’s Bioruptor) to an average length of
200-500 bp. Before starting the ChIP experiment, chromatin was
cleared by centrifugation for 30 min at 20,000g. For each ChIP, 2-10
ug DNA was combined with 2.5 pg antibody for H3K27ac (Ab4729)
and incubated with rotation at 4°C for 16 h. Immunoprecip-
itation was performed by incubation with Protein G-Sepharose
beads (GE Healthcare) for &4 h followed by three washes with low-
salt buffer (20 mM Tris—HCL [pH 8.0], 2 mM EDTA [pH 8.0], 1% Triton
X-100, 0.1% SDS, and 150 mM NaCl) and two washes with high-salt
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buffer (20 mM Tris—HCl [pH 8.0], 2 mM EDTA [pH 8.0], 1% Triton X-100,
0.1% SDS, and 500 mM NaCl). Chromatin was de-cross-linked in 120
ul of 1% SDS and 0.1 M NaHCO; for 6 h at 65°C, and DNA was
subsequently purified using the Qiagen MinElute PCR purification
kit. For library preparation and sequencing, 3-10 ng of immuno-
precipitated DNA was used to generate adapter-ligated DNA li-
braries using the NEBNext Ultra DNA library kit for Illumina (E7370L;
New England Biolabs) and indexed multiplex primers for Illumina
sequencing (E7335; New England Biolabs). The PCR cycle number for
each library amplification was optimized by running 10% of the
library DNA in a real-time PCR using Brilliant Il Ultra-Fast SYBR
Green gPCR Master Mix (AH Diagnostic) and a C1000 thermal cycler
(Bio-Rad). DNA libraries were sequenced on HiSeq 2000 by 50-bp
single-end sequencing at the National High-Throughput Se-
quencing Centre (University of Copenhagen).

Processing of H3K27ac ChiP-seq data

The quality of H3K27ac ChIP-seq samples was assessed using the
FastQC software. One sample was of poor quality and had to be
excluded. Quality was trimmed with Trimmomatic (v0.32) (Bolger
et al, 2014) on the same parameters to clip adapters to remove low-
quality sequences using a minimum quality of 30, a sliding window
of 5,and a minimum length of 40 bp. Reads were mapped to Homo
sapiens reference genome using the Bowtie2 (v2.3.2-foss-2016b)
aligner (Langmead & Salzberg, 2012). Duplicate removal was per-
formed using SAMtools (v1.5-foss-2016b) (Li et al, 2009), and then,
BAM files were subjected to peak count using the MACS2 software
(v2.1.0) (zZhang et al, 2008) for broad peaks using a g-value of 0.01and
a shift of 147 bp. Called peaks were quantified with featureCounts
(v1.6.3) (Liao et al, 2014) and associated with closest genes using the
RGmatch software (Furio-Tari et al, 2016), mapping regions to
the transcriptomic start site and the promoter of the first exon. The
resulting peak matrix was Reads Per Kilobase of transcript, per
Million mapped reads (RPKM) normalized and batch-corrected using
ComBat (Johnson et al, 2007) to correct for sequencing lane bias.

Bioinformatics analysis

Time series samples were analyzed with the R package RAIN
(Thaben & Westermark, 2014) to capture the rhythmic oscillations
and determine peak times of the gene expression and acetylated
regions. Rhythmicity was determined based on a 24-h longitudinal
period. Genes and H3K27-acetylated regions were considered
rhythmic when FDR < 0.1. The limma R package (Ritchie et al, 2015)
was used to determine differential gene expression and histone
acetylation. The effect of time was blocked using a linear function to
study the independent effect of palmitate. The effect of palmitate
and obesity was considered significant when FDR < 0.1. An en-
richment of functional clusters was performed on significant genes
(FDR < 0.1) using clusterProfiler (Yu et al, 2012). Results of the
analyses are available in Supplemental Data 1.

Quantitative PCR

Cultured muscle cells were lysed, and RNA was extracted using the
E.Z.N.A. Total RNA Kit (Omega Bio-Tek Inc.). All equipment, software,
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and reagents for performing the reverse transcription and gPCR
were from Thermo Fisher Scientific. cDNA synthesis was performed
from ~0.5 pug of RNA using the High Capacity cDNA Reverse Tran-
scription kit (Thermo Fisher Scientific). qPCR was performed on a
ViiA7 system with TagMan Fast Universal PCR Master Mix and
predesigned TagMan probes (Thermo Fisher Scientific).

Publicly available datasets

The GEO repository was used to download transcriptomic data from
biopsies obtained from men before or after a high-fat meal
(GSE31901), from men before or after 3 d of a high-fat diet (GSE68231),
or from men with obesity versus normal weight (GSE25462, GSE43760,
GSE73034, and GSE73078). For the datasets comparing individuals
with obesity versus normal weight, only men with either BMI < 25
(healthy) or BMI > 30 (obesity) were selected to enable comparisons
with the other studies. In studies assessing the effects of high-fat
feeding and obesity, skeletal muscle biopsies were collected after an
overnight fast. All studies were processed with similar pipelines using
the oligo package in R v4.2.0. Gene ontology pathway enrichment was
performed using clusterProfiler (Yu et al, 2012) on the top 2,000 genes
in each study, ranked on FDR.

Statistics

Statistical analyses were performed using the R version 4.2.0. Nor-
mality was tested using Shapiro-Wilk's normality test and equality of
variances tested with Levene’s test. The Tukey transformation was
used when required to run two-way and three-way ANOVA to de-
termine the overall effect of palmitate, time, and inhibitor in Western
blot and qPCR data. An unpaired t test was performed to determine
the effect of obesity on total histone H3 and histone H3K27ac in
skeletal muscle biopsies. P < 0.05 was considered significant.

Data Availability

The raw and processed files for the RNA-seq and the ChIP-seq
experiments have been deposited in the GEO repository under
accession numbers GSE205424 and GSE205677.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202201598
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