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Abstract: Apart from its classical function in bone and calcium metabolism, vitamin D is
also involved in immune regulation and has been linked to various cancers, immune disorders
and allergic diseases. Within the innate and adaptive immune systems, the vitamin D
receptor and enzymes in monocytes, dendritic cells, epithelial cells, T lymphocytes
and B lymphocytes mediate the immune modulatory actions of vitamin D. Vitamin D
insufficiency/deficiency early in life has been identified as one of the risk factors for food
allergy. Several studies have observed an association between increasing latitude and food
allergy prevalence, plausibly linked to lower ultraviolet radiation (UVR) exposure and
vitamin D synthesis in the skin. Along with mounting epidemiological evidence of a link
between vitamin D status and food allergy, mice and human studies have shed light on
the modulatory properties of vitamin D on the innate and adaptive immune systems. This
review will summarize the literature on the metabolism and immune modulatory properties
of vitamin D, with particular reference to food allergy.
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1. Introduction

Classically notable for its effects on calcium metabolism and bone mineralisation, vitamin D
is now recognised to have protean effects, including on the immune system. The immunological
significance of vitamin D was first recognised when the vitamin D receptor (VDR) was identified in
lymphocytes [1,2]. Vitamin D deficiency has been associated with various immune diseases, including
allergic [3,4] and autoimmune diseases [5,6]. In particular, an increase in the population prevalence of
vitamin D insufficiency has been observed in parallel with an increase in food allergy [7]. Food allergy
has been associated with indicators of vitamin D insufficiency, in particular vitamin D synthesis in the
skin and increasing latitude, which may be due to lower UV exposure [8,9]. Additionally, findings from
our HealthNuts study, a population-based study of food allergy in Melbourne infants, suggest a potential
role of vitamin D insufficiency at 12 months of age in the development of food allergy [7]. However, the
biological mechanisms underlying these epidemiological associations remain unclear, and some research
has suggested that vitamin D excess may also increase the risk of abnormal immune responses and
an increased risk of food allergy [10].

The VDR regulates the actions of immune cells, such as monocytes, dendritic cells (DCs), T and B
cells, in an interplay between the innate and adaptive immune systems [11–14]. As the first barrier of
defence, the innate immune system protects against invading microorganisms [15]. Several mechanisms
have been postulated for the effects of vitamin D on the innate and adaptive immune system—to reduce
inflammation, promote immune tolerance and enhance gut epithelial integrity—but the mechanisms by
which vitamin D may influence the risk of food allergy are not clear. In this review, the metabolism of
vitamin D and its immune modulatory properties in relation to food allergy will be summarised.

2. Regulation and Metabolism of 1,25(OH)2D

vitamin D is a fat-soluble vitamin that can be acquired through dietary sources, although most
is produced in the skin following sunlight exposure. Vitamin D is the general term encompassing
both vitamin D2 and D3. Vitamin D2, also known as ergocalciferol, is produced when ultraviolet
light, in particular the UVB band of sunlight, acts on ergosterol, which is found mainly in yeast and
plants [16,17]. On the other hand, vitamin D3, cholecalciferol, is formed when 7-dehydrocholesterol
found in the skin absorbs the UVB radiation [16,18]. Both vitamin D2 and D3 generally undergo the same
processes to form calcitriol (1,25(OH)2D). However, due to differences in their chemical structures, there
are minor differences in the types of metabolites produced and the sites of hydroxylation [19]. Studies
have shown that vitamin D binding protein (VDBP) has a higher affinity for vitamin D3 than D2 [20].
This results in vitamin D3 having a longer half-life and being more potent than D2 [21–23]. In this
section, the metabolic processes will be generalised to include both forms of vitamin D.
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2.1. Renal Synthesis of 1,25(OH)2D

Sterol 27-hydroxylase (CYP27A1) and vitamin D 25-hydroxylase (CYP2R1), two cytochromes
expressed in the liver, hydroxylate vitamin D to 25-hydroxyvitamin D (25(OH)D) [24]. Other
cytochrome P450 vitamin D 25 hydroxylases, such as CYP3A4 [25–27] and CYP2J2 [28], have also
been shown to have some 25 hydroxylase activity. In the kidney, 25(OH)D then undergoes further
hydroxylation by 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1) to produce the biologically-active
form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D) (Figure 1). Vitamin D and its plasma
metabolites are mostly transported by VDBP (encoded by the GC gene), with a smaller percentage
bound to albumin [29]. On reaching the target cells, 1,25(OH)2D dissociates from the VDBP, diffuses
into the cell and binds to the nuclear VDR to initiate gene transcription [30–33]. It is worth noting
that the VDBPs do not actually facilitate 1,25(OH)2D entry into the cell [34]. Finally, 25(OH)D and
1,25(OH)2D may be metabolically inactivated through hydroxylation by 24-hydroxylase (CYP24A1),
hence limiting its availability [35,36].

Renal production of 1,25(OH)2D is tightly regulated by a feedback loop at the cellular level, primarily
through the actions of parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF-23) (Figure 1).
In response to low circulating calcium levels, PTH is secreted by the parathyroid gland to stimulate
CYP27B1 production by primary renal tubules [36–38]. As renal production of 1,25(OH)2D increases,
VDR binds to CYP27B1 promoter to repress its expression and, thereby, production of 1,25(OH)2D.
1,25(OH)2D increases the uptake of calcium and inhibits production and secretion of PTH [38].

While PTH is essential in maintaining blood calcium levels, FGF-23 plays a role in mineral
homeostasis determined by genes regulating serum phosphate and vitamin D metabolism. Increased
serum phosphate induces a marked increase in FGF-23 expression and FGF-23 secretion by
bone cells [39]. Concurrently, FGF-23 action reduces renal expression of CYP27B1, leading to
decreased serum 1,25(OH)2D [40]. FGF-23 negatively regulates CYP27B1 activity together with the
transmembrane protein Klotho, which acts as a co-receptor essential for the activation of FGF signaling
by FGF-23 [38–40]. Renal 1,25(OH)2D concentrations are thus tightly regulated by a network of
feedback loops, which includes the inhibition of CYP27B1 by FGF-23/Klotho, activation of CYP27B1
by low circulating calcium and increased PTH secretion and activation of CYP24A1 to initiate
degradation of metabolites [12,32,37,41,42].

2.2. Extra-Renal Synthesis of 1,25(OH)2D

Extra-renal synthesis of 1,25(OH)2D is present in many tissues, such as parathyroid glands,
keratinocytes and immune cells [37,38]. For example, CYP27B1 is expressed in T cells [43], activated
macrophages and DCs [43–45], allowing the formation of 1,25(OH)2D in the immune cells. Unlike in
the kidney, regulation of extra-renal CYP27B1 is generally under the control of immune stimuli and
not by the classical feedback loop involving PTH and FGF-23 [13,38,46]. In macrophages, CYP27B1
is induced after Toll-like receptor (TLR) ligation or stimulation by interferon-γ (IFN-γ) [37,45,47].
CYP24A1 is transcribed as an enzymatically-inactive splice variant, which prevents the breakdown
of 25(OH)D and 1,25(OH)2D [48,49]. As a result, overexpression of unregulated CYP27B1 in
macrophages may potentially lead to excessive 1,25(OH)2D production, contributing to pathological
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diseases, such as sarcoidosis [49,50]. Sites of extra-hepatic 25-hydroxylase activity have also been
reported [51], with the detection of CYP27 mRNA in the bone [52] and white blood cells [53,54]. Novel
extra-hepatic P450 enzymes, such as CYP2S1 and CYP2U1, have also been identified [55].

2.3. Genomic and Non-Genomic (Rapid) Signaling

Binding of 1,25(OH)2D to the VDR occurs with high affinity and selectivity, preventing the
precursor, 25(OH)D, from activating the VDR under normal circumstances [56]. The VDR-1,25(OH)2D
complex heterodimerizes with retinoid X receptor (RXR) to bind to the vitamin D response element
(VDRE) located in the promoter region of vitamin D-responsive genes. This leads to recruitment of
co-activators (e.g., SRC1, CBP, MED1) or co-repressors (e.g., NcoR, SMRT) to regulate transcription
of 1,25(OH)2D-responsive genes [57]. However, the VDR may also regulate gene expression in
a 1,25(OH)2D-independent manner via recruitment of gene-specific co-regulatory complexes [56]. The
VDR can be post-translationally modified by phosphorylation, although the functional significance of
this is uncertain [58,59].

While the genomic signaling is reliant on responses to the nuclear VDR, non-genomic signaling
utilises different signal transduction pathways [60]. It was demonstrated that rapid signaling is
mediated through VDRs associated within caveolae or lipid rafts on the plasma membrane of certain
cells [61]. Examples of systems that involve rapid signaling include intestinal calcium transport in
a vitamin D-replete chick [60] and 1,25(OH)2D3 modulation of osteoblast ion channel responses [62].
Non-genomic signaling pathways triggered by 1,25(OH)2D3 may be mediated through activation
of second messengers, such as protein kinase C (PKC) [63], intracellular increase in calcium and
modulation of phospholipase C and adenylate cyclase [64]. In particular, 1,25(OH)2D3 has been shown
to directly activate PKC at physiological concentrations, with PKC acting as a membrane-associated
receptor for the hormone [65]. Two isoforms of PKC, PKCβI and PKCζ, have been shown to be
involved in 1,25(OH)2D3 induction of rat cytochrome P450C24 (CYP24) expression, while the other
PKC enzymes, PKCα, PKCδ and PKCε, were not essential [66,67]. Using human embryonic kidney
293T cells, Nutchey et al. [66] found that JNK activity, but not extracellular signal-regulated kinase
(ERK) 1/2, was required for 1,25(OH)2D3 to induce the expression of CYP24 gene. However, the
opposite was observed in monkey kidney fibroblast COS-1 cells, in which JNK was not found to
mediate CYP24, but instead, either ERK1/ERK2 or ERK5 modules or both were required [68]. Given
that CYP24 null mice exhibited elevated 1,25(OH)2D3 levels due to impaired catabolism, regulation of
CYP24 expression may prevent 1,25(OH)2D3-induced toxicity [69–71].

2.4. Definitions of Vitamin D Status

25(OH)D3 has a half-life of approximately 15 days as compared to only 15 h for 1,25(OH)2D3 [72].
Thus, serum 25(OH)D3 circulates at a much higher concentration and is typically used as a marker
of vitamin D status. Australian guidelines stipulated that mild vitamin D deficiency is defined as
a serum 25(OH)D concentration of 30–49 nmol/L, moderate deficiency as 12.5–29 nmol/L and severe
vitamin D deficiency as <12.5 nmol/L [73]. The optimal level of serum 25(OH)D is unknown,
although concentrations of ě50 nmol/L are generally considered adequate [17,74]. Several studies found
a positive correlation between 1,25(OH)2D3 and 25(OH)D3 [75–77]. Nordin et al. [76] suggested that the
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relationship between the two metabolites is biphasic; positive when 25(OH)D3 is normal and negative
when 25(OH)D3 is below the normal range. However, findings from some earlier studies suggested
that serum concentrations of the two vitamin D metabolites are not correlated and attributed findings of
a positive relationship to methodological errors [78,79].
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Figure 1. vitamin D metabolism and associated enzymes. Vitamin D from the diet
and skin undergoes several hydroxylation steps to produce the biologically-active form
of vitamin D, 1,25(OH)2D. In circulation, 1,25(OH)2D bound to the vitamin D binding
protein (encoded by GC gene) is transported to the vitamin D target cells. Once it reaches
the target cell, it dissociates from the binding protein and translocates to the nucleus,
where it binds to the vitamin D receptor (VDR) and heterodimerizes with the retinoid X
receptor (RXR). Recruitment of transcription factors results in the activation or repression
of gene transcription. 1,25(OH)2D synthesis is regulated by feedback mechanisms involving
fibroblast growth factor 23 (FGF-23) and parathyroid hormone (PTH). In the parathyroid
gland, low serum calcium levels induce the secretion of PTH and activation of CYP27B1,
resulting in the production of 1,25(OH)2D. As a second feedback loop, a high serum
phosphate level triggers the secretion of FGF-23 from osteocytes and inhibits CYP27B1
synthesis. Activation of CYP24A1 also converts the bioactive vitamin D3 into inactive
metabolites for secretion in bile.

3. Regulation of Immune Function by Vitamin D

3.1. Innate Immunity

The innate immune system, as the first barrier of immune defence, guards against invading
foreign microorganisms and contributes to the maintenance of immune homeostasis [15]. Foreign
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microorganisms express pathogen-associated molecular patterns (PAMPs) that are recognised by pattern
recognition receptors, such as TLRs expressed by the innate immune cells [80]. Depending on which
TLRs are activated by PAMPs, the innate immune system will then mediate responses, such as the
production of antimicrobial peptides and cytokines and the apoptosis of host cells [80]. Vitamin D
has been found to induce antimicrobial peptide synthesis in the innate immune cells, to dampen
excessive inflammation and to inhibit the production of pro-inflammatory cytokine [81,82]. In preventing
infection, vitamin D induces antimicrobial peptide synthesis [83,84] through VDREs present in the
promoter regions of genes encoding antimicrobial peptides cathelicidin (hCAP18) and β-defensin
(DEFB) [85]. Production of cathelicidin, which is upregulated in the presence of 1,25(OH)2D3 [85],
is essential for antimicrobial defences and the cytotoxic activity of natural killer cells against tumour
cells [82,86]. Additionally, cathelicidin has also been shown to mediate vitamin D-induced autophagy
in monocytes/macrophages [87,88]. Yuk et al. [88] demonstrated that 1,25(OH)2D3 is required
for co-localization of mycobacterial phagosomes with autophagosomes. Another vitamin D-related
mechanism postulated to prevent infection is enhancement of nitric oxide production by macrophages
and expression of inducible nitric oxide synthase [89]. Although this has been shown in mouse models,
its significance in humans is still questionable, as the amount of nitric oxide produced in vitro by human
macrophages was negligible [90].

Complementing its antimicrobial properties, 1,25(OH)2D3 acts to suppress excessive inflammation.
1,25(OH)2D3 represses the expression of TLRs [45,84] and inhibits the production of pro-inflammatory
cytokines by DCs and innate immune cells [91,92]. VDR activation inhibits DC differentiation
and maturation, which is reflected by decreased surface expression of MHC class II, co-stimulatory
molecules (CD40, CD80 and CD86) and other maturation-induced surface markers, such as
CD83 [93–96]. As immature DCs are ‘tolerogenic’, inhibition of DC differentiation by 1,25(OH)2D3

contributes to T cell tolerance and adaptive immune homeostasis (discussed below).
Consistent with its anti-inflammatory role, 1,25(OH)2D3 may also inhibit type 1 T-helper (Th1)

cell responses by suppression of IL-12 production by DCs [94,97]. This is due to disruption by the
1,25(OH)2D3-VDR complex of NF-κB binding to IL-12 promoter regions and, hence, inhibition of
IL-12 mRNA expression [95,98]. While IL-12 synthesis is suppressed, IL-10 production by DCs
is enhanced, together with induction of type 1 (IL-10 secreting) regulatory cells (Tr1) [94,99] and
a shift from a Th1 to type 2 T-helper (Th2) phenotype [100]. Enhanced IL-10 production has also
been observed in mouse mast cells in vitro in the presence of 1,25(OH)2D3 [101]. Augmented IL-10
synthesis contributing to a suppressed mast cell-mediated inflammation, may dampen IgE-dependent
allergic reactions [102]. Clinically, the beneficial effects of vitamin D were observed in a recent clinical
trial that showed the resolution of inflammatory responses in 95 participants treated with adjunctive
vitamin D supplementation in addition to standard tuberculous therapy [103].

3.2. Adaptive Immunity

Signals from innate immune cells determine the fate of differentiating T cells and B cells [104,105].
Hewison [106] suggested four plausible mechanisms through which serum 25(OH)D may modulate
T cell function: (i) direct effects mediated via systemic 1,25(OH)2D; (ii) indirect effects via antigen
presentation by monocytes and macrophages to T cells, mediated by DC expression of CYP27B1 and
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intracrine synthesis of 1,25(OH)2D; (iii) direct effects of 1,25(OH)2D on T cells following the synthesis
of the biologically-active vitamin D by CYP27B1-expressing monocytes or DCs (paracrine mechanism);
and (iv) intracrine conversion of 25(OH)D to 1,25(OH)2D by T cells.

A group of T cells that may also be activated by 1,25(OH)2D are regulatory T cells (Tregs). Tregs
suppress other immune cells and contribute to the maintenance of immune homeostasis by a range of
mechanisms, including cell to cell contact and secretion of anti-inflammatory factors, such as IL-10 and
TGF-β [107–109]. They can be classified into two major subtypes: those that are naturally occurring in
the thymus and those derived from peripheral CD4` T cells following antigen stimulation [110,111].
Peripheral differentiation of Tregs is induced when 1,25(OH)2D3 represses the differentiation and
maturation of DCs to generate tolerogenic immature DCs [42,106]. 1,25(OH)2D3 can also bind to the
retinoic acid receptor to promote peripheral Treg differentiation from naive CD4` T cells [112] into
IL-10-secreting-Tr1 Tregs [11]. This suppressive activity may also be induced by VDR agonists [113].
In a clinical trial of 46 individuals, 140,000 IU of vitamin D supplementation were associated with
an increased Treg frequency in peripheral circulation after four weeks [114].

Studies have also shown that T cell proliferation and function is inhibited in response to 1,25(OH)2D3

(calcitriol) [94,97,115,116] by a reduction in IL-2 production [112]. T cells treated directly with calcitriol
or its analogues had decreased expression (in the absence of antigen-presenting cells) of Th1 (IL-2,
TNF-α, IFN-γ), Th9 (IL-9) and Th22 (IL-22) cytokines [97,117,118], but increased production of
anti-inflammatory Th2 cytokines (IL-3, IL-4, IL-5, IL-10) [119]. While the immunosuppressive effects
of vitamin D on Th1 cells are clear, the effects of vitamin D on Th2 cytokine expression are contradictory
and yet to be clarified. Some studies showed that 1,25(OH)2D3 favours Th2 cells by upregulating the
expression of Th2-specific transcription factors GATA-3 and c-Maf, as well as IL-4 in mice [119,120].
Others contradicted these findings, with c-Maf being undetectable in the presence of vitamin D [121]
and decreased Th2 cytokine levels [112,122]. Apart from T cells, evidence suggest that IgE production
by B cells is also suppressed by 1,25(OH)2D3 [123].

4. The Role of Vitamin D Status in Failed Oral Tolerance and Development of Food Allergy

IgE-mediated food allergy, the most common form of food allergy [124], usually develops in the
first year of life, presumably as a result of aberrant immune development. Food allergy is generally
Th2-biased and is characterised by the secretion of IL-4, IL-5, IL-9 and IL-13 and allergen-specific
IgE antibody [125,126]. Early IgE production to food allergens (sensitization) occurs through oral
and gut mucosal or cutaneous food exposures [126–128]. Allergen-specific IgE antibodies bind to
high-affinity Fcε receptors (FcεRI) on the surface of mast cells and basophils upon re-exposure to the
food constituents [129]. This triggers degranulation of mast cells and basophils, releasing the preformed
mediators, histamine, tryptase and TNFs, which promote oedema, erythema and itch [124,126,130].
Newly-synthesized mediators, such as leukotrienes (e.g., LTC4), prostaglandins (e.g., PGD2) and
cytokines (e.g., IL-3, IL-5), lead to the recruitment of inflammatory cells responsible for IgE-mediated
late-phase responses [124,131]. Class-switching to pro-allergic IgE antibody production is promoted
by T cell production of IL-4 and IL-13 [132]. While sensitization predisposes individuals to food
allergy, they may not develop the clinical manifestations mentioned above [133]. Currently, it is not
well understood why certain individuals do not develop food allergy despite producing IgE antibodies.
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Controversy remains regarding the role of vitamin D in the development of food allergy. On the
one hand, some research suggests that vitamin D insufficiency increases the risk of IgE-mediated food
allergy [7] and food sensitization [134]. By contrast, vitamin D excess in pregnancy and at birth has
also been associated with an increased risk of food allergy [135]. It is thought that the lower number
of Tregs associated with high cord blood vitamin D may compromise immune tolerance, since a low
Treg count has been previously found to predict the development of early atopic dermatitis [136]. The
contribution of vitamin D in allergic diseases is evident in mouse studies [137,138]. Production of
thymic stromal lymphopoietin (TSLP) in keratinocytes is essential in promoting allergic sensitization
through an impaired skin barrier and eventual development of allergic asthma [137]. The application
of vitamin D or an analogue induces TSLP transcription by enhancing its promoter activity [138].
Although a unifying hypothesis for the role of vitamin D in food allergy development would suggest
a U-shaped relationship [10,139], the evidence remains thin and as yet to be validated by randomized
controlled trials.

Evidence for the role of low vitamin D in food allergy development is currently the strongest.
Vassallo et al. [140] proposed a “multiple-hit model” where low vitamin D results in an increased
susceptibility to gastrointestinal infections and compromised barrier defences. In the presence of
an altered microbial ecology of the gastrointestinal tract and a lowered immune tolerance, this may
predispose an individual to allergic responses to food antigens. This is supported by emerging research
showing the effects of 1,25(OH)2D3 to promote mucosal barrier function [141], inhibit pro-allergic
immune responses and promote immunologic tolerance [14]. In maintaining mucosal barrier function,
1,25(OH)2D3 enhances the expression of genes encoding proteins required for epithelial tight junctions
(e.g., occludin), gap junctions (e.g., connexion 43) and adherens junctions (e.g., E-cadherin) [142–145].

The vitamin D mechanisms contributing to immune tolerance include the induction of tolerogenic
DCs [146] and Tregs [14] and inhibition of IgE production in B cells [147]. Repeated exposures to
low doses of food antigen have been found to be optimal for the development of Tregs [108], for
oral tolerance. This may in part be established by mucosal tolerogenic DCs to induce Tregs in the
mesenteric lymph nodes [148]. Mice studies showed that Tregs were able to alleviate clinical signs of
immediate-type hypersensitivity reactions in IgE-mediated food allergy [149,150]. Studies in human
subjects have also shown that DCs of allergic patients are less responsive to Th1-inducing stimuli, hence
increasing susceptibility to a Th2-skewed profile [151].

Suppression of IgE production is also modulated by anti-CD40 antibody- and IL-4-stimulated B
cells exposed to the vitamin D analogue, EB1089 [152], and this finding was replicated in vivo in
an allergy mouse model [153]. Human B cell experiments have also shown that 1,25(OH)2D3 suppresses
IgE antibody class switch partly through inhibition of NF-κB and epsilon germ-line transcription
(εGLT) [152]. IL-10 production is however inhibited in anti-CD40/IL-4-activated B cells, either directly,
through binding of VDR to the promoter region of IL-10, and/or indirectly by the modulation of
calcium [147].

Some epidemiological evidence suggests that vitamin D excess may also contribute to food allergy
pathogenesis. The relationship between 25(OH)D concentrations and allergy may not be linear, with
one study proposing a U-shaped association between vitamin D3 with total serum IgE concentration
production in adults [10]. In this study, elevated IgE levels were observed in both groups of
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participants with the lowest (<25 nmol/L) and highest (>135 nmol/L) concentrations of serum 25(OH)D3.
This dual effect of vitamin D is supported by mouse data, which showed that while 1,25(OH)2D3

downregulates airway eosinophilia through reduction in inflammation, it also enhances allergen-specific
T cell activation, systemic IgE levels and IL-4 and IL-13 secretion [154].

Similarly, cord blood concentrations of 25(OH)D also had a U-shaped association with
aeroallergen-specific IgE, with an odds ratio of 2.4 and four for low and high concentrations of 25(OH)D,
respectively [155]. In measuring cord blood 25(OH)D3, a recent study suggested a strong correlation
between maternal vitamin D level and cord blood levels of neonates [156], and this is dependent on the
ability of 25(OH)D3 to cross the placenta [157]. As such, the role of maternal vitamin D status and
vitamin D immunoregulation in utero also warrants further investigation.

5. Conclusions

There is significant interest in the role of vitamin D for optimal immune health. Recent
epidemiological evidence suggests that both insufficiency and excess of vitamin D may contribute to
the failure of oral tolerance and subsequent food allergy in infants. It is evident that vitamin D has
wide-ranging effects on the immune system, but how it modulates immune function in food allergy is
not clear. While food allergy is often characterised as a Th2-skewed immune response, this is likely to
be an oversimplification. The mechanisms underlying innate and adaptive immune dysfunction in food
allergy require deeper investigations. At the clinical level, questions about the efficacy and safety of
vitamin D in preventing food allergy will only be answered by randomized controlled trials.
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