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Mobile genetic elements with circular genomes play a key role in the evolution of microbial communities. Their circular

genomes correspond to circular walks in metagenome graphs, and yet, assemblies derived from natural microbial commu-

nities produce graphs riddled with spurious cycles, complicating the accurate reconstruction of circular genomes. We pre-

sent DomCycle, an algorithm that reconstructs likely circular genomes based on the identification of so-called “dominant”

graph cycles. In the implementation, we leverage paired reads to bridge assembly gaps and scrutinize cycles through a nu-

cleotide-level analysis, making the approach robust to misassembly artifacts. We validated the approach using simulated and

real sequencing data. Application of DomCycle to 32 publicly available DNA shotgun sequence data sets from diverse nat-

ural environments led to the reconstruction of hundreds of circular mobile genomes. Clustering revealed 20 highly prev-

alent and cryptic plasmids that have clonal population structures with recent common ancestors. This method facilitates the

study of microbial communities that evolve through horizontal gene transfer.

[Supplemental material is available for this article.]

Horizontal gene transfer (HGT) is a major driver of microbial evo-
lution (Soucy et al. 2015). HGT supports the rapid adaptation of
microbes to ecological niches (Wiedenbeck and Cohan 2011;
Polz et al. 2013) and facilitates the spread of virulence factors
and antimicrobial-resistance determinants within and between
microbial species (Maiques et al. 2006; von Wintersdorff et al.
2016; Deng et al. 2019). Extrachromosomal circularmobile genetic
elements (ecMGEs), such as plasmids and phage with circular ge-
nomes, are of particular interest as common agents of HGT
(Frost et al. 2005). Experimental methods have been developed
to genotype ecMGEs in complex microbial communities, includ-
ing the physical enrichment of plasmids (Sentchilo et al. 2013)
and of viral particles (Shkoporov et al. 2018), and the removal of
linear DNA followed by multiple displacement amplification
(Jørgensen et al. 2014). In the last decade, MGE characterization
has been shifting toward the use of direct shotgun sequencing of
complex communities, owing to reduced cost and benchwork sim-
plicity. Several tools scan shotgun metagenomic assemblies to
identify MGE-associated sequences by searching for genetic signa-
tures of plasmids and phage (Zhou and Xu 2010; Lanza et al. 2014;
Carattoli et al. 2014; Roux et al. 2015; Roosaare et al. 2018;
Robertson and Nash 2018). However, these tools do not recon-
struct complete genomes and can conflate extrachromosomal
with integrated forms of mobile elements, confounding the study
of ecMGEs in natural settings.

A powerful approach to recover complete genomes of ecMGEs
is based on metagenomic assembly graphs. In these graphs, verti-
ces represent contigs (partially assembled DNA sequences), and

edges represent contig–contig adjacencies supported by crossing
reads.One formulation of the problemat hand is the identification
of circular graph walks that correspond to underlying circular ge-
nomes. Yet some circular walks are in fact “phantoms,” for which
the corresponding circular genomes are not present in the biolog-
ical sample. These phantomwalks are a result of identical (or near-
ly identical) DNA sequences appearing in different genomic
contexts. Repeat elements such as transposons and integrated
phage are common in microbial genomes. Moreover, natural mi-
crobial communities have been shown to simultaneously harbor
closely related ecMGEs that differ by only a few genome rearrange-
ments (Conlan et al. 2014; He et al. 2015; Suzuki et al. 2019).
Repeats and rearrangements produce complex graphs riddled
with phantom walks, complicating the task.

Several tools traverse the assembly graph in an attempt to re-
construct complete genomes of ecMGEs (Rozov et al. 2017;
Antipov et al. 2019; Pellow et al. 2021). These tools efficiently
search for circular graph walks that may correspond to ecMGEs,
yet their heuristic nature makes them highly susceptible to errors.
A review estimated that >25% of ecMGE genomes reported by ex-
isting approaches do not correspond to true ecMGEs (Arredondo-
Alonso et al. 2017). Meanwhile, theory has been developed to for-
mulate the correctness of walks in assembly graphs (Obscura
Acosta et al. 2018). However, theory revolving around the correct-
ness of circularwalks needed for the recovery of circular genomes is
lacking. The recovery of MGE genomes will allow the field to con-
duct high-throughput computational surveys of mobile elements,
strengthening the understanding of the evolution and spread of
mobile elements and their genetic cargo in natural environments.
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The goal of this work was to develop a tool (DomCycle)
that reliably infers circular genomes of ecMGEs from short-read
shotgun DNA data derived from complex microbial communi-
ties. A second goal was to validate DomCycle using negative con-
trols without circular genomes, reference ecMGE data, and
realistic simulations of evolving mobile elements. A final goal
was to showcase the discovery potential of DomCycle by apply-
ing the tool to metagenomic data generated from diverse micro-
bial communities.

Results

We developed a theoretical framework and associated tool
(DomCycle) to recover near-complete genomes of ecMGEs from
metagenome assembly graphs (Fig. 1). In the assembly graph, cir-
cuits are circularwalks that correspond to circular chains of contigs.
Although every circular genome produces a corresponding circuit
in the graph, inferring the underlying genomes from the graph is
nontrivial, as different underlying genome configurations can re-

sult in the same graph. This is illustrated by two manufactured
configurations (Fig. 1A,B) and the graph that corresponds to
both (Fig. 1C). To simplify the problem, we focused on cycles,
which are circuits that do not include any contig more than
once. Yet, even cycles may have no true corresponding genome.
Repeat elements can result in spurious cycles (called here “phan-
tom” cycles) for which no corresponding circular genome exists
in one or more of the possible latent genome configurations (illus-
trated in Fig. 1C). Our goal was to develop a tool that calculates ro-
bust mathematical attributes of cycles that can help distinguish
between phantom and real cycles.

Algorithm that recovers all dominant graph cycles

Our approach is based on a new concept called “dominant cycles.”
Dominant cycles are loosely related to the previously introduced
notion of “dominant plasmids” (Antipov et al. 2019), yet they
are grounded in graph theory. We assume a latent configuration
of circular genomes that produces an assembly graph (see
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Figure 1. Approach overview. (A) A manufactured example of a latent genome configuration and assembly with eight unique contigs. Contigs are color-
coded, and four DNA genomes aremarked p1–p4 with their x-coverage specified in their center. For example, p2 has an x-coverage of 6× and contains only
three unique contigs, as the short purple contig appears twice. The corresponding assembly graph is shown in C. Under this configuration, cycle c4 is a real
cycle that corresponds to p3. (B) An alternative genome configuration that produces the same graph. The presence of the complex genome p5, which
corresponds to an involved circuit in the graph, affects the multiplicity of all visited cycles. For example, the multiplicity of cycle c4 is equal to four because
the circuit that corresponds to p5 visits the red contig four times while traversing in a loop along the contigs of c4. Note that under this configuration, cycle
c4 is a phantom cycle. (C ) The assembly graph that corresponds to the configurations shown in A and B. Directed edges appear within a single contig (going
from the 5′ end to the 3′ end, represented with arrows) and between adjacent contigs (going from the 3′ end to the 5′ end, represented with dotted lines).
The graph contains five cycles (c1–c5), and the x-coverage of edges is indicated. (D) The cycle score σc/τc is specified in the center of each cycle for the graph
shown in C. The algorithm recovers all candidate dominant cycles (σc/τc>1; score colored black) and discards nondominant cycles (score colored gray). For
example, cycle c4 has a score of two (σc=18× , τc =9× ), making it a candidate dominant cycle. (E) In our implementation, nucleotide-level read profiles are
computed for all candidate dominant cycles using all paired reads for which at least one side mapped to the cycle, and the algorithm returns dominant
cycles with estimates of x-coverage. Reads are grouped into cycle-supporting reads (black line) and nonsupporting reads (red line). For example, the x-
coverage of supporting reads along c4 varies, with three short stretches of nonsupporting reads on contig–contig seams. Average read x-coverage values
for portions of the cycles are shown on the plot.
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Methods). For every cycle c in the graph, the bottleneck coverage σc is
theminimal read coverage along the edges of the cycle, the external
coverage τc is the total number of paired reads leading in or out of
the cycle (averaging in and out), and the cycle score is the ratio σc/τc
(Fig. 1D). We call a cycle dominant if σc/τc>1.

We also define two latent variables. Our latent variable of in-
terest is the coverage ψc of the genome associated with a cycle c (ψc

≥0 by definition and ψc= 0 if the genome is not part of the config-
uration). A second latent variable is the multiplicity μc, which is
equal to the number of times the contigs of the cycle appear con-
secutively within the context of a larger circuit, such as within a
tandem repeat (defined in theMethods). For clarity, we emphasize
that the last and possibly incomplete pass along the contigs of the
cycle is counted toward the multiplicity, as shown in Figure 1B.
Our main theoretical result is the bound σc− μc× τc≤ψc. This lower
bound on ψcmeans that either any dominant cycle is real (i.e., ψc>
0) or it has a multiplicity greater than or equal to the cycle score
(i.e., σc/τc≤ μc). Although high-multiplicity cycles are theoretically
possible, they require complex tandem structures as shown in
Figure 1B, and it is not clear how common they are inmicrobial ge-
nomes. To gauge the prevalence of high-multiplicity cycles that
are dominant and phantom (called dominant-phantom), we
used empirical data, presented below.

We developed an algorithm that recovers all dominant cycles
in an assembly graph. In the implementation of the algorithm,
contig–contig edges in the assembly graph are inferred using
paired reads while bridging possible small gaps (for details, see
Methods). Candidate cycles are vetted on a nucleotide-level basis
by comparing the ratio between the number of supporting reads,
for which both sides map with proper orientations to the cycle,
and the number of nonsupporting reads (Fig. 1E). This makes
the approach robust to common forms ofmisassembly. Stochastic-
ity in read coverage is modeled using a binomial distribution to
identify vetted dominant cycles with scores that are significantly
larger than one. We note that DNA replication (Antipov et al.
2016) and sequencing biases (Sato et al. 2019; Browne et al.
2020) introduce systematic biases to read coverage, which poses
a challenge to our assumption of uniform coverage. The algorithm
yields near-complete circular genomes (not necessarily complete
owing to possible small gaps between consecutive contigs) that
correspond to all vetted dominant cycles.

Validation using reference genomic data

We tested the empirical prevalence of dominant-phantom cycles
using simulated data derived from bacterial chromosomal ge-
nomes. DomCycle was applied to simulated shotgun data derived
from an in silicomixture of 155 linearized genomes, including sev-
eral conspecific strains (total assembly size 450 Mbp) (species
detailed in Supplemental Table 1). By design, the generated assem-
bly graph contained only phantom cycles because genomic DNA
was linearized and no ecMGEs were included. DomCycle reported
only two dominant-phantom cycles, which were both short (294
bp and 315 bp) and with relatively low scores (2.4 and 1.3, respec-
tively) (Fig. 2A).We applied Recycler (Rozov et al. 2017), metaplas-
midSPAdes (Antipov et al. 2019), and SCAPP (Pellow et al. 2021) to
the same data set. These tools reported 13–212 phantom genomes
(Fig. 2B), with a median element length of 2.7–11.4 kb (Fig. 2C).
The analysis of tandem repeats, which are genetic constructs
known to complicate assembly graphs, partially explained why
DomCycle outperforms Recycler andmetaplasmidSPAdes in terms
of precision (Supplemental Fig. S1). DomCycle completed work in

this data set in 7 h, displaying similar performance as existing tools
(Supplemental Fig. S2).

We evaluated the performance of DomCycle on 100 reference
plasmids and 100 reference phage genomes, all assayed individual-
ly (Supplemental Table 2). Recall was 47% for plasmids and 91%
for phages, slightly lower than the maximal performance of the
other tools (Fig. 2D). DomCycle had near-perfect precision (Fig.
2E) and consistently reported only a single cycle (or no cycle at
all), whereas all other tools occasionally split a single genome
into multiple reported elements (Fig. 2F). Recall and precision
were robust to changes in key thresholds, such as the score cutoff
that defines dominant cycles (Supplemental Fig. S3). We com-
pared all tools on a data set derived from a real microbial commu-
nity (CAMI) (Sczyrba et al. 2017) that included 40 genomes and 20
ecMGEs (Fig. 2G). Again, DomCycle was precise at the expense of
sensitivity (Fig. 2H). To summarize,DomCycle effectively limits re-
porting phantom cycles while achieving recall values that are only
slightly inferior to existing tools.

Validation using simulated mobile element data

We simulated two realistic scenarios of evolving mobile genetic el-
ements. The first scenario involved a single plasmid (central allele)
and several variant plasmids (variant alleles) that were individually
distinguished from the major allele by a single-genome rearrange-
ment event (insertion, deletion, or inversion). The second scenario
simulated a semi-induced prophage. It involved a phage that both
appeared in a circular form (central allele) and integrated several
times into a linear genome (variant alleles). For both scenarios,
we tested recall and precision as a function of the frequency of
the central allele (Fig. 3A). Central alleles were recovered when
the allele frequency surpassed 45% for plasmids and 55% for phag-
es. Despite a background of convoluted genome rearrangements,
the precision was perfect in all cases; that is, all cycles reported
by DomCycle were associated with real underlying genomes, and
multiple cycles were never reported. To illustrate the performance
of DomCycle, we show the underlying graph cycle (Fig. 3B)
and the distribution of mapped reads along the cycle (Fig. 3C)
for a single successful plasmid run. In comparison, Recycler and
metaplasmidSPAdes had some precision issues, with Recycler
showing a minimum precision of 0% and metaplasmidSPAdes
achieving <90% precision in some cases (Supplemental Fig. S4).

We leveraged our knowledge of the true underlying coverages
to examine the performance of three estimators of genome cover-
age (Fig. 3D). The best estimator was the adjustedmedian coverage
(AMC), defined as xc=mc− τc, where mc is the median coverage
along the cycle. AMC was both highly correlated with true cover-
age values (Pearson’s coefficient ρ=0.94) and had a root-mean-
square deviation (RMSD) of 0.05 and 0.08 for plasmids and phages,
respectively. In summary, the analysis of simulated data showed
the ability of DomCycle to recover dominant cycles and accurately
predict their coverage in a scenariowith evolvingmobile elements.

Circular genetic elements in the human gut

We appliedDomCycle tometagenomic shotgun data composed of
200 million paired reads derived from stool of a healthy adult
(Yaffe and Relman 2020). The contig-level and nucleotide-level as-
sessment of cycles was in general agreement (Supplemental Fig.
S5), with only eight cycles that were dropped owing to local score
filtering and abnormal read coverage that likely stemmed from as-
sembly artifacts (Supplemental Fig. S6). After stringent cycle vet-
ting, 49 dominant cycles and their corresponding ecMGEs
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remained. The MEGAHIT assembler (our choice of assembler) and
the metaSPAdes assembler (used by metaplasmidSPAdes) agreed
on 36 (67%) of the reported cycles (Supplemental Fig. S7). The

lengths of the 49 ecMGE genomes ranged from 0.6 kb to 185 kb
(median length 4.8 kb). In terms of complexity, 68% of the
ecMGE genomes were associated with a self-loop formed by a
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single contig, 13% were self-loops that included a small assembly
gap that was bridged using paired reads, and the remaining 19%
of genomes spanned multiple contigs. We offer an example of a
putative phage (Fig. 4A) and a putative plasmid (Fig. 4B; all
ecMGEs are shown in Supplemental Fig. S8). Of note, among the
recovered ecMGEs was a complete genome of a member of the
crAssphage family (Dutilh et al. 2014), a group of prevalent
Bacteroides phage (Supplemental Fig. S9).

We applied metaplasmidSPAdes and SCAPP to the same gut
data set (Recycler did not complete the analysis within a week
and was excluded). DomCycle and metaplasmidSPAdes were gen-
erally in agreement, whereas SCAPP reported only three ecMGEs
that clustered separately (Fig. 4C). The number of ecMGEs identi-
fied bymetaplasmidSPAdes and SCAPP was similar to their expect-
ed rate of false-positives (computed based on Fig. 2B), suggesting

that the low precision of current tools confounds the analysis of
real data (Supplemental Fig. S10). Furthermore, cycles reported
only by metaplasmidSPAdes had low scores that were close to
one, supporting the possibility thatmanyof themare in fact phan-
tom cycles (Supplemental Fig. S11).

The AMC of the 49 ecMGEs ranged from 8.8× to 25,960× and
was on average 10-fold higher than the average coverage of all con-
tigs in the assembly (Fig. 4D). This suggested that the detected
ecMGEs have elevated abundance levels compared with the aver-
age abundance of bacterial members in the microbial community.
However, to properly interpret AMC values, one needs to take into
account the reduced probability of detecting low-coverage cycles
owing to the stringent cycle vetting procedure. We computed for
each ecMGE its abundance percentile (AP), defined as the percentile
of its AMC score within a background distribution of AMC values

A B

C D
x

×

×

Figure 3. DomCycle performance on recombining plasmids and partially induced phage. (A) The recall (red) and precision (blue) for simulations at vary-
ing central allele frequencies. Each point represents the results of 30 trials at a single central allele frequency. Central allele frequency was calculated as the
percentage of the total x-coverage contributed by the central allele. (B) Example of a recovered central allele plasmid with a frequency of 55%. Shown is a
subset of the assembly graph focusing on a single reported cycle. The graph is represented as in Figure 1C. The recovered cycle is colored in red, and ad-
jacent graph edges that are not part of the cycle are colored in gray. Coverage units show the edge coverage,W(e). Labels on internal edges show contig
names. (C ) The nucleotide-level cycle coverage profile corresponding to the cycle depicted in panel B. The coverage of cycle supporting reads is colored in
black, and the coverage of nonsupporting reads is colored in red. (D) Median coverage, lower bound coverage, and adjusted median coverage (AMC) as
predictors of true allele frequency. The Pearson correlation coefficient (denoted with “r”) and root mean squared deviation (denoted with “e”) are shown
for each predictor. In each small cross, the horizontal line shows the median metric value of an estimator at a given central allele frequency, and the vertical
line depicts the interquartile range of the estimator, created with 30 replicates for each allele frequency. Diagonal dotted lines show the true central allele
frequency.
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estimated using all contigs in the assembly (Methods). Even after
this normalization, ecMGEs were significantly abundant within
the community (Kolmogorov–Smirnov test D=0.543, P<3.6 ×

10−13), with 20 ecMGEs (41%) above the 95th AP (Fig. 4E).
Analysis of shotgun data (96 million paired reads) derived from
the stool of a second healthy individual (Yaffe and Relman 2020)

A

C

D E

B

×

x

Figure 4. ecMGEs in the gut of a healthy adult. (A) A putative gut phage. Shown from inner to outer circles are nucleotide-level coverage profiles,
UniRef100 hits (sequence identity [AAI] to the best UniRef100 hit and the number of UniProt genes in the UniRef100 cluster), and gene classification.
Gene descriptions for select phage-associated genes are specified outside. Cycles are cut open at the start of their linear sequence for visualization purposes.
(B) Same as A, for a putative plasmid. (C) Genomes corresponding to reported cycles pairwise aligned and clustered using a threshold ANI of 95%. Shown is
cluster breakdown for DomCycle, metaplasmidSPAdes, and SCAPP. (D) Shown are the empirical cumulative distribution functions (ECDFs) for the AMC of
the 49 vetted dominant cycles that correspond to putative ecMGEs (black), the background AMC defined as the AMC of contigs vetted in the same way as
dominant cycles except for the circularity condition (dark gray), and the background coverage all contigs in the assembly (light gray). (E) Shown for all 49
vetted dominant cycles is the ECDF of the cycle abundance percentile, defined as the percentile of the cycle AMCwithin the background AMC distribution.
P-value computed using a one-sided Kolmogorov–Smirnov test is shown.
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qualitatively recapitulated the elevated abundances of ecMGEs
(Supplemental Fig. S12).

Comparing DomCycle to existing tools

Recycler, the first tool that identified ecMGEs from assembly
graphs, uses a heuristic approach that results in limited precision
when applied to reference ecMGEs (Figs. 2E,H) and to realistic evo-
lutionary scenarios (Supplemental Fig. S4). SCAPP, designed to ad-
dress the precision issues of Recycler by using genetic signatures of
mobile elements, has improved precision at the expense of sensi-
tivity. Despite SCAPP’s improved precision owing to its refer-
ence-based approach, SCAPP may still report complex linearly
inserted elements with mobile genes as demonstrated in Figure
2, B and C.

Circular mobile elements are abundant in diverse

environments

We applied DomCycle to 30 environmental shotgun libraries, in-
cluding human stool (median 104 million reads per sample) (The
Human Microbiome Project Consortium 2012), sewage wastewa-
ter (median 48 million reads per sample) (Hendriksen et al.
2019), and the marine environment (median 37 million reads
per sample; 10 samples each) (Supplemental Table 3; Biller et al.
2018). In total, we identified 720 dominant cycles and reconstruct-
ed their associated ecMGE genomes. Analysis was limited to 221
ecMGEs (29%) that were at least 1 kb long (Fig. 5A). All ecMGEs
were classified based on annotations of predicted genes, as puta-
tive plasmids (28%), putative phage (17%), unspecified mobile el-
ements (17%), and undefined elements (38%) (Fig. 5B). The three
environments differed in the distribution of classes (chi-squared
test P<10−16), with the gut relatively depleted for undefined ele-
ments, sewage enriched for plasmids and undefined elements,
and marine samples enriched for undefined elements (Fig. 5C).
Recapitulating our observation in the two gut samples of Figure
4, the 221 recovered ecMGEs were highly abundant (KS-test P<
10−16), with 73%of ecMGEs above the 95thAPwithin their respec-
tive communities. All ecMGE classes were associated to some
degree with elevated abundance levels (Fig. 5D). Elevated
abundance of ecMGEs was observed in all environments yet was
most prominent in the human gut (Fig. 5E). The high abundance
of ecMGEs we observed may be explained by high copy numbers,
preferential targeting of abundant microbial hosts, and/or promis-
cuous ecMGE-host interactions.

Highly prevalent plasmids are rapidly circulating

We were curious to see if we could find evidence of ecMGEs circu-
lating within and between environments.We therefore performed
pairwise genome alignments of all 286 ecMGEs (>1 kb) detected in
the 32 environmental samples described in this work. A compari-
son of the fraction of the aligned region and the average nucleotide
identity (ANI) within the aligned region suggested that ecMGEs
preferentially maintain their diversity through local mutations
and not through large-scale genomic changes (Fig. 6A). The
ecMGEswere grouped into 244 clusters based on sequence identity
using a threshold of 95%ANI (Supplemental Fig. S13). Results were
robust to changes in the clustering threshold (Supplemental Fig.
S14). Analysis was limited to the 20 clusters (denoted M1–M20)
that had two or more members (Table 1; for cluster members, see
Supplemental Table 4). Clusters were extremely tight; the average
fraction of the aligned region between pairs of cluster members

was 99.56%–100% (median 100%), and the average ANI within
the aligned region was 98.43%–100% (median 99.9%). We refer
to these clustered ecMGEs, which were reconstructed indepen-
dently with minor genetic variations in multiple samples, as circu-
lating ecMGEs.

We classified 16 clusters as putative plasmids owing to the
presence of mobility and/or replication genes, of which five had
one or two toxin–antitoxin genes, as summarized in Table 1 (for
details, see Supplemental Table 5). There were 33 uncharacterized
genes in total, which made up 32% of each cluster on average
(Supplemental Table 6). Clusters had two to nine ecMGEmembers
(Fig. 6B), and all were from a single environment except cluster
M3, which was observed in both gut and sewage samples. The
AP of circulating ecMGEs was high (mean AP of 92%), in agree-
ment with a commonly observed ecological association between
prevalence and abundance (Fig. 6C).

Leveraging a comprehensive plasmid reference database
(PLSDB, with over 26 k plasmids) (Galata et al. 2019), we identified
seven clusters with near-identical reference hits (99.7% ANI on av-
erage) (Supplemental Table 7). This independent reconstruction of
the circulating ecMGEs provided validation of our metagenomic
approach. Moreover, the PLSDB metadata informed us about the
putative host-range and environments of some of our clusters.
These data suggested that our circulating ecMGEs may have a
broad host-range, with five (out of six with host data) associated
with multiple taxonomic families (Table 1). We discovered that
the top three plasmids (M1–M3) were reported as cryptic
Bacteroides plasmids in the 1980s (Wallace et al. 1981; Sóki et al.
2010). On the other hand, the 13 circulating ecMGEs that did
not have a close reference in PLSDB (>95%ANI) despite their prev-
alence in the general population highlight the discovery power of
our metagenomic approach.

We proceeded to augment clusters with reference genomes
(where available) and inferred cluster-specific phylogenic trees.
The most prevalent plasmid (M1; 4138± 10 bp long) was observed
in nine gut samples and had two isolate-based reference genomes
(Fig. 6D).M1 is composed of amajor clade (M1a; isolated previous-
ly from Bacteroides xylanisolvens) and a minor clade (M1b; isolated
previously from Bacteroides fragilis), with a genetic distance of
3.27% separating the two inferred clade ancestors. Both have shal-
low clonal trees distinguished by a handful of SNPs, with a mean
ANI of 99.95% and 99.76% between clade members for M1a and
M1b, respectively. Out of the 12 gut samples we assayed, M1a
was present in seven out of 12 (58±22%), making it one of the
most prevalent plasmids recorded in the human gut to date. A co-
alescence analysis suggests M1a has gone through a clonal expan-
sion merely ∼600–1200 yr ago (Supplemental Note 4).

Another cluster of interest is M18, a short cryptic plasmid
(1934 bp) recovered from two sewage metagenomic samples
and independently reconstructed from 17 isolates (primarily
Enterobacteriaceae species) that were collected across the globe
(Fig. 6E). The clonal population structure of M18 is in discordance
with its host species, suggesting it is freely circulating between a
diverse set of hosts.

The remaining five ecMGE clusters that have reference ge-
nomes suggest that ecMGEs are found in diverse environments
and bacterial hosts (Supplemental Fig. S15). The nine ecMGE clus-
ters with sufficientmembers to estimate their phylogeny had clon-
al populations with only 0%–3.2% putative recombined sites,
suggesting recombination between circulating ecMGEs is relative-
ly rare (Supplemental Fig. S16). Finally, we noted several examples
of clusters with an uneven distribution of SNPs along their
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genomes, suggestive of possible adaptive evolution or recombina-
tion (Supplemental Fig. S17).

Discussion

We present an algorithm that recovers all dominant cycles in a
metagenomic assembly graph and reconstructs their correspond-
ing genomes. Our implementation achieves high precision by
combining graph theory and nucleotide-level vetting of cycles.
We show that in the context of microbial communities, dominant
cycles likely correspond to true extrachromosomal circular DNA.
Application to complex evolutionary scenarios and reference
data reliably recovers ecMGEs with a negligible false-positive rate.

The major limitation of the approach is that it recovers only
circular genomes that correspond to dominant cycles. In reality,
some mobile elements are linear, and circular mobile elements
can contain repeat elements that produce circuits, both of which
would not be detected by our approach. Although linear extrachro-
mosomal DNA is outside the scope of this work, the ongoing tran-
sition to long-read sequencing technologies will transform some
circuits to cycles. With meticulous handling of environmental
samples, long reads can extend up to 5–10 kb (Suzuki et al. 2019;
Moss et al. 2020). Combining long readswith the approachpresent-
ed here will allow genotyping of complex ecMGEs, such as MGEs
that contain insertion sequences (typically<2.5 kb) and short trans-
posons. Longer repeat elements and complex rearrangements that

A

D E

B C

Figure 5. ecMGEs in the human gut, sewage wastewater, andmarine environments. (A) The number of ecMGEs identified in each environment. (B) The
percentage of ecMGEs with assigned functional classes. (C) The percentage of ecMGEs within each environment, stratified by class. (D) The ECDF of abun-
dance percentile values of ecMGEs, stratified by class. (E) Same plot as in D, stratified by environment.
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A

D

E

B C

x

x

Figure 6. Analysis of circulating ecMGEs. (A) The distribution of cycle tightness metrics across pairs of ecMGEs (>1 kb) in the 32 samples assayed. The
overlap identity is defined as the average identity of aligned regions between two cycle genomes. The overlap fraction is defined as the percentage of two
cycle genomes that align. For a cycle pair, genomic similarity is defined as the overlap identity times the overlap fraction. Cycle pairs are linked if their ge-
nomic similarity is >0.95, and clusters are defined as groups of linked cycles. (B) The distribution of the number of members in clusters. (C) The ECDF of
abundance percentile values of circulating ecMGEs comparedwith ecMGEs stratified by their environment andwith all ecMGEs. (D) Detailed view of cluster
M1. Data are projected onto a reference “pivot” cluster member (gut4, cycle 181) that is shown in a linear format for visualization purposes. Shown from
the bottom up are the x-coverage profiles of the pivot ecMGE member, SNP patterns of cluster members (in bold) and reference sequences (isolate source,
location, and year of collection), and annotated genes (on top). SNP patterns are colored according to differences from the pivot, with white indicating
segments that failed to align. A phylogenic tree is shown on the left. The units of the scale bar under the tree are mean nucleotide differences. Clades M1a
and M1b are marked on the plot. (E) Detailed view of cluster M18, represented as in D.
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require bridging over 10 kb ormore can be addressedwith addition-
al experimental work, such as Hi-C (Beitel et al. 2014; Stalder et al.
2019; Yaffe and Relman 2020; Cockram et al. 2021), or by sampling
the same community multiple times (Nissen et al. 2021; MetaHIT
Consortium et al. 2014). Another weakness is the requirement
that for cycles to be identified, they must be dominant. A family
of partially overlapping circular genomes can result in nondomi-
nant cycles and therefore be overlooked entirely (as shown in Fig.
3A, where the frequency is roughly <50%). Although it is not clear
to what extent this phenomenon is common in natural communi-
ties, the component-based approach taken by metaplasmidSPAdes
can be more appropriate in this case, as the entire family can pro-
duce a single identifiable graph component.

The approaches of metaplasmidSPAdes and DomCycle are re-
lated.MetaplasmidSPAdesworks by consecutively removing graph
edges (sorted by their coverage, from low to high) and reporting
graph components that transiently form during the removal pro-
cess. This approach will recover all dominant cycles, yet not all
components reported by metaplasmidSPAdes necessarily corre-
spond to true ecMGEs. In fact, linear genetic elements (such as tan-
dem repeats and composite transposons) that are integrated in
numerous genomic locations can form transient graph compo-
nents and may get reported even though they are not circular
nor extrachromosomal. Toovercome this drawback, a complete ac-
counting of the weights of the edges leading into and out of
components is required. In this manner, it is possible to define
and compute component scores (akin to cycle scores) in order
to improve the precision of metaplasmidSPAdes. From a practi-
cal perspective, metaplasmidSPAdes introduces an unnecessary
dependency on the metaSPAdes assembler.

Application of our approach to 32 environmental samples
uncovered 20 clades of ecMGEs (primarily gut and sewage plas-
mids), showcasing the strength of metagenomic approaches in
tapping into understudied environmental plasmids. The low se-
quence diversity and clonal population structure we report here
were observed in plant-associated virulence plasmids (Weisberg
et al. 2020). Plasmid clonality is particularly striking when con-
trasted with the population structure of their bacterial hosts,
which partake in pervasive recombination at levels that can ob-
scure strain phylogeny (Garud et al. 2019; Sakoparnig et al.
2021; Shi et al. 2022). The clonality and lack of diversity can be par-
tially attributed to their simplified ecological niche, whichmay fa-
vor rapid cycles of selective sweeps. Further characterization of the
adaptive landscape ofMGEs in the gut and elsewhere will require a
larger data set. In summary, this work presents a new tool that al-
lows reconstruction of ecMGEs from readily available public meta-
genomic shotgun data and that may help to elucidate the
evolution and dissemination of mobile genetic elements within
and between environments.

Methods

Graph theory

Assembly graph

A contig x is a sequence of nucleotides from the set {A, G, C, T} and
is associated with a head vertex vheadx (5′ contig end), a tail vertex vtailx
(3′ contig end), and an internal directed edge e(x) = (vheadx , vtailx ). A pair
of contigs, x, y, is associated with an external directed edge
e(x, y) = (vtailx , vheady ). A contig set is called nonredundant if for every
contig x in the set, the reverse complement of x, denoted by x′, is
not in the set. Let X be a nonredundant contig set. We denote all

vertices of X by V = <x[X{vheadx , vheadx′ , vtailx , vtailx′ } and all edges of X
by E = <x[X{e(x), e(x′)}<<x,y[X{e(x, y), e(x′, y), e(x, y′), e(x′, y′)}.
The directed assembly graph of the contig set X is then defined to
be G= (V, E).

Circuits and cycles

Let �x = (x0, x1, . . . , xn−1) be a sequence of directed contigs in X, or
formally, it holds that (xi [ X)∨((x′i [ X) for i = 0, . . . , n− 1. The
circuit p(�x) is a walk in G that traverses the graph through the
vertices V( p(�x)) = (vheadx0 , vtailx0 , vheadx1 , vtailx1 , . . . , vheadxn−1

, vtailxn−1
, vheadx0 ) and

with matching edges E(p(�x))= (e(x0),e(x0,x1), e(x1), ...,e(xn−1,x0)).
We note that the same circuit p(�x) can be represented in n alterna-
tive ways by selecting a different starting contig. The circuit p(�x) is
called a cycle if it does not traverse a contig or its reverse comple-
ment more than once, or formally, maxx∈X|{0≤ i<n:(xi= x)∨(xi=
x′)}|≤1. The reverse complement of p(�x), denoted by p(�x)′, is the
circuit associated with the contig sequence (x′n−1, . . . , x′0).

Cycle and edge coverage

We denote the collection of all circuits in the graph G by C. Note
that by definition there is a one-to-one relationship between C
and all possible circular genomes composed of oriented contigs se-
lected from X. The genome coverage H:C→R≥0 is a latent function
that satisfies H(c) =H(c′). This condition is required because the
two strands of a molecule have the same coverage by definition. H
(c) represents the coverages of the circular genome associated with
the circuit c. The edge multiplicity mc(e)≥0 of an edge, e∈E, is the
number of times the edge is traversed in the circuit c, or formally,mc-

(e) = |{x∈E(c):x= e}|. The edge coverageW:E→R≥0 is theweighted sum
of the circuit coverages as they traverse edges, or formally,
W(e) = ∑

c[C
mc(e) ·H(c). The observed assembly graph overH, denoted

byG>0= (V, E>0) andwith E>0= {e∈E:W(e) >0}, isG restricted to edg-
es with positive coverages. We define R= {c∈C:H(c) > 0}. We refer to
the circular genomes associated with circuits for whichH is positive
as the underlying genome configuration of the community.

Assessing genome coverages using edge coverages

Although genome coverage H and its induced genome configura-
tion are latent, edge coverage W is an observed variable. We first
assume that W is known and use it to define dominant cycles. In
the implementation section below, we describe how we estimate
W by mapping paired reads back onto the assembly. The underly-
ing genome configuration of an evolving and complex microbial
populationmay include the repetition of genetic sequenceswithin
the same genome or between different genomes. Accordingly, H
can have a positive value for partially overlapping circuits.
Althoughwe allowH to have a positive value on any circuit, we fo-
cus on characterizing H solely over graph cycles. We do this by de-
fining two latent and two observable variables for each cycle as
follows.

Cycle multiplicity

Let �x = (xi)
nx−1
i=0 be the contigs of a cycle c = p(�x), let �y = (yi)

ny−1
i=0 be

the contigs of a circuit t = p(�y), and letm≥0 be a nonnegative nat-
ural number.We say the c has a multiplicity ofm in t if there exists
0≤ sx< nx and 0≤ sy<ny such that x(sx+i)(mod nx) = ysy+i for i=0, …,
(m−1) ·nx. In words, c has a multiplicity of m in t if there exists a
subset of t that traverses along the edges of c while visiting one
of the contigs of c at least m times before leaving the cycle. Note
that the final and possibly partial pass along the contigs of c is
counted toward the multiplicity. By definition, every cycle c has
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a multiplicity of zero in any circuit t. We define the cycle-circuit
multiplicity μt(c) to be themaximalm for which c has a multiplicity
of m in t, and define the cycle multiplicity μ(c) =maxt∈Rμt(c). In
words, μ(c) is equal to themaximal cycle-circuitmultiplicity involv-
ing c for which the circuit t satisfies H(t) > 0.

Real and phantom cycles

Cycles are ambiguous in the sense that the precise number of cycle
turns involved in producing an associated circular genome (i.e.,
tandem repeats) cannot be inferred from the graph. To address
this inherent ambiguity, we create a proxy for the genome cover-
age H using a generalized genome coverage ψ defined as follows:
For a cycle c= p((x0, x1, …, xn−1)), we use cm to denote the circuit
produced by m≥1 loops along the contigs that define the cycle,
or formally, cm= p((y0, y1, …, ym·n−1)) with yi= xi mod n for i=0, …,
m ·n−1. We define the generalized genome coverage of a cycle c to
be c(c) = ∑

m[N
H(cm) and call a cycle c for which ψ(c) > 0 a real cycle;

otherwise, we call it a phantom cycle.

Dominant cycles

Our goal is to distinguish between real and phantom cycles in the
face of an unknown and potentially complex background of ge-
nomes. This is a nontrivial task, as the assembly graphs of commu-
nity-based genome configurations may be riddled with phantom
cycles. For example, themere presence of n instances of an integrat-
ed repeat element results in n phantom cycles. We address this by
defining dominant graph cycles as follows. Let c be a cycle in the
graph. Given an edge e= (v, u) we say e is an outgoing edge of c if v
∈V(c) and e � E(c), and denote by Eout(c) the set of outgoing edges.
Similarly, we say e is an ingoing edge of c if u∈V(c) and e � E(c), and
denote by Ein(c) the set of ingoing edges. We define the bottleneck
coverage σ(c) =min e∈E(c)W(e), the outgoing coverage
tout (c) =

∑
e[Eout(c)

W(e), and the ingoing coverage tin(c) =
∑

e[Ein(c)
W(e).

We define the external coverage τ(c) = (τout(c) + τin(c))/2 and call the cy-
cle c a dominant cycle if σ(c) > τ(c). We also define the cycle score

s(c) = s(c)
t(c)

.

Lower bound on generalized genome coverage

The cycle multiplicity, μ, and generalized genome coverage, ψ, are
two latent variables of graph cycles. The following theorem estab-
lishes an association between themas a function of the twoobserv-
able cycle variables σ and τ.

Theorem1. LetX be a nonredundant contig set, letG be the
assembly graph ofX, letH be a latent genome coverage. For any cy-
cle c in G, it holds that σ(c)− μ(c) · τ(c)≤ψ(c).

See formal proof in Supplemental Note 1. In a nutshell, the
proof is based on the fact that any circuit other than the cycle itself
that contributes to the bottleneck coveragemust also contribute to
the external coverage on its way into and out of the cycle. The cy-
cle multiplicity accounts for the increased contribution to the bot-
tleneck of circuits that makes multiple turns within the cycle
before exiting. A simple corollary of this inequality is that if a cycle
is a phantom cycle (i.e., ψ(c) = 0), then μ(c)≥ s(c). In other words,
the multiplicity of a phantom cycle must be greater than or equal
to its score.

Data sets

Metagenomic and reference data sets

Reference genome sequences for 100 plasmids, 100 phages, and
155 microbial host genomes were downloaded from NCBI

(Supplemental Table 1). Shotgun data for the two focal subjects
were downloaded from the NCBI Sequence Read Archive
(SRA; https://www.ncbi.nlm.nih.gov/sra) database, accession
numbers SRR8187104 (gut sample #1) and SRR8186375 (gut sam-
ple #2). The 30metagenomic data sets used in this work were pub-
lished in studies involving human stool samples from healthy
subjects (The Human Microbiome Project Consortium 2012), a
marine environment (Biller et al. 2018), and wastewater
(Hendriksen et al. 2019). For each of the three environments, we
chose the top 10 samples with the highest read count from unique
geographic locations or subjects (Supplemental Table 3). The
CAMI Low data set was downloaded from http://gigadb.org/
dataset/100344, and the reference circular genomes were consid-
ered as the elements in the circular_one_repeat subdirectory.

Simulated plasmid and phage configurations

A genome configuration is composed of a set of circular genomes
with associated x-coverage values. To generate a plasmid configu-
ration, a 50-kb circular random sequence (“central allele”) was gen-
erated, and n=8 circular variants were subsequently generated by
introducing for each variant a single-genome rearrangement event
on the sequence of the central allele. The rearrangement events
were selected in equal probability among insertions, inversions,
and deletions. An insertion involved introducing a sequence of a
length chosen uniformly from the range 100 bp–10 kb and insert-
ed at a random genome coordinate of the central allele. An inver-
sion or deletion involved a randomgenome segment with a length
that followed a uniform distribution. For a prophage configura-
tion, a 10-kb phage circular genome sequence (“central allele”)
and a 1-Mb host chromosome circular genome sequencewere gen-
erated. The sequence of the phage genome was integrated at n=8
random locations along the chromosome genome. For both plas-
mid and phage, the central allele was assigned an x-coverage F be-
tween five and 100, increasing in steps of five. For a plasmid
configuration, the x-coverage of each variant was assigned a frac-
tion of 100− F weighted by the beta distribution Beta(α=2, β=2).
For a phage configuration, the x-coverage of the host chromosome

was set to
100− F

n
. For each central allele frequency, 30 configura-

tion replicates were used, producing a total of 1200 configurations
for the plasmid and the phage scenarios.

Reference-based configurations

The simulated chromosomal metagenome configuration was cre-
ated using 155 reference bacterial chromosome FASTA files select-
ed from diverse taxa as specified in Supplemental Table 1.
Reference sequences in the reference FASTA file that either were
<200 kb or contained the “plasmid” keyword in the sequence
header were removed. Each reference sequence was assigned an
x-coverage sampled uniformly in the range of 10× to 75×. Each ref-
erence plasmid or phage genomewas run as a separate data setwith
an x-coverage of 50×.

Simulating sequence data

For each specific genome configuration (either phage, plasmid or
chromosomal), a read data set was generated as follows. The total
number of reads for a genome was computed such that the mean
x-coverage matched the x-coverage specified in the configuration,
taking into account the length of each read side, which was set to
150 bp. A single paired read was generated by selecting a random
strand and coordinate on a genome, as well as with a read insertion
size (i.e., distance between read sides) that followed a normal dis-
tributionwith amean of 200 bp and a standard deviation of 15 bp.
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Implementation overview

We first give a short overview of the implementation before diving
into the technical details. We designed an algorithm that recovers
all dominant cycles in an assembly graph (Algorithm 1). The algo-
rithm reports only dominant cycles (for proof, see Supplemental
Note 2) and does not miss dominant cycles (for proof, see
Supplemental Note 3). We implemented a tool (DomCycle) that re-
ceives a metagenomic assembly and a set of paired readsmapped to
the assembly as input and then outputs all dominant cycles in the
assembly graph. DomCycle works by applying first a contig-level
step that identifies candidate cycles from the assembly graph. In
this step, the edge coverageW is estimated usingmapped read den-
sities within contigs and between contigs. Then, Algorithm 1 is ap-
plied to find a set of candidate cycles. In a second nucleotide-level
step, candidate cycles are scrutinized at single-nucleotide resolu-
tion. Thenucleotide-level step is designed to address issues that arise
from assembly limitations outside the scope of the theoretical
framework, such as overassembly (concatenated contigs that are
nonadjacent in some underlying genomes) and fragmentation
(i.e., missing or very short contigs). In this step, candidate cycles
are tested using two nucleotide-level criteria that incorporate
mapped read densities along the cycles. Broadly speaking, the nu-
cleotide-level definitions of dominant cycles adapt the theoretical
definitions to the peculiarities of metagenome assemblies. Based
on the previously defined cycle score s(c), we define a nucleotide-
level version called the global nucleotide-level score. It is computed
by considering all reads that map on both sides to the assembly
and on at least one side anywhere along the cycle. A second score,
called the local nucleotide-level score,was designed to directly address
the distributionof singleton reads forwhich one side didnotmap to
the assembly owing to assembly fragmentation. The local score is
designed to filter out cases in which a cycle is not real but was inte-
grated into a larger genomic context through sequences that failed
to assemble. To account for stochasticity in read distribution, P-val-
ues are assigned to the two nucleotide-level scores by modeling the
number of reads using a binomial distribution. Candidate cycles for
which both global and local nucleotide-level scores are significantly
greater than one (P<0.01) are reported as dominant cycles, along-
side their corresponding genomes.

Algorithm 1: Find dominant cycles in graph

Input: Graph G>0 =G(E, V, W)
Output: Set of dominant cycles R
1 R = ∅;
2 For each edge e0 = (v0, u0) in E do:
3 c= (e0), v = v0, u = u0, b=W(e0), a = 0, is open = true;
4 while a<b and is open do:
5 N= {e= (x, y)∈ E:x=u};
6 M= {e∈N:W(e)≥b};
7 if |M|≠1 then break; {m} =M;
8 u = tail vertex(m);
9 is open = u � cycle vertices(c);
10 push_back(c,m);
11 a = a+ ∑

e[N\m
W(e);

12 if v=u and a<b then insert (R,c);
13 return R;

Implementation details

Basic read processing

All raw reads of a given data set were processed as follows. Exact
duplicate reads were removed using a custom in-house C++ pro-
gram. Sequencing adapter removal and sequencing quality filtering
was performed using Trimmomatic (Bolger et al. 2014) (v0.38)

with the command parameters “LEADING:20 TRAILING:3
MAXINFO:60:0.1 -phred33.”Readsmapping to the humangenome
were discarded from downstream analysis using DeconSeq (v0.4.3,
hg38 as reference) (Schmieder and Edwards 2011).

Genome assembly

Paired-end reads were assembled usingMEGAHIT (v1.1.3) (Li et al.
2015) with the parameters “‐‐merge-level 1000,0.95 ‐‐k-min 27 ‐‐k-
max 77.” If MEGAHIT did not assemble up to k=77, the assembly
with the greatest k-mer size was used. Contigs <231 bp were dis-
carded to ensure external edges are properly assigned weights
(see below). To map reads back onto the assembly, read sides
were trimmed to include only the first 50 bp of each read side,
and sides were mapped separately to the assembly using BWA
(v0.7.12) (Li and Durbin 2009). Downstream analysis was limited
to mapped read sides by filtering out sides for which (1) the match
length did not span the entire 50 bp or (2) the mapping edit dis-
tance was greater than one. A FASTG was created using the con-
tig2fastg program from the megahit toolkit (v1.1.3).

Internal edge weight

Intra-contig reads were classified as forward-facing, back-facing, left-
facing, and right-facing reads based on the relationship between
strands and coordinate order. For example, a read was classified
as a forward-facing read if the read side mapping to the b=W(e0)
molecule length (IML) of forward-facing readswas defined as the dis-
tance between the two start coordinates of the read sides. M was
defined to be themedian of the IML distribution. Themax read dis-
tance (MD) was calculated by taking the 99.5th percentile of the
distribution of IMLs of 100,000 randomly selected forward-facing
reads and adding a safety margin of 200 bp. The x-coverage of a

contig was estimated by
RS × RL

CL
, where RS is the number of

mapped read sides that mapped to the contig, and CL is the contig
length. RL was calculated as the average pretrimmed read side
length for 1000 randomly selected reads. The two internal edges
associated with a contig and its reverse complement were assigned
a weight equal to the estimated x-coverage of the contig.

External edge weight

External edge weights were calculated based on external reads, de-
fined as the union of inter-contig reads and back-facing intra-con-
tig reads. We defined for each external read the external inferred
molecule length EML= d1 + d2− k, where di is the distance between
the start coordinate of a read side and the coordinate of the contig
end that is reached ifmoving in the strand direction, and k is the k-
mer length used for assembly (here, k = 77). Each external read was
associated with two corresponding external edges, that is, e(x, y)
and e(y′, x′). An external read was classified as supporting an exter-
nal edge (for both associated edges) if (1) EML , MD for the read,
and (2) the mapped contig segments were not contained in the
segment of (k + 3) bases at the beginning or the end of the associ-
ated contig. The weight of an external edge was defined as
2 × UPR × RL

M
×M + k

M
, where UPR is the number of reads sup-

porting the edge, and RL is the pretrimmed read side length. The
last term in the formula is included to account for discarded reads
that mapped to the first or last (k + 3) bases of a contig. Theweight-
ed assembly graphwas composed of vertices and internal edges for
all contigs and all external edges that had a positive weight.
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Classifying reads that map to a candidate dominant cycle

Candidate dominant cycles (candidates) were generated from the
weighted assembly graph using an implementation of Algorithm
1. In the implementation, the dominance test (condition a< b
on lines 4 and 12) was omitted while generating the candidate cy-
cles and replaced by two nucleotide-level dominance tests, as de-
scribed below. For a given candidate, all reads for which at least
one sidemapped to the cycle were classified into one of the follow-
ing groups. A read was classified as a cycle-support read if (1) the two
read sidesmapped to opposite cycle strands after the relative orien-
tations of the cycle contigs were accounted for and (2) either the
read was an intra-contig read with IML≤MD or the read bridged
a pair of consecutive contig ends along the cycle and EML≤MD.
If both read sides mapped to contigs in the cycle but conditions
1 or 2 were not satisfied, the read was classified as an intra-nonsup-
port read. If one read side mapped to a contig in the cycle and the
other mapped to a contig not in the cycle, then the read was clas-
sified as an inter-read. The remaining case, in which one read side
did not pass our mapping criteria and the other side mapped to
the cycle, was classified as a singleton read. Read sides classified as
intra-nonsupport, inter, or singleton were subclassified into in-
tra-nonsupport-in, intra-nonsupport-out, inter-in, inter-out, sin-
gleton-in, and singleton-out based on the relative orientation of
the read side that mapped to the cycle and the cycle itself.
Together, for a given cycle, there was one class that supported
the cycle (“cycle-support”) with a matching read count of
Nsupport and six nonsupporting read classes with matching read
counts:Nin

intra, N
out
intra, N

in
inter, N

out
inter, N

in
singleton, N

out
singleton. The total non-

support coverage (Tc) of a candidate c was set to
(Nin

intra +Nout
intra +N in

inter + Nout
inter)/2.

Base pair level coverages

For a cycle p((x0,…, xn−1)), any coordinate t within a contig xi was

converted to the cycle coordinate y(t, i) = t + ∑i−1

j=0
(Lj − k), where Li

is the length of xi and k is the k-mer size used for assembly. For ev-
ery read side that mapped to a contig within a cycle, a cycle strand
was determined based on themapped contig strand and the orien-
tation of the contig within the cycle. We define the cycle nucleo-
tides that are covered by a read as follows. If the readwas classified as
a cycle-supporting read, it covered all bases between the two cycle
coordinates defined by the start of each read side while taking into
account the two facing cycle strands. In the remaining cases, in
which a readwas classified as an intra-nonsupport, inter, or single-
ton, read sides contributed separately to their respective coverage
profiles. In those cases, a read side covered all cycle coordinates
within the segment that started on the cycle coordinate at the start
of the read side and ended M base pairs away while moving along
the appropriate cycle strand. All reads were traversed and the nu-
cleotide-level coverage profile was computed for the seven types:
supporting, in-intra, out-intra, in-inter, out-inter, in-singleton,
and out-singleton. Each profile was a vector of the form nP

c [i],
where c is a cycle, P is the profile type, and i is the cycle coordinate.

Cycle scores and P-values

For each candidate c, we computed the base bottleneck coverage
Bc = min0≤i,L(c)(n

support
c [i]), where L(c) is the length of the cycle c.

The global nucleotide-level score was set to
Bc

Tc
. To assign a P-value

for the score, we use a null hypothesis that assumes Tc is distribu-

ted according to the binomial distribution B n = N, p = Bc

N

( )
,

where N is the total number of reads that mapped to the assembly,
and compute the probability of sampling a value x≤Tc. The local
nucleotide-level score was computed as follows: For each base po-
sition i in a candidate c, we calculated Tlocal

c [i] = max(nin
c [i], n

out
c [i]),

where nin
c [i] = nin−intra

c [i]+ nin−inter
c [i]+ nin−singleton

c [i] and

nout
c [i] = nout−intra

c [i]+ nout−inter
c [i]+ nout−singleton

c [i]. The nucleotide-

level local score was defined to be min0≤i,L(c)
Blocal
c [i]

Tlocal
c [i]

( )
, where

Blocal
c [i] = nsupport

c [i]. We computed the P-value of the null hypothe-
sis Blocal

c [imin] ≤ Tlocal
c [imin] for the coordinate imin, where the mini-

mal score was achieved using a binomial distribution as for the
global score. A candidate was reported as a vetted dominant cycle
if the P-value was under 0.01 for both the global and local nucleo-
tide-level scores.

Performance evaluation

Effect of thresholds

Weevaluated the precision and recall of DomCycle as a function of
score thresholds and, separately, minimum contig length thresh-
olds. Minimum contig length thresholds were selected from {1x,
…, 12x}, where x is the standard k-mer size used for assembly (k =
77). Score thresholds applied to both the global and local scores
and were selected from {0.25, 0.5, 0.75, 1, 1.5, 2, 5, 10}. Each refer-
ence genome was run as a separate data set when running with an
alternative parameter threshold.

Effect of assembler

The focal subject sample was assembled with metaSPAdes (part of
SPAdes v3.14.1; k = 77) and input to DomCycle. We aligned all
MGEs reported by DomCycle using themetaSPAdes orMegahit as-
semblies as input. Two elements (ei, ej) were clustered into cluster ck
following the clustering procedure for MGEs (MGE Clusters). The
reported element overlap was the number of clusters containing
a MGE reported using both the metaSPAdes and Megahit assem-
blies as input.

Tool comparison

DomCycle was compared to metaplasmidSPAdes (part of SPAdes
v3.14.1) (Antipov et al. 2019), Recycler (v0.62) (Rozov et al.
2017), and SCAPP (downloaded June 2020) (Pellow et al. 2021)
on reference-based plasmids, the reference-based phage, and the
simulated chromosomalmetagenome. Tools were runwith default
parameters. Recycler and SCAPP were supplied FASTGs generated
from the same assemblies used as input for DomCycle, while in-
cluding contigs <231 bp that are discarded by DomCycle (short
contigs are needed by those tools to establish contig–contig adja-
cencies as they do not leverage paired reads). MetaplasmidSPAdes
was run with a maximum k-mer size of 77 and with the parameter
“‐‐assembly-only”when running a simulated data set. For Recycler
and SCAPP, BAM files were generated with BWA and filtered using
the view command in SAMtools (v1.9) (Li et al. 2009) with param-
eters “-bF 0 ×0800” as recommended at https://github.com/
Shamir-Lab/Recycler (Nov. 2020). For each tool, we considered
output FASTA files for element reporting. For SCAPP, we only con-
sidered output sequences classified as “confident” predictions. For
metaplasmidSPAdes, we considered the output file “contigs.fasta”
for element reporting. For the CAMI Low data set, elements report-
ed by the tools were aligned to the n=20 reference circular ge-
nomes using NUCmer. A reported element corresponded to a
reference circular genome if there was >90% ANI (MGE Clusters)
and preserved genome sequence order. Additionally, each tool
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reported a single element from the CAMI Low data set associated
with the PhiX genome, which was removed from analysis. For
each subset of tools S, the report overlap was the number of refer-
ence circular genomes aligned to an element reported by each tool
in S. Furthermore, elements reported by DomCycle, metaplasmid-
SPAdes, and SCAPP on the focal subject (see Fig. 4C) were aligned
to each other in pairs and clustered following the clustering proce-
dure for MGEs (MGE Clusters).

Computing scores for metaplasmidSPAdes

Global and local scores were computed for each element reported
by metaplasmidSPAdes on the focal subject using an alternative
procedure. An alternative procedure was used because a descrip-
tion of the contigs comprising reported elements was not identi-
fied in the output files supplied by metaplasmidSPAdes. For both
alternative global and local scores, the input reads were aligned
to the set of reported elements. The global score was computed
by classifying nonsupport reads as the sumof singleton, intra-non-
support, and inter reads mapping to the cycle, averaged across the
two strands. The local score was computed according to the stan-
dard procedure, but we note that the missing side of a singleton
read may have aligned to a genomic region not contained in the
set of elements reported by metaplasmidSPAdes. Accordingly, we
term the global score as “harsh” and the local score as “loose.”

Performance of runs

Configurations were evaluated in the context of runs, defined as
the output of running a DNA data set associated with a configura-
tion using a specific tool. For a given genome configuration, the se-
quences (FASTA format) of output cycles were aligned to
the original genome configuration using NUCmer (run with
“‐‐maxmatch”), and NUCmer results were parsed using show-
coords (run with “-L 200 -I 99.5”). For each genome in a configu-
ration, we calculated the percentage of the genome covered by
each reported cycle in a run. For each reported cycle in a run, we
identified the nearest genome, defined as the genomewith themax-
imum number of bases covered by the reported cycle. We deter-
mined that the genome sequence order of the nearest genome
was preserved by a reported cycle if the following two conditions
were satisfied: (1) the alignments between the reported cycle and
genome occur only on one reported cycle strand and one genome
strand and (2) when traversing from the beginning of the genome
to the end, every alignment to the reported cycle strictly occurs in
the order of the reported cycle sequence.

Recall and precision for reference data sets

For reference-based runs shown in Figure 2, a run was classified as
successful if one of the reported cycles had an alignment coverage
>90% of the length of the reference genome, with preserved ge-
nome sequence order. Reference genome sequences of plasmids
and phagewere grouped into a plasmid and a phage data set collec-
tion. The recall of a collection was defined as the number of suc-
cessful runs divided by the number of genomes in the collection.
The precision was defined as the number of successful runs in
the collection divided by the total number of reported cycles in
the collection.

Recall and precision for simulated data sets

For the simulated plasmid and phage configurations shown in
Figure 3, a run was classified as successful if one of the reported cy-
cles had an alignment coverage on the central allele >98%, with
preserved sequence order. The recall value associatedwith a config-

uration associatedwith a specific central allele frequencywas set to
the number of successful runs divided by the number of replicates
(n=30 replicates were used). Precision was defined as the number
of runs aligning to one of the genomes in the configuration with
coverage >98% and sequence order preserved divided by the num-
ber of reported cycles. If no cycles were reported, precision was de-
faulted to 100%.

Cycle characterization

Gene annotation

Genes were predicted on dominant cycles using Prodigal (v2.6.3)
(Hyatt et al. 2010). Translated gene predictions were aligned to
UniRef100 (downloaded July 2020) (Suzek et al. 2007) using
DIAMOND (Buchfink et al. 2015) BLASTP with “–sensitive” and
a maximum e-value of 0.001. For a gene with multiple alignments
to UniRef100, the alignment with the greatest sequence identity
was kept, where identity is defined as the alignment similarity
multiplied by the fraction of the target gene that was covered by
the alignment. HMMER hmmscan (http://hmmer.org v3.1.b2)
was used to report cycle gene alignments to the Pfam database
(downloaded August 2019) (Finn et al. 2014) with a maximum e-
value of 0.001.

Cycle classification

The names of gene hits in the UniRef100 and Pfam databases were
used to classify dominant cycle into one of the following function-
al categories: plasmid, phage,mobile, or undefined. A cycle was as-
signed to a functional category if one or more of its genes matched
one of the following regular expressions, tested while accepting
both lower and upper case. The plasmid category expressions
used were “plasmid,” “conjug.∗,” “trb$,” “Mob[A-E]$∗,” and “Par
[A-B].” The phage category expressions were “capsid,” “phage.∗,”
“tail,” “head,” “tape,” “antitermination,” “virus.∗,” “bacterio-
phage,” “sipho∗,” “baseplate,” “T4-like.∗,” and “myovir.∗.” The
mobile category expressions were “transpos.∗,” “resolvase,” “tox-
in,” “antitoxin,” “excision∗,” “integrase,” “relaxase,” “recombina-
tion,” “segregation,” “extrachromosomal,” “mobilization,” and
“partitioning.” If a cycle met classification for more than one cat-
egory, then the cycle was assigned to the first matched category in
the list: phage, plasmid,mobile. If a cyclematched none of the three
categories, it was assigned to the undefined category. Circulating cy-
cles (i.e., associated with one of the 20 clusters) were further anno-
tated as described below.

Cycle coverages and APs

We define the AMC of a dominant cycle c to be Mc−Tc where Mc

denotes the median base pair support. For each sample separately,
we generated pseudo-dominant genomes (PDGs) as follows. We con-
sidered candidate PDGs as contigs that do not contribute to a dom-
inant cycle and were larger than 2∗MD. Profiles were computed for
candidate PDGs using the same read classification procedure
used for candidates. The PDG base bottleneck coverage was
computed while avoiding contig sides, or formally,
B′
p = minMD≤i,(L(c)−MD)(n

support
p [i]). The total nonsupport coverage of

PDGs (T ′
p) was also computed while avoiding the first and last

MD bases on the contig. The global nucleotide-level score of PDGs

was set to
B′

p

T ′
p
. Similarly, the local score for a candidate PDG was

computed while omitting positions that were up to MD bases
from contig ends. A candidate PDG was classified as a vetted
PDG if it passed the global nucleotide score test and the local score
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test. The AMC of a vetted PDG p was set to M ′
p − T ′

p, where M ′
p is

themedian support coverage computed over contig bases between
the first and last MD bases. The abundance percentile of a dominant
cycle was set to the percentile of the AMC of the cycle within the
distribution of AMC values across all PDGs in the sample. One-sid-
ed Kolmogorov–Smirnov tests were used to test whether a distribu-
tion of dominant cycle AMCs was enriched over a background of
AMCs. To calculate the coverage distribution of contigs in the as-
sembly, we calculated the median coverage for each PDG along
the bases between the first and last MD bases in the contig.

Cycle clustering

MGE clusters

The corresponding genomes of all dominant cycles recovered from
the 32 samples described in this study were aligned in pairs using
NUCmer (run with “‐‐maxmatch” part of the MUMmer v3.1
package) (Kurtz et al. 2004). Single-nucleotide polymorphisms
(SNPs) between cycle pairs were identified using show-snps (part
of MUMmer). The alignment metrics for two cycles, ci and cj,
were defined as follows. The alignment fraction was

F(ci, cj) = O(ci)
L(ci)

+ O(cj)
L(cj)

( )
/ 2, where O(c) denotes the number of

bases in cycle c covered by the alignment, and L(c) denotes the
length of cycle c. The alignment identity I(ci, cj) was the ANI within
the aligned fraction. The weighted alignment identity (referred to as
the ANI in the main text) was set to A(ci, cj) = F(ci, cj) × I(ci, cj), effec-
tively counting nonaligned regions as having zero identity. The ge-
nome distance used to cluster cycles wasD(ci, cj) = 1−A(ci, cj). Cycles
were clustered based on their genome distances using a threshold
of 0.05 (equal to 95% ANI) and using single linkage. A single clus-
ter associated with the PhiX genome and all clusters with a single
member were discarded from the analysis. All cycles associated
with multimember clusters were termed circulating cycles.

PLSDB references

A representative cycle for each cluster in a circulating species was
aligned to PLSDB (Galata et al. 2019) using “mash dist” (distance
cutoff of 0.25) through the PLSDB webserver. Each PLSDB refer-
ence was downloaded and aligned using NUCmer, and genome
distances were computed in pairs between all reference sequences
and the genomes of circulating cycles, as described above.

Annotation of circulating cycles

For each cycle c belonging to a multimember cluster, we predicted
genes by triplicating the cycle sequence and concatenating each
copy together sequentially. We only considered genes on cycle c
where the gene start coordinate x (on the triplicated cycle se-
quence) satisfied L(c) < x≤2× L(c). In addition to the annotation
procedure described in the section “Gene annotation” above,
HMMER hmmscan was used to align (with a max e-value of
0.001) genes to families of mobilization genes, secretion systems,
and conjugation genes downloaded from COPLA (https://castillo
.dicom.unican.es). Separately, Pfam and UniRef gene classifica-
tions were inspected for toxin–antitoxin genes and replication
genes. The complete annotations of all genes on circulating cycles
are found in Supplemental Table 5. The MOB column in Table 1
was determined based on Relaxase HMM hits to the mobilization,
secretion, or conjugation gene families obtained fromCOPLA. The
“uncharacterized” column in Table 1 was determined based on the
number of genes that had no HMM/Pfam hits and either had no
hits in UniRef or matched an uncharacterized or hypothetical pro-
tein. The addiction column in Table 1 was determined based on

toxin–antitoxin Pfam and UniRef annotations and included de-
scriptions such as “antitoxin Phd_YefM,” “YoeB-like toxin,”
“ParE toxin,” “antitoxin VbhA,” “antidote-toxin recognition
MazE,” “PemK-like, MazF-like toxin,” and “RelE toxin.” The repli-
cation column in Table 1 was determined based on the Pfam and
UniRef descriptions “replication protein,” “RepB family,” “initia-
tor replication protein,” “replication factor-AC terminal domain,”
and “firmicute plasmid replication protein (RepL).” The 16 clusters
that had a MOB or replication gene were classified as plasmids.
Clusters M6, M12, M13, and M15 were left undetermined.

Phylogenetic trees

The phylogeny trees in Figure 6 were generated as follows. Given a
reference “pivot” cluster member, all SNPs that separated the pivot
member and other cluster members (identified by NUCmer) were
used to generate a multisequence alignment based on the refer-
ence genome of the pivot member. In case of an indel (denoted
by a “.” by show-coords of NUCmer), a gapwas placed in the align-
ment. PhyML (Guindon et al. 2010) was run on the alignment
with default parameters and optionally marking an outgroup
(see below). In the case of M1, the three members of M1b were
marked as outgroup members when running PhyML for visualiza-
tion purposes. Similarly, the Enterobacter hormaechei reference was
marked as an outgroup for M18.

Data access

The genomes of the ecMGEs reported in this study have been sub-
mitted to the third-party annotation section (TPA) of the NCBI
GenBank database (https://www.ncbi.nlm.nih.gov/genbank/) un-
der accession numbers BK061279–BK061297. The source code for
DomCycle is available as Supplemental Code and atGitHub (https://
github.com/nshalon/DomCycle).

Competing interest statement

The authors declare no competing interests.

Acknowledgments

We thank Les Dethlefsen and Benjamin Good for their insightful
comments. Research reported in this publication was supported
by the National Institute of Allergy and Infectious Diseases of
the National Institutes of Health (grant number R01AI147023 to
D.A.R.) and the Thomas C. and Joan M. Merigan Endowment at
Stanford University (to D.A.R.).

References

Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A, Pevzner PA. 2016.
plasmidSPAdes: assembling plasmids from whole genome sequencing
data. Bioinformatics 32: 3380–3387. doi:10.1093/bioinformatics/
btw493

AntipovD, RaikoM, Lapidus A, Pevzner PA. 2019. Plasmid detection and as-
sembly in genomic and metagenomic data sets. Genome Res 29: 961–
968. doi:10.1101/gr.241299.118

Arredondo-Alonso S, Willems RJ, van Schaik W, Schürch AC. 2017. On the
(im)possibility of reconstructing plasmids from whole-genome short-
read sequencing data. Microb Genom 3: e000128. doi:10.1099/mgen.0
.000128

Beitel CW, Froenicke L, Lang JM, Korf IF, Michelmore RW, Eisen JA, Darling
AE. 2014. Strain- and plasmid-level deconvolution of a synthetic meta-
genome by sequencing proximity ligation products. PeerJ 2: e415.
doi:10.7717/peerj.415

Biller SJ, Berube PM, Dooley K, Williams M, Satinsky BM, Hackl T, Hogle SL,
Coe A, Bergauer K, Bouman HA, et al. 2018. Marine microbial

Precise genotyping of circular mobile elements

Genome Research 1001
www.genome.org

https://castillo.dicom.unican.es
https://castillo.dicom.unican.es
https://castillo.dicom.unican.es
https://castillo.dicom.unican.es
https://castillo.dicom.unican.es
https://castillo.dicom.unican.es
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275894.121/-/DC1
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275894.121/-/DC1
https://github.com/nshalon/DomCycle
https://github.com/nshalon/DomCycle
https://github.com/nshalon/DomCycle
https://github.com/nshalon/DomCycle


metagenomes sampled across space and time. Sci Data5: 180176. doi:10
.1038/sdata.2018.176

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for
illumina sequence data. Bioinformatics 30: 2114–2120. doi:10.1093/bio
informatics/btu170

Browne PD, Nielsen TK, Kot W, Aggerholm A, Gilbert MTP, Puetz L,
Rasmussen M, Zervas A, Hansen LH. 2020. GC bias affects genomic
and metagenomic reconstructions, underrepresenting GC-poor organ-
isms. Gigascience 9: giaa008. doi:10.1093/gigascience/giaa008

Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment
using DIAMOND. Nat Methods 12: 59–60. doi:10.1038/nmeth.3176

Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa
L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of
plasmids using PlasmidFinder and plasmidmultilocus sequence typing.
Antimicrob Agents Chemother 58: 3895–3903. doi:10.1128/AAC.02412-
14

Cockram C, Thierry A, Gorlas A, Lestini R, Koszul R. 2021. Euryarchaeal ge-
nomes are folded into SMC-dependent loops and domains, but lack
transcription-mediated compartmentalization. Mol Cell 81: 459–
472.e10. doi:10.1016/j.molcel.2020.12.013

Conlan S, Thomas PJ, Deming C, Park M, Lau AF, Dekker JP, Snitkin ES,
Clark TA, Luong K, Song Y, et al. 2014. Single-molecule sequencing to
track plasmid diversity of hospital-associated carbapenemase-producing
Enterobacteriaceae. Sci Transl Med 6: 254ra126. doi:10.1126/sci
translmed.3009845

Deng Y, Xu H, Su Y, Liu S, Xu L, Guo Z, Wu J, Cheng C, Feng J. 2019.
Horizontal gene transfer contributes to virulence and antibiotic resis-
tance of Vibrio harveyi 345 based on complete genome sequence analy-
sis. BMC Genomics 20: 761. doi:10.1186/s12864-019-6137-8

Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GGZ, Boling L, Barr JJ,
Speth DR, Seguritan V, Aziz RK, et al. 2014. A highly abundant bacterio-
phage discovered in the unknown sequences of human faecal metage-
nomes. Nat Commun 5: 4498. doi:10.1038/ncomms5498

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A,
Hetherington K, Holm L, Mistry J, et al. 2014. Pfam: the protein families
database. Nucleic Acids Res 42: D222–D230. doi:10.1093/nar/gkt1223

Frost LS, Leplae R, Summers AO, Toussaint A. 2005. Mobile genetic ele-
ments: the agents of open source evolution. Nat Rev Microbiol 3: 722–
732. doi:10.1038/nrmicro1235

Galata V, Fehlmann T, Backes C, Keller A. 2019. PLSDB: a resource of com-
plete bacterial plasmids. Nucleic Acids Res 47:D195–D202. doi:10.1093/
nar/gky1050

Garud NR, Good BH, Hallatschek O, Pollard KS. 2019. Evolutionary dynam-
ics of bacteria in the gut microbiome within and across hosts. PLoS Biol
17: e3000102. doi:10.1371/journal.pbio.3000102

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O.
2010. New algorithms and methods to estimate maximum-likelihood
phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:
307–321. doi:10.1093/sysbio/syq010

He S, Hickman AB, Varani AM, Siguier P, Chandler M, Dekker JP, Dyda F.
2015. Insertion sequence IS26 reorganizes plasmids in clinically isolated
multidrug-resistant bacteria by replicative transposition. mBio 6:
e00762. doi:10.1128/mBio.00762-15

Hendriksen RS, Munk P, Njage P, van Bunnik B, McNally L, Lukjancenko O,
Röder T, Nieuwenhuijse D, Pedersen SK, Kjeldgaard J, et al. 2019. Global
monitoring of antimicrobial resistance based on metagenomics analy-
ses of urban sewage. Nat Commun 10: 1124. doi:10.1038/s41467-019-
08853-3

The Human Microbiome Project Consortium. 2012. A framework for hu-
man microbiome research. Nature 486: 215–221. doi:10.1038/
nature11209

Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. 2010.
Prodigal: prokaryotic gene recognition and translation initiation site
identification. BMC Bioinformatics 11: 119. doi:10.1186/1471-2105-
11-119

Jørgensen TS, Xu Z, Hansen MA, Sørensen SJ, Hansen LH. 2014. Hundreds
of circular novel plasmids and DNA elements identified in a rat cecum
metamobilome. PLoS One 9: e87924. doi:10.1371/journal.pone
.0087924

Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C,
Salzberg SL. 2004. Versatile and open software for comparing large ge-
nomes. Genome Biol 5: R12. doi:10.1186/gb-2004-5-2-r12

Lanza VF, de Toro M, Garcillán-Barcia MP, Mora A, Blanco J, Coque TM, de
la Cruz F. 2014. Plasmid flux in Escherichia coli ST131 sublineages, ana-
lyzed by plasmid constellation network (PLACNET), a new method for
plasmid reconstruction from whole genome sequences. PLoS Genet 10:
e1004766. doi:10.1371/journal.pgen.1004766

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–
Wheeler transform. Bioinformatics 25: 1754–1760. doi:10.1093/bioinfor
matics/btp324

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R, 1000 Genome Project Data Processing
Subgroup. 2009. The Sequence Alignment/Map format and SAMtools.
Bioinformatics 25: 2078–2079. doi:10.1093/bioinformatics/btp352

Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. 2015. MEGAHIT: an ultra-fast
single-node solution for large and complex metagenomics assembly via
succinct de Bruijn graph. Bioinformatics 31: 1674–1676. doi:10.1093/
bioinformatics/btv033

Maiques E, Ubeda C, Campoy S, Salvador N, Lasa I, Novick RP, Barbé J,
Penadés JR. 2006. β-Lactam antibiotics induce the SOS response and
horizontal transfer of virulence factors in Staphylococcus aureus. J
Bacteriol 188: 2726–2729. doi:10.1128/JB.188.7.2726-2729.2006

MetaHIT Consortium, Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li
J, Sunagawa S, Plichta DR, Gautier L, Pedersen AG, et al. 2014.
Identification and assembly of genomes and genetic elements in com-
plex metagenomic samples without using reference genomes. Nat
Biotechnol 32: 822–828. doi:10.1038/nbt.2939

Moss EL, Maghini DG, Bhatt AS. 2020. Complete, closed bacterial genomes
frommicrobiomes using nanopore sequencing. Nat Biotechnol 38: 701–
707. doi:10.1038/s41587-020-0422-6

Nissen JN, Johansen J, Allesøe RL, Sønderby CK, Armenteros JJA, Grønbech
CH, Jensen LJ, Nielsen HB, Petersen TN, Winther O, et al. 2021.
Improved metagenome binning and assembly using deep variational
autoencoders. Nat Biotechnol 39: 555–560. doi:10.1038/s41587-020-
00777-4

Obscura Acosta N, Mäkinen V, Tomescu AI. 2018. A safe and complete algo-
rithm for metagenomic assembly. Algorithms Mol Biol 13: 3. doi:10
.1186/s13015-018-0122-7

Pellow D, Zorea A, Probst M, Furman O, Segal A, Mizrahi I, Shamir R. 2021.
SCAPP: an algorithm for improved plasmid assembly in metagenomes.
Microbiome 9: 144. doi:10.1186/s40168-021-01068-z

Polz MF, Alm EJ, HanageWP. 2013. Horizontal gene transfer and the evolu-
tion of bacterial and archaeal population structure. Trends Genet 29:
170–175. doi:10.1016/j.tig.2012.12.006

Robertson J, Nash JHE. 2018. MOB-suite: software tools for clustering, re-
construction and typing of plasmids from draft assemblies. Microb
Genom 4: e000206. doi:10.1099/mgen.0.000206

Roosaare M, Puustusmaa M, Möls M, Vaher M, Remm M. 2018.
PlasmidSeeker: identification of known plasmids from bacterial whole
genome sequencing reads. PeerJ 6: e4588. doi:10.7717/peerj.4588

Roux S, Enault F, Hurwitz BL, SullivanMB. 2015. VirSorter: mining viral sig-
nal from microbial genomic data. PeerJ 3: e985. doi:10.7717/peerj.985

Rozov R, Brown Kav A, Bogumil D, Shterzer N, Halperin E, Mizrahi I, Shamir
R. 2017. Recycler: an algorithm for detecting plasmids from de novo as-
sembly graphs. Bioinformatics 33: 475–482. doi:10.1093/bioinfor
matics/btw651

Sakoparnig T, Field C, van Nimwegen E. 2021. Whole genome phylogenies
reflect the distributions of recombination rates for many bacterial spe-
cies. eLife 10: e65366. doi:10.7554/eLife.65366

SatoMP, Ogura Y, Nakamura K, Nishida R, Gotoh Y,HayashiM, Hisatsune J,
Sugai M, Takehiko I, Hayashi T. 2019. Comparison of the sequencing
bias of currently available library preparation kits for Illumina sequenc-
ing of bacterial genomes and metagenomes. DNA Res 26: 391–398.
doi:10.1093/dnares/dsz017

Schmieder R, Edwards R. 2011. Fast identification and removal of sequence
contamination from genomic and metagenomic datasets. PLoS One 6:
e17288. doi:10.1371/journal.pone.0017288

Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, Gregor I,
Majda S, Fiedler J, Dahms E, et al. 2017. Critical assessment of metage-
nome interpretation: a benchmark of metagenomics software. Nat
Methods 14: 1063–1071. doi:10.1038/nmeth.4458

Sentchilo V, Mayer AP, Guy L, Miyazaki R, Green Tringe S, Barry K, Malfatti
S, Goessmann A, Robinson-Rechavi M, van der Meer JR. 2013.
Community-wide plasmid gene mobilization and selection. ISME J 7:
1173–1186. doi:10.1038/ismej.2013.13

Shi ZJ, Dimitrov B, Zhao C, Nayfach S, Pollard KS. 2022. Fast and accurate
metagenotyping of the human gut microbiome with GT-Pro. Nat
Biotechnol 40: 507–516. doi:10.1038/s41587-021-01102-3

Shkoporov AN, Ryan FJ, Draper LA, Forde A, Stockdale SR, Daly KM,
McDonnell SA, Nolan JA, Sutton TDS, Dalmasso M, et al. 2018.
Reproducible protocols for metagenomic analysis of human faecal
phageomes. Microbiome 6: 68. doi:10.1186/s40168-018-0446-z

Sóki J, Wareham DW, Rátkai C, Aduse-Opoku J, Urbán E, Nagy E. 2010.
Prevalence, nucleotide sequence and expression studies of two proteins
of a 5.6 kb, class III, Bacteroides plasmid frequently found in clinical iso-
lates from European countries. Plasmid 63: 86–97. doi:10.1016/j
.plasmid.2009.12.002

Soucy SM, Huang J, Gogarten JP. 2015. Horizontal gene transfer: building
the web of life. Nat Rev Genet 16: 472–482. doi:10.1038/nrg3962

Shalon et al.

1002 Genome Research
www.genome.org



Stalder T, Press MO, Sullivan S, Liachko I, Top EM. 2019. Linking the resis-
tome and plasmidome to themicrobiome. ISME J 13: 2437–2446. doi:10
.1038/s41396-019-0446-4

Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH. 2007. UniRef: com-
prehensive and non-redundant UniProt reference clusters.
Bioinformatics 23: 1282–1288. doi:10.1093/bioinformatics/btm098

Suzuki Y, Nishijima S, Furuta Y, Yoshimura J, SudaW, Oshima K, Hattori M,
Morishita S. 2019. Long-read metagenomic exploration of extrachro-
mosomal mobile genetic elements in the human gut. Microbiome 7:
119. doi:10.1186/s40168-019-0737-z

von Wintersdorff CJH, Penders J, van Niekerk JM, Mills ND, Majumder
S, van Alphen LB, Savelkoul PHM, Wolffs PFG. 2016. Dissemination
of antimicrobial resistance in microbial ecosystems through
horizontal gene transfer. Front Microbiol 7: 173. doi:10.3389/fmicb
.2016.00173

Wallace BL, Bradley JE, Rogolsky M. 1981. Plasmid analyses in clinical iso-
lates of Bacteroides fragilis and other Bacteroides species. J Clin Microbiol
14: 383–388. doi:10.1128/jcm.14.4.383-388.1981

Weisberg AJ, Davis EW, Tabima J, Belcher MS, Miller M, Kuo C-H, Loper JE,
Grünwald NJ, Putnam ML, Chang JH. 2020. Unexpected conservation
and global transmission of agrobacterial virulence plasmids. Science
368: eaba5256. doi:10.1126/science.aba5256

Wiedenbeck J, Cohan FM. 2011. Origins of bacterial diversity through hor-
izontal genetic transfer and adaptation to new ecological niches. FEMS
Microbiol Rev 35: 957–976. doi:10.1111/j.1574-6976.2011.00292.x

Yaffe E, Relman DA. 2020. Tracking microbial evolution in the human gut
using Hi-C reveals extensive horizontal gene transfer, persistence and
adaptation. Nat Microbiol 5: 343–353. doi:10.1038/s41564-019-0625-0

Zhou F, Xu Y. 2010. cBar: a computer program to distinguish plasmid-de-
rived from chromosome-derived sequence fragments in metagenomics
data. Bioinformatics 26: 2051–2052. doi:10.1093/bioinformatics/btq299

Received June 15, 2021; accepted in revised form April 1, 2022.

Precise genotyping of circular mobile elements

Genome Research 1003
www.genome.org


