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Abstract

Purpose: The objective of this study is to develop and evaluate a fully automated, deep learning-
based method for detection of COVID-19 infection from chest x-ray images.

Approach: The proposed model was developed by replacing the final classifier layer in
DenseNet201 with a new network consisting of global averaging layer, batch normalization
layer, a dense layer with ReLLU activation, and a final classification layer. Then, we performed
an end-to-end training using the initial pretrained weights on all the layers. Our model was
trained using a total of 8644 images with 4000 images each in normal and pneumonia cases
and 644 in COVID-19 cases representing a large real dataset. The proposed method was evalu-
ated based on accuracy, sensitivity, specificity, ROC curve, and F1-score using a test dataset
comprising 1729 images (129 COVID-19, 800 normal, and 800 pneumonia). As a benchmark,
we also compared the results of our method with those of seven state-of-the-art pretrained
models and with a lightweight CNN architecture designed from scratch.

Results: The proposed model based on DenseNet201 was able to achieve an accuracy of 94%
in detecting COVID-19 and an overall accuracy of 92.19%. The model was able to achieve an
AUC of 0.99 for COVID-19, 0.97 for normal, and 0.97 for pneumonia. The model was able to
outperform alternative models in terms of overall accuracy, sensitivity, and specificity.

Conclusions: Our proposed automated diagnostic model yielded an accuracy of 94% in the
initial screening of COVID-19 patients and an overall accuracy of 92.19% using chest x-ray
images.
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1 Introduction

Coronavirus 2019 (SARS-CoV-2 or COVID-19) is an infectious disease affecting the respiratory
system, which has caused a global pandemic and widespread morbidity and mortality in humans.
It has mild to severe symptoms similar to those of severe acute respiratory syndrome (SARS) and
Middle East respiratory syndrome (MERS), resulting in multiorgan damage.' Currently, two
tests are available for detection of COVID-19 in the affected patients: diagnostic tests (current
infection) and antibody tests (past infection). Diagnostic tests, such as reverse transcription pol-
ymerase chain reaction (RT-PCR) and antigen tests, are used for rapid diagnosis of COVID-19.
Since false positives (FPs) are more common in antigen tests, RT-PCR is used as the gold stan-
dard for diagnosis of the disease. RT-PCR tests require an intensive lab work to acquire the
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results,” and the cost of the test is a major concern in many countries that have a private health
system. Although the PCR and antigen test can now provide a rapid diagnosis, the assessment of
the lungs using medical imaging will provide information on disease burden. Also, faster and
earlier detection of COVID-19 would help in isolating the affected patients sooner to alleviate the
disease spread.

Chest radiography (CXR) and computed tomography (CT) images are the conventional
medical imaging modalities used in lung disease diagnosis.** Though CT images are extensively
used in the COVID-19 diagnosis,”” cost® and radiation exposure are major concerns. CXR are
preferred over CT images as they have less exposure to radiation and extensively available.’
Hence, in this study, CXR images are used for automatic diagnosis of COVID-19.

Deep learning techniques are widely used in various fields, such as computer vision, machine
vision, and speech recognition, among which computer vision is one of the most popular fields in
which promising results to have been obtained in image classification tasks.'®'? In medical
image analysis, deep learning has been widely investigated for computer-aided diagnosis
and treatment.'*'* Several state-of-art methods have been proposed for the diagnosis of
COVID-19 using CXR images'>™"” and CT images’?**! based on deep learning techniques.
The transfer learning approaches based on deep learning have been preferred in detection of
COVID-19 due to the limited available dataset. Several studies have been implemented for
COVID-19 diagnosis using the pretrained model as a feature extractor by implementing transfer
learning techniques.*>*

Table 1 summarizes recent studies describing methods developed for detecting COVID-19
from CXR images; the overall datasets used for training and testing the model, accuracy, and
the sensitivity are provided. Ozturk et al.'® developed the DarkCovidNet model for the detection
of COVID-19 using multiclass classification. The model was developed using end-to-end
architecture without adding any feature extraction techniques. Sensitivity of 85.35% was
achieved by the proposed model. Wang and Wong?® proposed COVID-Net, a deep convolutional
neural network (DCNN) developed by adopting machine-driven design exploration strategy.

Table 1 Methods described for diagnosis of COVID-19 from CXR and CT images.

Imaging Total number Sensitivity  Accuracy
Source modality Model Classification of images (%) (%)
Ozturk et al.'®  Chest x-ray DarkCovidNet  Three-class 1127 85.35 87.02
Wang et al.?® Chest x-ray ~ COVID-Net Three-class 13975 91 93.3
Panwar et al.?®  Chest x-ray nCOVnet Two-class 284 97.62 88
Sethy et al.?® Chest x-ray ~ ResNet50 Three-class 381 97.29 95.33
plus SVM
Jain et al.?’ Chest x-ray ResNet50 Three-class 1832 97.14 93
(stage-I) (stage-I)
ResNet101 Two-class 97.78
(stage-Il) (stage-Il)
Narin et al.?® Chest x-ray  ResNet-50 Two-class 3141 (dataset 1) 91.8 98
1834 (dataset 2)
3113 (dataset 3)
loannis et a2 Chest x-ray MobileNetV2  Three-class 1442 98.66 94.72
Asnaoui et al.?® Chest x-ray  Inception_ Three-class 6087 92.11 92.18
and CT ResNetV2
Hemdan et al.*® Chest x-ray COVIDX-Net Two-class 50 83.33 90
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A multiclass classification was performed using CXR images in identifying COVID-19 from
normal and non-COVID disease (i.e., pneumonia). Both qualitative and quantitative analysis
were performed to determine the success of the model. The developed model was able to achieve
a sensitivity of 91% for detecting COVID-19. Panwar et al.”® introduced nCOVnet, an algorithm
developed based on a transfer learning model for faster diagnosis of COVID-19 from CXR
images. The proposed model is built using VGG 16 as the base model. The model was able
to achieve 97.62% in detecting COVID-19. Sethy et al.** described a comparative study on
Xception, ResNetl8, ResNet50, Resnet 101, Inceptionv3, Inceptionresnetv2, GoogleNet,
Densenet201, VGG16, VGG19, and AlexNet using the deep features extracted from the
CNN layers and fed to the SVM classifier for classification. ResNet50 performed better com-
pared with other classification models on a binary classification between viral pneumonia and
COVID-19 with a classification accuracy of 95.38%. Jain et al.”’ utilized ResNet50 model that
was used in stage-I network model for distinguishing viral (including COVID-19) from bacterial
pneumonia and normal cases using CXR images. Based on the result obtained, ResNet101 was
used in stage-II network model to classify COVID-19 from other viral pneumonia. The model
achieved an accuracy of 97% in COVID-19 detection. Narin et al.?® proposed three CNNGs for the
detection of COVID-19 through CXR images. The pretrained models chosen for comparative
study were ResNet50, InceptionV3, and Inception-ResNetV2. A binary classification was per-
formed between normal and COVID-19. ResNet50 model outperformed all the other models
with the highest classification accuracy of 98%. Ioannis et al.”> compared VGG 19, Mobile
Net, Inception, Xception, and Inception ResNetv2 pretrained models for the automatic detection
of COVID-19 using CXR images. They implemented multiclass classification among COVID-
19, normal, and pneumonia. MobileNetV2 achieved highest sensitivity rate of 98.6%. Asnaoui
et al.”’ put forward a comparative study on the pretrained DCNN models, namely VGG16,
VGG19, Inception-ResNetV2, InceptionV3, ResNet50, DenseNet201, and MobileNetV2 for the
classification of CXR into normal, bacteria, and coronavirus (multiclass classification).
Inception-ResNetV2 model provided a sensitivity rate of 92.11% in detecting coronavirus.
Hemdan et al.*® proposed COVIDX-Net a deep learning framework based on seven DCNNs
namely, VGG19, Xception, ResNetV2, InceptionV3, Inception-ResNetV2, DenseNet201,
and MobileNetV2 for the diagnosis of COVID-19 using x-ray images. The VGG19 and
DenseNet201 achieved an accuracy of 90% compared with other models with F1-score of
0.89 for normal and 0.91 for COVID-19.

One of the major limitations of the previous studies is the relatively smaller test dataset
employed for the classification. Moreover, an imbalanced realistic representation of the patient
population was not considered in the testing phase. Furthermore, some of the methods were
designed to differentiate COVID-19 from normal cases by ignoring the pneumonia cases, or
by combining bacterial, viral pneumonia, and COVID-19 under one class. To address these
shortcomings and to further enhance the diagnosis of COVID-19, we propose a fully automated
deep learning-based method for the detection of COVID-19 from CXR images. The proposed
method was based on a transfer learning approach using dense convolutional neural network 201
(DenseNet201)’! pretrained model. Our model was trained and tested using a dataset that
reflected realistic class imbalance in the actual setting. As a benchmark, we compared results
of our method to those of several state-of-the-art CNN architectures, including VGG16,*
VGG19,” DenseNet121,%! ResNet50,** ResNet101,** MobileNetv2,** and Inceptionv3.*

2 Materials and Methods

2.1 Dataset

Our dataset comprised 8644 CXR images of normal, respiratory distress syndrome (ARDS),
COVID-19, MERS, pneumonia, and SARS from five open-access GitHub repositories“”‘0 used
in Wang e al.? Tt consisted of 4000 normal cases, 4000 pneumonia cases, and 644 COVID-19
cases. Out of 644 images of COVID-19, 20% were taken from COVID-19 Image Data
Collection,*® 5% from the Figure 1 COVID Chest X-ray Dataset,** 25% from the Actualmed
COVID-19 Chest X-ray Dataset,” and 50% of images were obtained from the COVID-19
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Fig. 1 Examples of (a) normal, (b) pneumonia, and (c) COVID-19 in the dataset.

Radiography Database.* About 5% of pneumonia images were taken from COVID-19 Image
Data Collection®® and the remaining 95% from the RSNA Pneumonia Detection Challenge data-
set.>” All the normal images were obtained from the RSNA Pneumonia Detection Challenge
dataset.

CXR images of COVID-19 affected patients have patchy and hazy lungs compared with
normal, healthy lungs. Certain characteristic findings can be observed on the lower lobes and
periphery of the lungs affected with COVID-19. Examples of normal, pneumonia, and COVID-
19 are shown in Fig. 1. Since the purpose of this paper is to correctly classify COVID-19 cases,
both bacterial and viral pneumonia are grouped under one label (pneumonia).

The CXR images are resized to 224 X 224 to be compatible with the pretrained model used in
this study. Except for Xception where the default input size of 299 X 299 is used. All the images
in the dataset used for training, validation, and testing are normalized between O and 1. Since the
dataset is imbalanced, data augmentation techniques were incorporated to increase the training
dataset. The training data of each class are increased to 4000 images summing up to 12,000
images in total. The images were horizontally flipped, magnified, and rotated for augmentation.
The augmentation techniques were not applied on the validation and test data set. The 6223
(80%) of the dataset were used for training the model and the remaining 1729 (20%) of the
dataset were used for testing the model. From the 80% of training dataset, 692 images
(10%) were used for validation. A detailed description on the number of datasets used for train-
ing, validation, and test is provided in Fig. 2.

Online public dataset
l of chest x-ray images |
COVID-19 Normal Pneumonia
Total no. of images = 644 Total no. of images = 4000 Total no. of images = 4000

| |

A
Total images - 8644

v

A 4 A 4

Training data Training data (after Validation data Test data
COVID-19 - 464 augmentation) COVID-19 -51 COVID-19 - 129
Nommal - 2880 COVID-19 - 4000 Normal — 320 Nomal — 800
Pneumonia - 2880 Nommal - 4000 Pneumonia — 320 Pneumonia - 800

Pneumonia— 4000

Fig. 2 Distribution of the dataset among different classes.
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2.2 Transfer Learning-Based Method

In this study, we developed our model based on DenseNet201,*' which is a densely connected
convolutional neural network that is 201 layers deep in which each layer receives collective
knowledge from all preceding layers resulting in a compact network. It was designed to address
the vanishing gradient issue in deep neural networks by employing skip connection similar to
those of ResNet and has been proved to predict pneumonia at a higher rate using CXR images.*!
The fundamental difference between ResNet and DenseNet rests upon the fact that the features
are combined using summation in ResNet, whereas they are concatenated in DenseNet leading to
a dense connectivity pattern. This connectivity pattern introduced in DenseNet reduces the
required training parameters resulting in a parametrically efficient model that has shown prom-
ising results in ImageNet and CIFAR-100 datasets. It is also memory and computationally effi-
cient. DenseNet and ResNet have various versions, such as DenseNet121,>' DenseNet201,>"!
ResNet50,* and ResNet101,* which are considered in our study. The numbers represent the
layers in the neural network.

The proposed model was then evaluated and further compared with the other state-of-the-art
pretrained models, such as VGG16,* VGG19,*”> DenseNet121,’! ResNet50,* ResNet101,*
MobileNetv2,** and Inceptionv3,” and for a quantitative justification, we compared our
proposed model with a lightweight CNN model designed from scratch. Based on our previous
experimental results on classification using cascaded and multiclass classification, we deter-
mined that the multiclass classification yielded higher accuracy in COVID-19 identification.*>
Also, the segmented lungs from the CXR images classified COVID-19 with a low sensitivity
value compared with the nonsegmented lungs.* Hence, a multiclass classification is performed
using the proposed model to classify COVID-19 from normal and pneumonia classes using
nonsegmented CXR images. The developed model uses initial pretrained weights and the last
fully connected layer is removed and replaced with the new network developed using the global
averaging layer, batch normalization layer, and a dense layer with ReLLU activation. The final
classification layer implements the Softmax activation function for multiclass classification. This
is kept consistent for all the pretrained models considered in this work.

The models considered were trained for 100 epochs and the best fit was stored using the
model check point that stores the model based on the maximum validation accuracy. The adap-
tive moment estimation (ADAM) optimizer with a learning rate of 0.0001 was used for training
the model. An optimum value of 32 is considered as the batch size.** These parameters were kept
the same for all the eight models used in this work. All the models were trained and tested using
SHARCNET, a high-performance cluster in Canada.

2.3 Evaluation Metrics

The dataset considered is an imbalanced dataset that comprises an equal number of normal and
pneumonia CXR images and a diminutive number of COVID-19 images. The classification
accuracy cannot be determined using the overall accuracy as we are detecting the COVID-19
cases which is a minority class in the dataset considered, whereas both normal and pneumonia
belong to the majority class. The minority class is regarded as the positive class, and the majority
classes both normal and pneumonia are grouped under negative class. So, the confusion matrix is
calculated to estimate the true positives (TP) that determines the correctly identified positive class,
and the false negatives (FN) represents the positive classes that are misclassified as negative class.
The true negatives (TN) determine the correctly identified negative class and FP indicates the
number of negative classes misclassified as positive class. Since we are interested in determining
the accuracy of the COVID-19 compared with the overall accuracy, sensitivity, specificity, and
receiver operating characteristic (ROC) curve were scrutinized for model evaluation.

3 Resulis

The automated diagnostic tool developed using the DenseNet201 model for the detection of
COVID-19 evaluated using the test dataset yielded an overall accuracy of 92% with sensitivity
of 94%. The model was also able to classify 764 normal and 709 pneumonia out of 800 cases.
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ROC curve for proposed model
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Fig. 3 Confusion matrix and the ROC curve for the proposed model.

Considering COVID-19, it was able to classify 121 cases out of 129 cases. Only eight cases were
misclassified. Most of the misclassification occurred between normal and pneumonia cases due
to the early onset of pneumonia. The confusion matrix and the ROC curve for the proposed
model are shown in Fig. 3. The proposed model was able to achieve area under the curve
(AUC) of 0.99, 0.97 and 0.97 for COVID-19, normal and pneumonia classes, respectively.

We compared our method to seven state-of-the-art pretrained models. All the models were
able to classify all the three classes (normal, pneumonia, and COVID-19) with a relatively high
accuracy. Among 129 COVID-19 cases considered in the test dataset, all the models were able to
classify more than 100 COVID-19 cases. Our proposed model based on DenseNet201 classified
121 cases bagging the first place, while ResNet50 was able to detect 117 cases holding
the second place. When considering TN cases, VGG16, DenseNetl121, DenseNet201, and
ResNet101 were able to identify more than 700 cases correctly for both normal and pneumonia
cases. VGG16 shows the least FP with two normal cases misidentified as COVID-19 and no FP
for pneumonia cases. The least detection of TP was provided by VGG16 and highest FP was
provided by the MobileNetV2 with least TN classification. The confusion matrix for all the
seven pretrained models is summarized in Fig. 4.

The ROC curve for all the eight models used in this study is provided in Fig. 5, and AUC for
all the three classes (normal, pneumonia, and COVID-19) were calculated and provided in the
ROC curve. When the AUC for COVID-19 is taken into consideration, VGG16, VGG19,
DenseNet121, and proposed model achieved the highest value of 0.99, and the least value
of 0.95 was achieved by MobileNetV2. When the normal and pneumonia are examined,
DenseNet121 obtained 0.98 for both the cases. A summarized AUC for all the classes provided
in Table 2 shows that the DenseNet121 achieved higher AUC for all the three classes with 0.99
for COVID-19, 0.98 for normal, and 0.98 for pneumonia, and MobileNetV2 showed a lower
result compared with the other models with 0.95 for COVID-19, 0.96 for normal, and 0.97 for
pneumonia.

The evaluation metrics such as sensitivity, specificity, accuracy, and F1-score are summa-
rized in Table 3. Considering the overall classification accuracy, DenseNet201model was able to
classify COVID-19 from normal and pneumonia with highest classification accuracy of 92%
among all the other models considered. The DenseNet121 model was able to achieve the same
classification accuracy of 92% as DenseNet201 model. VGG16, VGG19, ResNetl01, and
InceptionV3 obtained a classification accuracy of 90%, which is 2% less than the highest accu-
racy proposed.

The sensitivity and specificity rate are some of the important metrics to be considered when
the dataset is imbalanced. Based on sensitivity rate, proposed model achieved highest rate of 0.94
and specificity of 0.99. DenseNetl21 with less deep model compared with DenseNet201
achieved the same specificity rate but a lower sensitivity rate of 0.89. ResNet50 was able to
achieve 0.91 which is second to the proposed model. Though ResNet50 achieved a higher sen-
sitivity rate when compared with ResNet101, we can imply that the network depth can improve
the overall classification accuracy but a reduction in the sensitivity is observed. VGG16 and
VGG19 show higher accuracy as they are large network and provide better performance on the
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Table 2 AUC for all three classes for all the eight models (the model
with best result is highlighted in bold).

Model COVID-19 Normal Pneumonia
VGG16 0.99 0.97 0.97
VGG19 0.99 0.97 0.97
DenseNet121 0.99 0.98 0.98
Proposed model 0.99 0.97 0.97
ResNet50 0.98 0.96 0.96
ResNet101 0.98 0.98 0.97
MobileNetv2 0.95 0.96 0.97
Inceptionv3 0.97 0.97 0.97

larger dataset used in this work. The classification accuracy remains the same for both VGG16
and VGG19, whereas the sensitivity rate is higher for VGG19, and VGG16 has the least sensi-
tivity rate in detecting COVID-19.

F1-score is included in the metrics to provide a balance between the exactness and com-
pleteness of the model. Considering the F1-score achieved by each model, VGG19 achieved
a higher score of 0.91 and DensNet201 acquired 0.90, following VGG19. An exceptionally low
F1-score of 0.66 was achieved by the MobileNetV2 model.

Also, to quantitatively justify, our proposed model was compared with a lightweight CNN
designed from scratch. The lightweight CNN contains fewer parameters resulting in a faster
CNN and provides a similar performance to the state-of-art pretrained models considered.
The CNN architecture is made up of repeated blocks of convolution, batch normalization, and
pooling as shown in Fig. 6. The architecture consists of five convolution and pooling layers and
a fully connected classification layer. The convolutional and the hidden layers are followed by
the ReLU activation function. The convolutional layer comprises 64, 128, and 256 neurons with
convolution kernel of size 3 X 3 with stride length of 1. The pooling layer comprises 2 X 2 kernel
with stride length 2. Before convolution, the inputs are padded using “same” padding in
Tensorflow.

The results obtained by training and evaluating the model using the dataset are provided in
Table 4. The model was able to achieve higher sensitivity and specificity value with an overall
classification accuracy of 89.7%. Using the transfer learning approach, our proposed model
was able to outperform in terms of overall classification accuracy, sensitivity, specificity, and
F1-score, providing a more accurate diagnosis.

Table 3 Evaluation metrics for eight pretrained models (model that achieved best
result under each metric is highlighted in bold).

Model Accuracy Sensitivity Specificity F1-score
VGG16 0.908 0.78 1 0.87
VGG19 0.9028 0.88 0.99 0.91
DenseNet121 0.9196 0.89 0.99 0.88
Proposed model (DenseNet201) 0.9219 0.94 0.99 0.90
ResNet50 0.8976 0.91 0.97 0.81
ResNet101 0.9057 0.88 0.98 0.83
MobileNetv2 0.8768 0.88 0.93 0.66
Inceptionv3 0.9019 0.84 0.98 0.80

Journal of Medical Imaging 017503-8 Vol. 8(S1)
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Fig. 6 Lightweight CNN model architecture.

Table 4 Evaluation metrics for proposed model and lightweight CNN.

Model Accuracy  Sensitivity  Specificity = F1-score
DenseNet 201 (proposed model) 92.1 0.94 0.99 0.90
Lightweight CNN 89.7 0.87 0.98 0.87

4 Discussion

In this study, we have proposed a fully automated diagnostic tool for the classification of
COVID-19 from normal and pneumonia cases. A large, imbalanced test dataset (at least
78% more than that of previous studies)”***° was used for evaluation of the model, and deeper
CNN models were included as a benchmark analysis.”* In comparison to the method proposed
by Ozturk et al.,'® our model reported an accuracy and sensitivity of 92% and 94% (versus 87%
and 85.53%), respectively, on a relatively larger dataset (eight times larger). Also, when the
specificity and F1-score are considered, 7% and 3% increase were observed, respectively.
Wang et al.” used a large dataset for model evaluation and achieved high performance for the
classification. However, the test dataset may not reflect the actual clinical setting where small
number of COVID-19 cases in the testing pool creates a huge class-imbalance. Compared with
the sensitivity of 91% and accuracy of 93.3% reported, our model yielded a sensitivity and accu-
racy that is 3% and 0.7% higher, whereas the same class imbalance exists in the dataset is kept in
the test dataset. Panwar et al.?® reported an overall accuracy of 88% (4% less than our proposed
model) based on a binary classification. Though their model achieved 97% in detecting COVID-
19 which is 3% higher than our proposed model, their specificity rate is 78% (21% lower) which
is an important metric to be considered in classification. Our model was able to achieve higher
overall accuracy and specificity rate than those of previous methods.”®

Asnaoui et al.”’ performed a comparative study of various pretrained models using three-
class classification. Since they used a fairly large dataset, looking into the results obtained
by DenseNet201 model shows that an overall accuracy of 88.10%, sensitivity of 75.14%, and
F1-score of 82.04% (4%, 19%, and 8% lower than our proposed model, respectively) were
reported. Hemdan et al.** proposed a DCNN model using DenseNet201 and achieved an overall
accuracy of 90% on a balanced test dataset. Based on the sensitivity rate, Hemdan et al.*” and
Narin et al.”® reported a sensitivity rate of 1 but only 5 COVID-19 and 10 normal cases were
included for test dataset, and no pneumonia cases were included for classification. In compari-
son, our dataset was 173 times larger and included an imbalanced test dataset. Since the CXR
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images were collected from various resources, a binary classification was performed using
the developed model between normal and pneumonia cases obtained from the same source
to eliminate the bias between the two classes (normal and pneumonia). We were able to achieve
a classification accuracy of 95.75%, which shows that having data from different sources or the
same sources does not influence the results, and our model is robust for images collected from
different sources using different machines, but there is still a possibility for bias between
COVID-19 and other classes decision boundary. Also, since we are dealing with x-ray images,
they are more standardized compared with the other medical imaging modalities for detection of
lung diseases.*>*¢

Our fully automated deep learning-based model based on DenseNet201 was able to detect
COVID-19 with a higher accuracy based on a large and imbalanced dataset using CXR images.
Considering the results obtained, the proposed model was able to outperform the other tested
models in terms of overall accuracy, sensitivity, and specificity in identifying COVID-19 cases
from normal and pneumonia cases. The analysis of the proposed model using higher number of
pretrained models provided an insight on different model performance for medical image clas-
sification by implementing transfer learning approach using a dataset that is a large realistic
representation of the patient population. Hence, the developed model utilizing CXR images will
assist in the initial diagnosis of COVID-19 by the radiologists and will aid in subsequent analysis
for clinical prognosis, including determining the severity of the disease affecting the lungs.
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