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Abstract

HTRA1 is a highly conserved serine protease which has been implicated in suppression of epithelial-to-mesenchymal-
transition (EMT) and cell motility in breast cancer. Its prognostic relevance for breast cancer is unclear so far. Therefore, we
evaluated the impact of HTRA1 mRNA expression on patient outcome using a cohort of 131 breast cancer patients as well as
a validation cohort including 2809 publically available data sets. Additionally, we aimed at investigating for the presence of
promoter hypermethylation as a mechanism for silencing the HTRA1 gene in breast tumors. HTRA1 downregulation was
detected in more than 50% of the breast cancer specimens and was associated with higher tumor stage (p = 0.025). By
applying Cox proportional hazard models, we observed favorable overall (OS) and disease-free survival (DFS) related to high
HTRA1 expression (HR = 0.45 [CI 0.23–0.90], p = 0.023; HR = 0.55 [CI 0.32–0.94], p = 0.028, respectively), with even more
pronounced impact in node-positive patients (HR = 0.21 [CI 0.07–0.63], p = 0.006; HR = 0.29 [CI 0.13–0.65], p = 0.002,
respectively). Moreover, HTRA1 remained a statistically significant factor predicting DFS among established clinical
parameters in the multivariable analysis. Its impact on patient outcome was independently confirmed in the validation set
(for relapse-free survival (n = 2809): HR = 0.79 [CI 0.7–0.9], log-rank p = 0.0003; for OS (n = 971): HR = 0.63 [CI 0.48–0.83], log-
rank p = 0.0009). In promoter analyses, we in fact detected methylation of HTRA1 in a small subset of breast cancer
specimens (two out of a series of 12), and in MCF-7 breast cancer cells which exhibited 22-fold lower HTRA1 mRNA
expression levels compared to unmethylated MDA-MB-231 cells. In conclusion, we show that downregulation of HTRA1 is
associated with shorter patient survival, particularly in node-positive breast cancer. Since HTRA1 loss was demonstrated to
induce EMT and cancer cell invasion, these patients might benefit from demethylating agents or histone deacetylase
inhibitors previously reported to lead to HTRA1 upregulation, or from novel small-molecule inhibitors targeting EMT-related
processes.
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Introduction

The serine protease HTRA1 (Prss11) belongs to the family of

high temperature requirement A {HTRA1} proteins. All mem-

bers of this family consist of a highly conserved protease domain

and one or more PDZ domains, exhibiting high structural

complexity [1–3]. Usually, flat-disk-like trimeric structures

(HTRA1) or higher order oligomers (e.g. DegP) are formed. The

bacterial homologue DegP appears to have a dual role as a

chaperone at normal temperature and as a protease at elevated

temperatures [4]. While the physiological function of human

HTRA1 remains largely unclear to this end, it was shown to be

involved in the pathogenesis of various diseases such as osteoar-

thritic cartilage [5,6], preeclampsia [7] or CARASIL (cerebral

autosomal recessive arteriopathy with subcortical infarcts and

leukoencephalopathy) [8,9].

Due to its ability to attenuate cell motility [10], growth [11,12]

and invasiveness [11,13], HTRA1 is also thought to act as a tumor

suppressor. Accordingly, downregulation of HTRA1 expression

has been reported for various cancer types such as ovarian [12]

and endometrial cancer [13,14] compared to non-malignant

tissue. In the breast, HTRA1 expression is prominent in normal

ductal glands, whereas its expression is distinctly reduced or even

lost in tumor tissues of patients with ductal carcinoma in situ

(DCIS) or invasive breast carcinoma [15]. Low HTRA1 expres-

sion was found to be associated with poor survival in mesothelioma

[16] and hepatocellular carcinoma [17], and has been related to

poor response to cytotoxic chemotherapy in ovarian and gastric

cancer [18,19]. He et al. [20] suggested a role for HTRA1 in

programmed cell death demonstrating a decrease in X-linked

inhibitor of apoptosis protein (XIAP) in ovarian cancer cells

dependent on HTRA1 serine protease activity. A proapoptotic

function of HTRA1 was also apparent following detachment of

epithelial cells. Thus, as a consequence of HTRA1 loss, resistance
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to anoikis (detachment-induced apoptosis) may contribute to

tumor cell dissemination and invasion in metastatic cancer [21].

A variety of substrates such as extracellular matrix proteins are

known to be cleaved by secreted HTRA1 [22,23]. In addition,

intracellular HTRA1 was found to co-localize and associate with

microtubules through its PDZ domain. Since enhanced expression

of HTRA1 attenuated cell motility, whereas HTRA1 loss

promoted cell motility, a function of HTRA1 in modulating the

stability and dynamics of microtubule assembly has been assumed

[10]. Increased motility and invasiveness are also characteristics of

epithelial-to-mesenchymal transition (EMT). In breast cancer,

HTRA1 loss was in fact accompanied by the acquisition of

mesenchymal features as recently shown by Wang et al. [15].

Applying siRNA techniques in the immortalized breast epithelial

cell line MCF10A, an inverse correlation of reduced HTRA1

levels with increased expression of mesenchymal markers, higher

growth rate and increased migration or invasion was observed

[15]. Potentially relevant for anti-cancer therapy, this epithelial-to-

mesenchymal transition process also activated ATM and DNA

damage response pathways and thus, may further result in poor

response to chemotherapy [15].

Taken together, loss of function of HTRA1 may lead to

dysregulation of important cellular functions and contribute to

tumorigenesis. So far, the basis of HTRA1 downregulation in

cancer is unclear, but loss of heterozygosity (LOH) or epigenetic

modulations have been postulated as possible mechanisms [12,15].

Here, we show downregulation of HTRA1 mRNA expression in

a relevant number of breast cancers derived from a cohort of 131

early stage breast cancer patients, validated by public data sets of

2809 cases. To evaluate a possible role of CpG-hypermethylation

in causing HTRA1 downregulation in breast tumors, we subse-

quently analyzed a set of tumor specimens in addition to breast

cancer cell lines by applying bisufite-sequencing techniques.

Patients and Methods

Ethics Statement
The study has been approved by the institutional ethical

committee of Radboud University Nijmegen Medical Centre, The

Netherlands.

Patients
A series of 131 patients with unilateral, resectable breast cancer,

who underwent surgery of their primary tumor between 1986 and

1996, were selected according to the availability of frozen tissue in

the tumor bank of the Department of Laboratory Medicine of the

Radboud University Nijmegen Medical Centre. This bank

contains frozen tumor tissue from patients with breast cancer,

obtained from five hospitals of the Comprehensive Cancer Centre

East in the Netherlands. After surgical resection of the primary

tumor, representative areas of the tumor tissues were selected

macroscopically by a pathologist and immediately snap-frozen in

liquid nitrogen [24]. Estrogen receptor (ER) and progesterone

receptor (PR) levels were measured by a ligand binding assay at

the Department of Laboratory Medicine of the Radboud

University Nijmegen. Histological grades of the tumors were

determined according to Bloom–Richardson criteria, and tumor

stage was classified according to the TNM classification system.

The clinical data were collected retrospectively. Patients had no

previous diagnosis of carcinoma, no distant metastases at time of

diagnosis and no evidence of disease within one month after

primary surgery. Furthermore, patients receiving neo-adjuvant

therapy or with carcinoma in situ only had been excluded from

this series. Surgery consisted of modified radical mastectomy for

93 patients (71%) or breast conserving treatment for 38 patients

(29%). Postoperative radiotherapy (n = 100; 76.3%) was adminis-

tered to the breast after incomplete resection, breast conserving

treatment, or regional lymph node infiltration. Adjuvant therapy

was administered according to guidelines at that time. 61 patients

(47%) had received no further treatment. 50 patients (38%)

received endocrine therapy, 20 patients (15%) received chemo-

therapy including three cases in combination with endocrine

therapy. Axillary lymph node dissection was carried out in all

patients. Lymph node metastasis was observed in 60 (46%) cases.

Lymph node involvement was not known in 19 (14.5%) cases.

Patient age at diagnosis ranged from 31 to 85 with a median age of

62 years. Follow-up data was available for all patients with the

exception of two exact death dates.

Quantification of HTRA1 Expression
Total RNA from fresh-frozen breast cancer tissue samples was

isolated and reverse-transcribed as published previously [25].

HTRA1 mRNA expression was determined by TaqMan� real

time PCR using the TaqMan Gene expression assay

Hs01016151_m1 purchased from Applied Biosystems (Darmstadt,

Germany). cDNA was diluted 1:30 and 3 ml of the diluted cDNA,

15 ml of TaqManH Universal PCR Master Mix, 1.5 ml TaqMan

Gene expression assay and 10.5 ml of H2O were pipetted onto a

96well QPCR plate (Peqlab, Erlangen, Germany). The qPCR

assays were run on a TaqMan ABI PRISM 7700 Sequence

Detection System (Applied Biosystems) according to the manu-

facturer’s protocol. All samples were measured in duplicates.

cDNA of an ovarian carcinoma and a breast cancer sample were

included in all runs as calibrator samples. Normalization to human

glucose-6-phosphate-dehydrogenase (h-G6PDH) as appropriate

housekeeping gene for breast cancer studies was performed as

previously described [26]. The ratio between relative HTRA1

mRNA expression quantities and absolute h-G6PDH housekeeping

molecule numbers, adjusted to the sample with the lowest HTRA1

expression, was used for all further calculations and statistical

analyses.

Cell Lines
Breast cancer cell lines MCF-7 (estrogen receptor-positive) and

MDA-MB-231 (estrogen receptor-negative) were purchased from

American Type Culture Collection (ATCC) (Manassas, VA, USA)

and cultured in RPMI 1640 supplemented with penicillin G

(100 U/ml), streptomycin (100 mg/ml), L-glutamine and 10%

fetal calf serum (Invitrogen, Paisley, UK) at 37uC in a humidified

atmosphere containing 5% CO2 [27] Cells were routinely checked

to be free of mycoplasma. DNA or RNA was extracted from

approx. 106 cells which had been harvested in a non-confluent

state. DNA was prepared using the Genomic DNA Puregene

Purification Kit (Qiagen, Hilden, Germany). For preparation of

RNA, the RNeasy kit (Qiagen) was used according to the

manufactures protocol for animal cells. cDNA synthesis was

performed using the 1st Strand cDNA Synthesis Kit for RT-PCR

(AMV) (Roche, Indianapolis, USA) to transcribe 1 mg of RNA

each. cDNA was diluted 1:5 and 1:20, respectively, and triplicates

of each dilution (3 ml) were pipetted onto a 96well QPCR plate

(Peqlab, Erlangen, Germany) together with 15 ml of TaqManH
Universal PCR Master Mix and 1.5 ml TaqMan Gene expression

assay for HTRA1 (Hs01016151_m1) or HPRT (Hs99999909_m1),

respectively, in a final volume of 30 ml. Assays were run in a

TaqMan ABI PRISM 7700 Sequence Detection System (Applied

Biosystems). HPRT was chosen as housekeeping gene for

normalization of HTRA1 expression data in the cell lines. Relative

HTRA1 mRNA expression ratios (calculated from the ratio of
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HTRA1 and HPRT expression quantities and adjusted to a

calibrator sample) were used for further statistical analyses.

Bisulfite Sequencing
Sodium bisulfite conversion of (un)methylated cytosine was

performed using the Epitect Bisulfit kit (Qiagen) and 500 ng of

sample DNA. PCR was performed with 3 ml of bisulfite-converted

DNA, 0.4 ml AmpliTaq Gold polymerase, 5 ml GeneAmp Buffer

10x with MgCl2 (Applied Biosystems), 2 ml MgCl2 (25 mM), 5 ml

dNTP (2 mM), 2 ml each of forward and reverse Primer (10 pmol/

ml) and 30.6 ml H2O. Three sets of primers, covering the region

2560 to +526 relative to the mRNA start site (Accession No.

NG_011554.1), were designed by help of MethPrimer software

(www.urogene.org/cgi-bin/methprimer) and are listed in Table

S1. Sequencing of the PCR products was carried out on a Genetic

Analyser 3130xl (Applied Biosystems, Darmstadt, Germany) using

Big Dye technology (Applied Biosystems).

The amplified fragments which had shown DNA-methylation in

bisufite sequencing analysis, were subcloned using the TOPO-TA

cloning kit and One Shot Top10F’ competent cells (Invitrogen,

Karlsruhe, Germany). Inserts of clones were sequenced using M13

primers.

Statistical Analyses
Statistical analyses were carried out using SPSS 17.0 (SPSS Inc.

Chicago, IL, USA) and R version 2.11.1 (R Foundation for

Statistical Computing, Vienna, Austria). Correlation of relative

expression values with clinical/biochemical data were computed

with the Spearman-Rho method. Difference in HTRA1 expression

between groups defined by clinical parameters was examined by

Mann-Whitney-U-Test or Kruskal-Wallis-Test, depending on the

number of compared groups. Overall survival (OS) and disease-

free survival (DFS) were considered as long-term endpoints. OS

was defined as the time from surgery until death from any cause

and DFS was defined as the time from surgery to the first

incidence of disease recurrence (local or distant) or death. The Cox

proportional hazard model was used to assess univariate and

multivariable explanatory ability of the clinical or molecular

parameters with respect to OS and DFS. Survival rates were

estimated using the Kaplan–Meier method. Differences between

survival curves were tested using the logrank test. Ninety-five

percent confidence intervals (95% CI) were provided for relevant

effect estimates such as hazard ratios (HR). All statistical tests were

conducted two-sided and a p-value,0.05 was considered to

indicate statistical significance. Optimal cut-off values of quanti-

tative predictive values regarding patient prognosis were obtained

with the R-program maxstat.test [28]. This function takes into

account the issue of cut-off values derived by multiple testing and

computes adjusted p-values.

An online database consisting of gene expression data (Affyme-

trix HGU133A and HGU133+2 microarrays) and survival

information downloaded from GEO was used to validate HTRA1

expression with respect to the relapse-free survival (RFS) and OS

in 2809 and 971 breast cancer patients, respectively. Distant-

metastasis-free survival (DMFS) was analyzed in 311 patients.

Version 2012 was used (last update 2013.02.26) applying a follow-

up time of 15 years (see ref. [29]). The Affymetrix-ID of the

HTRA1 probe is 201185_at.

This study adheres to the REMARK criteria for tumor marker

studies [30].

Results

Patient Characteristics
A cohort of 131 patients with unilateral breast cancer was

collected for this study. Clinical data are listed in Table 1. The

median follow-up time was 92.8 months, ranging from 3 to 169

months. Recurrence or death was observed in 38% (50 out of 131)

and 29% (37 out of 129) of the cases, respectively (combined

events of recurrence and/or death encompassed 58 (44%) cases).

The Kaplan Meier estimates for the 5- and 10-year overall survival

(OS) rates in the entire patient cohort were 85% (63,2% standard

error SE) and 66% (64.9%), respectively. 5- and 10-year

recurrence-free times were obtained in 75% (64.0%) and 54.5%

(65.2%) of the patients, respectively. Combined disease-free

survival rates (DFS, neither death nor recurrence) were estimated

to 71.5% (64.0%) for 5 years and to 50% (65.0%) for 10 years.

For the lymph node-positive subgroup, the following outcome

Table 1. HTRA1 mRNA expression levels in a cohort of 131
breast cancer patients.

Variable N = 131a
HTRA1 Expression
Medianb (IRc) p

Age 0.271d

,50 23 48 (54)

.50 108 37 (51)

Menopausal status 0.337d

pre2/perimenopausal 28 45 (47)

postmenopausal 103 37 (56)

Lymph node status 0.439e

negative 52 41 (47)

1–3 lymph nodes 43 48 (63)

4–9 lymph nodes 11 34 (41)

.9 lymph nodes 6 19 (45)

Tumor stage (pT) 0.025e

1 39 53 (58)

2 72 40 (49)

3+4 18 20 (26)

Grading 0.587d

1+2 49 45 (60)

3 46 30 (49)

Estrogen receptor 0.672d

negative 37 32 (65)

positive 91 43 (54)

Progesterone receptor 0.219d

negative 51 31 (56)

positive 77 45 (56)

Surgery 0.320d

breast conserving 38 47 (60)

mastectomy 93 32 (49)

aDue to missing data the sum of values may be lower than 131.
bMedian of relative HTRA1 mRNA expression values after normalization to
glucose-6-phosphate-dehydrogenase (h-G6PDH) expression and adjustment to
the sample with lowest HTRA1 expression.
cIR: interquartile range.
dMann-Whitney-U test.
eKruskal-Wallis test.
doi:10.1371/journal.pone.0060359.t001
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rates were observed: OS: 82% (65.1%) for 5 years and 68%

(66.8%) for 10 years; DFS: 68% (66.1%) for 5 years and 46%

(67.4%) for 10 years.

HTRA1 Expression in Groups Defined by
Clinicopathologic Parameters

Relative HTRA1 mRNA expression ratios in the breast cancer

specimens ranged from 1 to 308-fold compared to the sample

exhibiting the lowest HTRA1 expression, the median expression

level was 38. Comparison of the expression data between patient

groups defined by clinical and histomorphological parameters

(Table 1) revealed a statistical significant difference only for pT

categories, indicating a decrease in HTRA1 mRNA levels with

increasing tumor stage (p = 0.025). Interestingly, HTRA1 expres-

sion levels did not exceed relative values higher than 55 in the

presence of very high ER concentrations .400 fmol/mg protein.

HTRA1 Expression and Patient Outcome
We next assessed the impact of HTRA1 mRNA expression on

patient survival using OS and DFS as outcome variables. With

respect to an optimized cut-off value of $48, deduced by means of

the program R (Figure S1), 56 (43%) tumor specimens showed

high HTRA1 expression and 75 (57%) low expression. High

HTRA1 mRNA expression levels were found to be associated with

favorable OS and DFS (Figure 1A and B), showing a significantly

reduced risk for recurrent disease and/or death in the entire

patient cohort (HR = 0.45 [CI 0.23–0.90], p = 0.023 for OS;

HR = 0.55 [CI 0.32–0.94], p = 0.028 for DFS; Table 2 and 3).

Moreover, HTRA1 expression was maintained as a statistically

significant factor which predicted outcome (DFS) independent

from nodal status when tested among the established clinical

factors age, tumor stage, nodal involvement and nuclear grading

(binary variables) in the multivariable analysis (Table 4).

Validation Set
Public data sets of breast cancer patients derived from GEO

expression data were used for validation [29]. We could confirm a

statistically significant effect of high HTRA1 mRNA expression

(based on Affymetrix HGU133A and HGU133+2 microarrays) on

patient outcome: In 2809 patients with 15-year-follow up, a

HR = 0.79 [CI 0.7–0.9], log-rank p = 0.0003, was defined for the

relapse-free survival (RFS). The data set available for the 15-year-

OS included 971 patients and yielded a HR = 0.63 [CI 0.48–

0.83], log-rank p = 0.0009 (Figure S2).

Subgroup Analysis
Stratification of patients by clinicopathological parameters

revealed a more pronounced impact of HTRA1 mRNA expression

in the node-positive subgroup of our patient cohort (n = 60). We

observed a considerable lower risk for death (5-fold) or disease

progression (3-fold) with higher HTRA1 concentrations:

HR = 0.21 [CI 0.07–0.63], p = 0.006 for OS; HR = 0.29 [CI

0.13–0.65], p = 0.002 for DFS (Figure 2A and B). In the

multivariable model including tumor stage and adjuvant treat-

ment, HTRA1 expression was confirmed as a clinically relevant

parameter predicting OS or DFS (Table 5 and 6). Adjusted for

therapy mode (none, endocrine, chemotherapy), the impact of

HTRA1 expression remained statistically significant as well: OS:

HR (HTRA1) = 0.23 [CI 0.07–0.72]; p = 0.012; DFS: HR

(HTRA1) = 0.29 [CI 0.13–0.67]; p = 0.004.

On the other hand, no positive effect of HTRA1 expression was

apparent in mostly untreated node-negative patients (HR = 1.24

[CI 0.52–2.98], p = 0.663 for DFS). Since 53 out of our 60 patients

with node-positive disease had received endocrine (n = 35) and/or

chemotherapy (n = 18), the observed effects of HTRA1 appear to

be largely related to the patient subgroup which is adjuvantly

treated. These results are also reflected by the publically available

data set which showed greater benefit from endocrine therapy

(n = 743) at high HTRA1 expression (HR = 0.66 [CI 0.5–0.89],

log-rank p = 0.006 for RFS), while HTRA1 expression had no

Figure 1. Patient outcome as a function of HTRA1 mRNA expression in breast cancer patients. A. Overall survival (n = 129). B. Disease-free
survival (n = 131).
doi:10.1371/journal.pone.0060359.g001
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statistically significant impact on RFS in 933 systemically

untreated patients (HR = 0.84 [CI 0.68–1.05], log-rank p = 0.123).

Methylation Analysis
To investigate HTRA1 promoter hypermethylation as a possible

mechanism of HTRA1 downregulation in breast tumors, we

analyzed the extent of CpG methylation in a region of approx.

1000 bp including the HTRA1 transcription start point as

illustrated in Figure 3A. Two sets of six tumor samples displaying

high and low expression of HTRA1, respectively, were chosen from

breast cancer specimens of our study. Additionally, we analyzed

two breast cancer cell lines showing different HTRA1 expression

levels. Relevant promoter methylation was detected only in two

out of the 12 tumor specimens, exhibiting low relative HTRA1

expression levels of 2.5 and 2.7, and in the MCF-7 cell line

(Figure 3B and C). Subcloning of the tumor-derived amplicons

(tumors #8 and #9) revealed DNA methylation in these tumor

specimens within a region of nt 2537 to 2293 upstream of the

mRNA start point. Patients #8 and #9 both showed disease

Table 2. Univariate Cox proportional hazard ratios for OS
with respect to clinical parameters and HTRA1 mRNA
expression levels.

Variable N = 129
Number
of events

Hazard Ratio
(95% CI) pa

HTRA1 expression

low 73 25 1 0.023

high 56 12 0.45 (0.23–0.90)

Age

,50 23 8 1 0.444

.50 106 29 0.74 (0.34–1.61)

Menopausal status

Pre-/peri- 28 10 1 0.276

postmenopausal 101 27 0.82 (0.57–1.18)

Lymph node status

negative 51 13 1 0.005

1–3 lymph nodes 43 10 0.90 (0.40–2.07)

4–9 lymph nodes 11 3 1.41 (0.40–4.95)

.9 lymph nodes 6 5 5.77 (2.02–16.51)

unknown 18

Tumor stage (pT)

1 39 10 1 0.308

2 71 20 1.19 (0.56–2.55)

3+4 17 7 2.09 (0.79–5.52)

unknown 2

Nuclear grading

1+2 49 15 1 0.896

3 45 13 0.95 (0.45–2.00)

unknown 35

Estrogen receptor

negative 35 8 1 0.387

positive 91 28 1.42 (0.64–3.13)

unknown 3

Progesterone receptor

negative 49 12 1 0.435

positive 77 24 1.32 (0.66–2.64)

unknown 3

Adjuvant therapy

none 60 19 1 0.850

endocrine only 49 13 1.07 (0.40–2.87)

chemotherapy 20 5 0.87 (0.31–2.45)

aUnivariate Cox regression analysis; 95% CI, 95% confidence interval; OS, overall
survival with endpoint death of any cause.
doi:10.1371/journal.pone.0060359.t002

Table 3. Univariate Cox proportional hazard ratios for DFS
with respect to clinical parameters and HTRA1 mRNA
expression levels.

Variable N = 131
Number
of events

Hazard Ratio
(95% CI) pa

HTRA1 expression

low 75 37 1 0.028

high 56 21 0.55 (0.32–0.94)

Age

,50 23 11 1 0.329

.50 108 47 0.72 (0.37–1.39)

Menopausal status

Pre-/peri- 28 14 1 0.200

postmenopausal 103 44 0.82 (0.61–1.11)

Lymph node status

negative 52 20 1 0.023

1–3 lymph nodes 43 20 1.22 (0.64–2.27)

4–9 lymph nodes 11 4 1.19 (0.41–3.47)

.9 lymph nodes 6 5 4.82 (1.77–13.14)

unknown 19

Tumor stage (pT)

1 39 16 1 0.148

2 72 31 1.18 (0.65–2.17)

3+4 18 11 2.26 (0.97–4.55)

unknown 2

Nuclear grading

1+2 49 22 1 0.489

3 46 23 1.23 (0.69–2.21)

unknown 36

Estrogen receptor

negative 37 17 1 0.983

positive 91 40 1.01 (0.57–1.78)

unknown 3

Progesterone receptor

negative 51 21 1 0.443

positive 77 36 1.24 (0.72–2.12)

unknown 3

Adjuvant therapy

none 61 25 1 0.730

endocrine only 50 23 1.01 (0.56–1.86)

chemotherapy 20 10 1.36 (0.63–2.92)

aUnivariate Cox regression analysis; 95% CI, 95% confidence interval; DFS,
disease-free survival with endpoints recurrence and/or death.
doi:10.1371/journal.pone.0060359.t003

Downregulation of HTRA1 in Breast Cancer

PLOS ONE | www.plosone.org 5 April 2013 | Volume 8 | Issue 4 | e60359



recurrence after 75 and 34 months, respectively; Patient #8 died

of disease. Almost complete methylation was observed in MCF-7

cells within a stretch of 43 potential CpG sites (position –537 to

2203 relative to mRNA start point). Compared with these cells,

MDA-MB-231 breast cancer cells displayed no detectable

methylation accompanied by a 22-fold higher HTRA1 mRNA

expression (Figure 3C and D). According to the data of Wang

et al. [15], treatment with demethylating agents does not further

increase HTRA1 transcripts in MDA-MB-231 cells. Thus, it is

reasonable that all relevant CpG sites have been examined and

found unaffected in this cell line.

Discussion

Numerous studies revealed downregulation of the serine

protease HTRA1 in cancer. In particular, studies in ovarian and

endometrial cancer reported reduced HTRA1 protein levels in

59% [12] and 57% [13] of the cases. In these tumors, absence of

HTRA1 expression has also been associated with more aggressive

tumor phenotypes and higher grading. HTRA1 expression was

also reduced or entirely lost in six studied breast cancer tissues and

five human breast cancer cell lines as reported by Wang et al. [15].

In the present study, we have investigated the presence of HTRA1

transcripts in a panel of 131 breast cancer specimens by qPCR.

Our patient cohort displayed a wide range of relative HTRA1

mRNA expression levels. Lower HTRA1 mRNA values were

indeed observed in patients exhibiting more aggressive clinical

characteristics like high grading or high lymph node infiltration

($4 lymph nodes), however, a statistically significant association

was obtained only between low HTRA1 mRNA expression and

higher tumor stage (see Table 1).

Evaluating the impact of HTRA1 expression on breast cancer

outcome, we could show favorable survival (OS and DFS) in

relation to high HTRA1 mRNA expression. Moreover, HTRA1

revealed to be a survival-related factor providing independent

prognostic information in the multivariable model. We subse-

quently validated our data using publically available data sets

based on Affymetrix HGU133A and HGU133+2 microarrays

[29], which provided relapse-free survival (RFS) data of 2809

Figure 2. Patient outcome in node-positive breast cancer patients as a function of HTRA1 mRNA expression. A. Overall survival (n = 60).
B. Disease-free survival (n = 60). Multiple testing performed with the R-package maxstat.test [28] is provided.
doi:10.1371/journal.pone.0060359.g002

Table 4. Multivariable Cox regression analysis for DFS.

Univariate Cox-Regression Multivariable Cox-Regression

Variable HR (95% CI) p HR (95% CI) p

HTRA1expression (low/high) 0.55 (0.32–0.94) 0.028 0.46 (0.23–0.92) 0.028

Nodal status (negative/positive) 1.39 (0.79–2.46) 0.256 2.12 (1.07–4.22) 0.032

Tumor stage (pT1+2/pT3+4) 2.11 (1.09–4.09) 0.027 1.29 (0.50–3.33) 0.597

Age at diagnosis (,50 ys/.50 ys) 0.72 (0.37–1.39) 0.329 0.54 (0.25–1.17) 0.119

Nuclear grading (G1+2/G3) 1.23 (0.69–2.21) 0.489 1.21 (0.59–2.51) 0.606

Number of patients in multivariable analysis: n = 80; number of events of recurrence and/or death in multivariable analysis: 38.
For both analyses, binary variables are used; HR, hazard ratio; 95% CI, 95% confidence interval.
DFS: disease-free survival with endpoints recurrence and/or death.
doi:10.1371/journal.pone.0060359.t004
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breast cancer patients and OS data of 971 patients within a follow

up time of at least 15 years. Consistent with our results, the

validation set showed better patient survival associated with high

HTRA1 mRNA expression. Taking into account the relative

heterogeneous nature of this panel of up to 2809 breast cancer

cases, the impact of HTRA1 was less pronounced (HR = 0.79 for

RFS), but high statistical significance was obtained (log-rank

p = 0.0003). Best cut-off points in this analysis were slightly above

the median HTRA1 expression level, compatible with our

calculated optimized cut-off value. Thus, HTRA1 mRNA expres-

sion appears as a robust marker for breast cancer outcome

supported by two different methodologies to assess transcript

levels. Furthermore, correlation of HTRA1 mRNA and protein

expression has been reported for a number of cancers such as

endometrial and ovarian cancer as well as for melanoma cell lines

[11,12,31], suggesting equal relevance of mRNA compared to

protein measurement. This is also supported by coincident

downregulation of mRNA and protein expression levels of

HTRA1 in Syrian hamster kidney after prolonged estrogenization

[32].

In subgroup analyses, we observed the most pronounced effect

of HTRA1 proficiency in node-positive breast cancer. It might be

reasonable to assume a higher relevance of HTRA1 expression

especially in breast cancer patients with lymph node involvement,

because these patients usually receive adjuvant therapy due to

their greater risk of disease progression [33]. Accordingly, we

demonstrated that 88% of our node-positive patients had been

treated with endocrine and/or chemotherapy, whereas only three

out of our 52 node-negative patients were adjuvantly treated.

Hence, together with our data obtained in the validation set, these

data may support previous results in gastric and ovarian cancer

[18,19] which have linked HTRA1 proficiency to better thera-

peutic responsiveness indicating that HTRA1 is a predictive

marker. Similarly, in a breast cancer study, HTRA1 was one

among a panel of three markers which predicted response to

doxorubicin-based chemotherapy [34]. In contrast, low HTRA1

expression was previously shown to trigger EMT in breast cancer

cells [15] which is most likely involved in drug resistance [35].

Furthermore, low HTRA1 expression appears to be associated

with more aggressive clinical characteristics. In our breast cancer

patient cohort, we observed reduced HTRA1 expression levels

particularly in patients exhibiting unfavorable clinical features

such as high numbers of affected lymph nodes ($4 lymph nodes;

see Table 1). Because an even greater HTRA1 downregulation in

lymph node metastases compared to the primary sites was evident

in lung cancer [36] and malignant melanoma [11], this strongly

points to a particular benefit for node-positive patients to have

high expression of the tumor suppressor HTRA1.

Interestingly, GEO-data-derived results computed by us for the

10-year-distant-metastasis-free survival (DMFS) in untreated

patients may also point to a ‘‘truly’’ prognostic value of HTRA1

expression regarding the risk of metastasis. By analyzing the ‘‘truly

prognostic data set’’ (n = 311) we found strong association of high

HTRA1 mRNA expression levels with longer DMFS showing a

HR = 0.45 [CI 0.31–0.65], log-rank p = 0.0000097 (see Figure S3).

The lower risk of metastasis at high HTRA1 expression levels is

most likely related to the anti-migratory [7,10,21] and proapopto-

tic functions [12,20] described for this serine protease. In

particular, HTRA1 downregulation has been previously shown

to be associated with the metastatic phenotype of melanoma cells,

while HTRA1 expression suppressed growth and matrix invasion

of metastatic cells [11]. Furthermore, stimulation of cancer cell

migration and invasion following HTRA1 inhibition could be

demonstrated in SKOV3 cells [10] and in immortalized breast

epithelial cells [15]. Both studies used siRNA techniques to knock

down HTRA1 expression, while forced HTRA1 expression

attenuated cell migration. A mouse model strongly supports these

data as increased numbers of micrometastases could be found in

the lung of mice after i.v. injection of endometrial cancer cells

expressing HTRA1-siRNA [13].

A particular feature of metastatic breast cancer is activation of

EMT which is known to promote growth, motility and invasion.

Table 5. Multivariable Cox regression analysis* for the risk of death (OS) in node-positive breast cancer patients.

Univariate Cox-Regression Multivariable Cox-Regression

Variable HR (95% CI) p HR (95% CI) p

HTRA1expression (low/high) 0.21 (0.07–0.63) 0.006 0.25 (0.08–0.80) 0.020

Tumor stage (pT1+2/pT3+4) 2.51 (0.93–6.78) 0.070 1.44 (0.48–4.31) 0.511

Adjuvant therapy (no/yes) 0.33 (0.12–0.928) 0.036 0.54 (0.18–1.64) 0.277

*Number of patients in multivariable analysis: n = 60; number of events of death: 18; binary variables are used; HR, hazard ratio; 95% CI, 95% confidence interval; OS,
overall survival with endpoint death of any cause.
doi:10.1371/journal.pone.0060359.t005

Table 6. Multivariable Cox regression analysis* for DFS in node-positive breast cancer patients.

Univariate Cox-Regression Multivariable Cox-Regression

Variable HR (95% CI) p HR (95% CI) p

HTRA1expression (low/high) 0.29 (0.13–0.65) 0.002 0.34 (0.15–0.79) 0.012

Tumor stage (pT1+2/pT3+4) 2.56 (1.15–5.71) 0.021 1.81 (0.79–4.18) 0.162

Adjuvant therapy (no/yes) 0.47 (0.18–1.24) 0.127 0.70 (0.26–1.90) 0.480

*Number of patients in multivariable analysis: n = 60; number of events of recurrence and/or death: 29; binary variables are used; HR, hazard ratio; 95% CI, 95%
confidence interval; DFS, disease-free survival with endpoints recurrence and/or death.
doi:10.1371/journal.pone.0060359.t006
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Downregulation of HTRA1 was indeed shown to stimulate

expression of mesenchymal markers and characteristics in breast

cancer cells [15]. HTRA1 was also shown to regulate TGF-ß

signaling. Decrease of HTRA19s proteolytic activity, e.g. in

CARASIL [9], leads to increased extracellular levels of TGF-ß.

Since TGF-ß is a potent inducer of EMT [37,38], this would speak

in favor of a direct role of HTRA1 in controlling active TGF-ß

levels, thereby suppressing EMT. Targeting EMT-related pro-

cesses downstream of HTRA1 might therefore proof an attractive

new strategy in the treatment of breast cancer. In this context,

Fang et al. very recently introduced a novel inhibitor of TGF-ß

receptor 1, YR-290, which could be demonstrated to markedly

block TGF-ß-mediated EMT and breast cancer cell invasion [39].

Alternatively, new therapeutic strategies may exploit mecha-

nisms to stimulate re-expression of HTRA1, although the basis of

HTRA1 downregulation in cancer cells might be complex.

Overstimulation of the estrogen pathway may contribute to a

decrease in HTRA1 expression as described in a model of Syrian

hamster nephrocarcinogenesis after prolonged estrogenization

[32]. Similarly, we did not see any cases with pronounced HTRA1

mRNA expression in breast cancer samples displaying very high

estrogen receptor values. Epigenetic events have been postulated

as other potential mechanisms to reduce HTRA1 expression levels

in cancer. In particular, Chien et al [12] reported upregulation of

HTRA1 by treatment of ovarian cancer cells with the demethyl-

ating agent deaza-cytidin. Consistent with these findings, promoter

methylation within the HTRA1 gene has been very recently

demonstrated in four out of five breast cancer cell lines [15].

Independently, we have screened a larger region of approx. 1000

bp including the transcription start point for the presence of

HTRA1 methylation. Analyzing the two breast cancer cell lines

MCF-7 and MDA-MB-231, we could define 43 potential CpG

sites (position –537 to 2203 relative to mRNA start) which were

found to be almost fully methylated in MCF-7 cells. In

concordance with the data of Wang et al. [15], we did not detect

significant methylation in this region in MDA-MB 231 cells

exhibiting .20-fold higher HTRA1 mRNA expression compared

to the MCF-7 cell line. These data suggest that the studied

promoter region upstream of the transcription start point is

apparently important for HTRA1 expression. Remarkably, also

two out of six low HTRA1 -expressing tumor samples derived from

our breast cancer cohort showed methylation in a smaller, distal

Figure 3. Methlylation analysis of the HTRA1 promoter. A. Schematic illustration of the studied region covering nucleotides –560 to +526
relative to the transcription start site. The location of amplicons and of highly methylated CpG sites determined in this study is indicated. B.
Methylation status of tumor samples #8 and #9: Potential CpG sites and the results of 13 analyzed clones in the amplicon upstream of the
transcription start site are shown (black circles define methylated sites). The most distant CpG site is located at position 2537, the most proximal site
at position 2293. C. Electropherograms obtained by genomic bisulfite sequencing of MCF-7 und MDA-MB-231 breast cancer cell lines. MCF-7 cells
showed strong methylation of all CpG islands in the ‘‘upstream’’ region (shown here in part) and, as the only sample, in the first seven CpG-islands in
the PCR fragment ‘‘mRNA start’’. Methylated CpG sites are highlighted. No significant methylation was observed in MDA-MB-231 cells. D.
Quantification of HTRA1 mRNA expression in two breast cancer cell lines. Relative HTRA1 expression levels, normalized to HPRT and adjusted to an
ovarian cancer sample as calibrator, are shown in MCF-7 and MDA-MB-231 cells. SD values of two independent experiments are indicated. Mean
difference in expression between both cell lines was 22-fold.
doi:10.1371/journal.pone.0060359.g003

Downregulation of HTRA1 in Breast Cancer

PLOS ONE | www.plosone.org 8 April 2013 | Volume 8 | Issue 4 | e60359



stretch of this particular region (recent data obtained by Wang

et al. with the MDA-MB-468 cell line suggested that the more

distal CpG sites might in fact be the most relevant ones for

HTRA1 expression [15]). None of the six studied high-expressing

tumors indicated relevant HTRA1 promoter methylation. How-

ever, as only one third of the tumors with HTRA1 downregulation

seemed to show methylation events, such events are likely to

represent only one epigenetic mechanism for regulating HTRA1

expression. Indeed, HTRA1/Prss11 has been previously found to

be a target for histone deacetylase 1 (HDAC1) in mouse and

HTRA1/Prss11 upregulation was reported by HDAC inhibition

[40]. Concordant with these results, Wang et al. [15] demonstrat-

ed upregulation of HTRA1 mRNA in methylation-negative MDA-

MB-231 cells by HDAC inhibitors, while demethylating agents

resulted in increased HTRA1 expression in highly methylated

M4A4 cells. Thus, HTRA1 downregulation in cancer might in

fact be explained by epigenetic mechanisms such as promoter

methylation or histone-deacetylation [15].

Further investigation will be necessary to unravel the regulation

of HTRA1 expression in breast cancer in order to stimulate re-

expression of this tumor-suppressor for the purpose of clinical

intervention, e.g, by HDAC inhibitors or demethylating agents.

With respect to the role of HTRA1 in EMT suppression, breast

cancer patients with low HTRA1 expression might also be suited

for drugs targeting EMT-related processes via inhibition of TGF-ß

signaling [39].

Supporting Information

Figure S1 Determination of the optimal cut-off value for
quantitative HtrA1 mRNA expression levels. The best

cut.off value with respect to patient outcome was obtained with the

R-program maxstat.test [28].

(TIF)

Figure S2 HTRA1 expression and patient outcome in the
validation set. An online database consisting of gene expression

data and survival information downloaded from GEO (Affymetrix

HGU133A and HGU133+2 microarrays) was used for correlation

with outcome within a period of 15 years [29]. A. Relapse-free

survival in 2809 breast cancer patients. Median HTRA1 expression

was 3979. Auto-selected best cut-off used in analysis was 4417. B.
Overall survival in 971 breast cancer patients. Auto-selected best

cut-off used in analysis was 5190.

(PPT)

Figure S3 HTRA1 expression and distant metastasis-
free survival in the truly prognostic data set. An online

database consisting of gene expression data and survival

information downloaded from GEO (Affymetrix HGU133A and

HGU133+2 microarrays) was used for correlation with distant

metastasis-free survival [29]. Survival data of 311 systemically

untreated breast cancer patients for up to 10 years were calculated.

Auto-selected best cut-off used in analysis was 3366.

(PPT)
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