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Breast cancer represents a great challenge since it is the first cause of death by cancer in
women worldwide. LncRNAs are a newly described class of non-coding RNAs that
participate in cancer progression. Their use as cancer markers and possible therapeutic
targets has recently gained strength. Animal xenotransplants allows for in vivo monitoring
of disease development, molecular elucidation of pathogenesis and the design of new
therapeutic strategies. Nevertheless, the cost and complexities of mice husbandry makes
medium to high throughput assays difficult. Zebrafishes (Danio rerio) represent a novel
model for these assays, given the ease with which xenotransplantation trials can be
performed and the economic and experimental advantages it offers. In this review we
propose the use of xenotransplants in zebrafish to study the role of breast cancer lncRNAs
using low to medium high throughput assays.
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INTRODUCTION

Breast Cancer
Breast cancer is the most frequent malignancy in women worldwide and the leading cause of
malignancy-related death (1). Whereas early breast cancer is considered curable in 70 to 80% of
patients, metastatic disease is considered incurable with our current therapeutic options. The tumor
characteristics that lead a breast cancer to become metastatic are not fully understood; however,
great efforts are currently being made to elucidate the early mechanisms involved in metastasis, and
find early molecular markers and new therapeutic targets related to progression. This malignancy is
a heterogeneous group of diseases that deserves our attention and focus on finding newmarkers that
can better discriminate among different subtypes and/or to individualize molecular characteristics
of these tumors, allowing for a more reliable prognosis and precise treatments (2). Gene expression
profiling of breast cancer has improved the understanding of breast cancer’s heterogeneity on the
genomic level, challenged the current classification of breast cancer, served as an important
prognostic indicator; and most important, begun to guide the treatment in women with early
breast cancer (2). It is of pivotal importance to find noninvasive biomarkers with high sensitivity
and specificity, which can be used for breast cancer detection at an early stage and monitor of
response to therapy (3). Recent advances in technologies, such as microarray and high-throughput
sequencing, represented a deeper understanding of molecular biology, especially long noncoding
RNA (lncRNA).
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THE ROLE OF lncRNAs IN
CANCER PROGRESSION

Through a varied repertoire of interactions, lncRNAs are
involved in health and disease, through a diverse array of
processes such as differentiation and embryonic development
(4–6), innate immunity (7, 8) and cancer progression (9, 10). The
world of lncRNAs is constantly growing; today, several databases
have information on hundreds of thousands of lncRNAs from
human and other species (11, 12). Several studies revealed that
lncRNAs are key to cancer initiation and progression. Although
the biological function and molecular mechanisms of lncRNAs
are not known in detail, many lncRNAs are expressed
abnormally in cancer.

The expression dynamics of lncRNAs are finely controlled by
epigenetic, transcriptional and post-transcriptional regulation.
The characteristic tissue-specific expression and low transcription
levels of lncRNAS are epigenetically regulated. Transcription of
non-coding RNA genes is regulated by central transcription
factors that also regulate nearby coding genes; however, some
lncRNA may allow their transcription to be unsynchronized
with their near mRNAs. Moreover, lncRNAs are also regulated
at the post-transcriptional level, including modulation by
miRNAs (13).

lncRNAs are involved in a large number of molecular regulatory
mechanisms such as chromatin dynamics, gene expression, growth,
differentiation, and development. Consequently, they participate in
the maintenance of homeostasis, and thus, in several pathologic
states. These molecules are transcribed at sizes ranging from 200
nucleotides to several thousand base pairs with little or no
translation potential (14). lncRNAs comprise non-coding RNAs
(lncRNAs) previously annotated as antisense transcripts, intronic
transcripts, processed pseudogenes, lncRNAs (long intergenic non-
coding RNAs), and coding-transcript isoforms that do not translate
to a functional protein (15–18). These RNAs are transcribed in the
cell nucleus and then transported to the cytoplasm to be edited and
directed to their final destination to fulfill the function, either in the
cytoplasm, nucleus, local organelles (cell-autonomous function) or
outside the cell (non-cell-autonomous function) (18).

On vertebrates, lncRNAs are transported from cells into
interstitial spaces and body fluid through exosomes, similar to
lipids, proteins, DNA, and mRNA (19, 20). Secreted exosomes
circulate in different fluids and can be internalized by
neighboring cells (in autocrine and paracrine communication)
or distant cells (in endocrine communication). They can also
be transferred from one organism to another, thus facilitating
genetic and epigenetic information exchange between
organisms (21).

LncRNAs act at various gene regulation levels, e.g.,
modulating methylation at the chromatin level (22, 23) or
regulating genes through association with activator or repressor
complexes at the transcriptional level (23, 24). They also
participate in processes of splicing, transport, translation and
mRNA decay, as is the case of the versatile lncRNAs MALAT1
(17, 25, 26). In summary, lncRNAs fulfill the functions by their
molecular interaction with other biomolecules, including
Frontiers in Oncology | www.frontiersin.org 2
proteins, DNA and several RNA species (mRNA, small RNA
and even other lncRNAs).

LncRNAs mediate the interaction between proteins, RNAs,
and lipids, not only in physiological situations but also during
cancer progression (9). These interactions regulate two key
cancer processes: Cancer Stem Cells (CSCs) maintenance and
the tumor cells´ interaction with their microenvironment. These
characteristics give lncRNAs important features as molecular
markers for the diagnosis, prognosis (27), and prediction (28) of
cancer. Additionally, circulating lncRNAs have great potential as
molecular markers for non-invasive detection since variations in
lncRNA expression can be detected in a serum or body fluid
sample, avoiding invasive approaches such as tumor tissue
biopsies (29). This advantage makes lncRNAs a promising tool
on the road to early cancer detection and drug design.

lncRNAs Involved in Breast Cancer
There is currently an extensive list of lncRNAs associated with
breast cancer with either oncogenic or tumor suppressor
functions, according to their roles in promoting or inhibiting
proliferation, metastasis, invasion, apoptosis, autophagy,
inflammation, stemness, and drug resistance (30).

lncRNAs in Breast Cancer Metastasis
Plenty information has recently been generated for some
lncRNAs such as MALAT1, HOTAIR (31) and NEAT1 (32)
describing their breast cancer progression and metastasis roles;
and although knowledge about lncRNAs and their association
with breast cancer metastasis is constantly growing (Table 1),
much remain to be elucidated. In particular, there is a paucity of
information regarding the molecular mechanisms by which
lncRNAs exert their function and clinical relevance. One of the
first mechanisms required to initiate metastasis is the epithelial-
mesenchymal transition (EMT) (48), which paves the way for the
migration and invasion of cancer cells from the primary tumor
site to distant secondary sites (49). More than a dozen lncRNAs
are known to be involved in the EMT of breast cancer cells.

lncRNAs Are Involved in Apoptosis
Avoidance During Breast
Cancer Progression
It is clear that lncRNAs are involved in a wide range of biological
and physiological processes during breast cancer progression.
One of these is regulated cell death, in particular apoptosis.
lncRNA-Zfas1 is an antisense of the 5′end of the gene encoding
the Zfas1 protein, which is localized to the ducts and alveoli of
the mammary gland. Deletion of lncRNA-Zfas1 in breast cancer
cells resulted in increased cell proliferation with a concomitant
reduction of Zfas1 expression (50). Thus, Zfas1 is a novel and
potential suppressor of breast cancer.

LncRNA-Smad has recently been identified as adjacent to the
mouse Smad7 gene (51). LncRNA-Smad7 expression is induced
by TGF-beta in all mammary gland epithelial cells and breast
cancer cell lines (51). Deletion of this lncRNA neutralized the
antiapoptotic function of TGF-b. This finding suggests a
tumorigenic role of this lncRNA. LOC554202 is an additional
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lncRNAs that have been linked to apoptosis repression through
interaction with mir-31 in triple negative breast cancer (52). We
envision that there are still much to learn about the role of
lncRNAs in the regulation of cell death of breast cancer cells.

lncRNAs and Autophagy in Breast Cancer
Recent studies have shown that the regulation of autophagy is
involved in the progression and recurrence of cancer (53), and in
the resistance of breast tumors to chemotherapy drugs (54). So, it
is not surprising that lncRNA could play a role in the regulation
of autophagy in breast cancer cells (55). For example, recent
work has identified an autophagy-related lncRNA prognostic
signature (ALPS) model composed of five autophagy-related
lncRNAs (MAPT-AS1, LINC01871, AL122010.1, AC090912.1,
AC061992.1). These results suggested that the autophagy-related
lncRNAs are clinically valuable prognostic biomarkers in breast
cancer (56).

Role of lncRNAs in Inflammation During
Breast Cancer
It has recently become widely accepted that the immune system
can prevent tumor growth and promote it, through processes
grouped in three phases: elimination, equilibrium and escape
(57, 58). Elimination is achieved through the identification and
destruction of transformed cells by tumor-inhibiting
inflammation. This phase is characterized by the infiltration of
cells of the innate and adaptive immune system. The escape
phase is maintained by tumor-promoting chronic inflammation,
mainly involving immunosuppressive cells (58).

NF-kB is a family of proinflammatory inducible transcription
factors that are involved in breast cancer progression (59).
Several lncRNAs play pivotal regulatory roles in the NF-kB
pathway. LncRNA NKILA was first found up-regulated by the
inflammatory cytokine TNF-a through the NF-kB pathway in
breast cancer. NKILA could directly bind to the NF-kB/IkB
complex and inhibit NF-kB signaling from suppressing breast
cancer metastasis (60). In another report, NKILA was shown to
be up-regulated by TGF-b to block NF-kB signaling, thereby
Frontiers in Oncology | www.frontiersin.org 3
suppressing the TGF-b-induced tumor metastasis in breast
cancer (34).

STAT3 is a component of another important pathway that
plays a role in inflammation during breast cancer progression,
and several lncRNAs (e.g., HOTAIR and Lnc-BM) participate in
this process (43, 46). In breast cancer cells, Lnc-BM increased the
STAT3-dependent expression of ICAM1 and CCL2, which
regulated vascular co-option and recruitment of macrophages
in the brain, respectively (43).

The Role of lncRNAs in the Tumor
Microenvironment Crosstalk in
Breast Cancer
The tumoral microenvironment (TME) is a complex biochemical
and physiological system involved in tumorigenesis and
metastasis (61–63). It comprises the cancer cells, extracellular
matrix, vasculature, non-cancer cells and the tumor’s acidic and
hypoxic microenvironment. The cellular component consists of
cancer-associated fibroblasts (CAFs), adipose cells, endothelial
cells, cancer stem cells (CSCs), infiltrated immune cells such as T
lymphocytes and natural killer cells (NKs), myeloid-derived
suppressor cells (MDSCs), and tumor-associated macrophages
(TAMs) (64–66). There is evidence that lncRNAs are involved in
the communication between tumor and non-tumoral cells
required to induce or maintain cancer hallmarks such as
proliferation, migration, and metastasis.

One of the best-known examples of the relationship of lncRNAs
in the communication between tumor microenvironment and
tumor cells is the HOTAIR lncRNA. In breast cancer, TGF-b1
secreted by CAFs up-regulates HOTAIR expression to promote
epithelium- mesenchyme transition (EMT) and metastasis (67).
HOTAIR inhibits miR-7 in CSCs of MCF-7 and MDA-MB-231
breast cancer cell lines and thus promote the overexpression of
SETDB1, STAT3, c-Myc, twist, and miR-9 (46) and repression of
E-cadherin (46, 68) to the benefit of the EMT process. HOTAIR
also contributes to EMT through regulation of VEGF, MMP-9, b-
cantenin and Vimentin (69). Also, in breast cancer HOTAIR up-
regulates SNAIL expression, as a master regulator of the EMT
TABLE 1 | lncRNAs involved in breast cancer metastasis.

lncRNA Function Cancer Reference

ANCR Tumor suppressor (33)
NKILA Tumor suppressor (34)
XIST Tumor suppressor (35)
Linc00052 Tumor suppressor (36)
NEAT1 Oncogenic (37)
Linc-ROR Oncogenic (38)
UCA1 Oncogenic (39)
TINCR Oncogenic (24)
BORG Oncogenic (22)
LincIN Oncogenic (40)
Lnc015192 Oncogenic (23)
LINC01638 Oncogenic (41)
ARNILA Oncogenic (42)
Lnc-BM Oncogenic (43)
MALAT1 Tumor suppressor and oncogenic (44, 45)
HOTAIR Tumor suppressor and oncogenic (31, 46, 47)
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pathway (31). HOTAIR also mediates the establishment of the
SNAIL/HOTAIR/EZH2 tripartite complex by inhibiting the
expression of epithelial genes (such as HNF4a, HNF1a, and E-
cadherin) through chromatin remodeling in favor of EMT (70).

Another essential component of the stroma required for EMT
and subsequent metastasis is tumor vasculature. There is clear
evidence that dysregulation of a group of lncRNAs can trigger
changes in endothelial cells that favor angiogenesis and
metastasis of breast cancer cells. For example, the lncRNA
NR2F1-AS1 promotes breast cancer angiogenesis by activating
the IGF-1/IGF-1R/ERK pathway (71). Similarly, overexpression
of MEG3 suppresses breast cancer angiogenesis through the
AKT pathway (72). M2 macrophage-induced lncRNA PCAT6
facilitates angiogenesis of triple-negative breast tumors through
modulation of VEGFR2 (73).

CSCs are a subpopulation of cancer cells that can self-renew
and proliferate limitlessly. They may be responsible for cancer
initiation, progression, and even treatment resistance (74).
Several lncRNAs act by modulating the self-renewal and
differentiation of CSCs, such as lncH19 and HOTAIR. LncH19
acts as a lncRNA sponge for miRNA let-7, inhibiting its function
and favoring the maintenance of CSCs in breast cancer (75).
HOTAIR, on the other hand, also regulates the self-renewal of
CSCs in breast cancer, inhibiting miR-34a and thus positively
regulating Sox2 (76). Interestingly, lncRNAs can also modulate
the development, activation and differentiation of T cells, which
have both tumor-promoting and tumor-suppressive functions
(77). Regulatory T cells (Treg) are a subset of CD4+ T
lymphocytes that contribute to the inhibition of anti-tumor
immunity of the TME (78, 79). The lncRNA SNHG1 promotes
Treg differentiation, and the knockdown of this long noncoding
lncRNA inhibits Treg differentiation through increased
expression of miR-448 and indoleamine 2,3-dioxygenase (IDO)
inhibition, preventing immune escape in breast cancer (80).
LncRNAs also modulate immunosuppression and cancer
progression through the regulation of ROS (reactive oxygen
species), NO (nitric oxide), and ARG1 (arginase 1) production
in MDSCs. MDSCs are generated in the bone marrow and have
been shown to promote EMT and play an important role in
cancer progression by suppressing the immune response (81, 82).

TAMs are also key players in cancer progression through
invasion and metastasis regulation. Two functional types of
macrophages have been identified, classically activated
macrophages (M1) and alternatively activated macrophages
(M2) (65). M1 macrophages participate in the Th1-type
inflammatory response and have anti-tumor activity, and M2
macrophages are anti-inflammatory macrophages and have a
proto-oncogenic role (65, 83, 84). Recently, several studies have
shown that lncRNAs can modulate M2 macrophage polarization
and by this induce tumor cell migration and invasion in several
types of cancer. The lncRNA associated with breast cancer brain
metastases (BCBMs), lnc-BM, was found to be overexpressed in
breast cancer cells, and associated with the induction of brain
metastasis in murine models (43). In breast cancer, lnc-BM
increased JAK2 kinase activity to mediate oncostatin M- and
IL-6-triggered STAT3 phosphorylation, promote ICAM1 and
Frontiers in Oncology | www.frontiersin.org 4
CCL2 expression, and mediate macrophage recruitment to the
brain and consequently metastasis. lnc-BM and JAK2 promote
BCBMs by mediating communication between breast cancer
cells and the brain microenvironment. Thus, lnc-BM could be
a promising therapeutic target for invasive breast cancer (43).

LncRNAs are a diverse set of molecules that can perform their
functions intracellularly, travel free in the extracellular matrix,
affect distant cells’ function and even be transported by exosomes
during intercellular communication. Tumor-derived exosomal
lncRNAs affect the TME by generating changes in the transferred
cells, E.g. stromal cells, endothelial cells, macrophages, and
mesenchymal stem cells, leading to induction of proliferation,
angiogenesis and metastasis (85, 86).

lncRNAs in Breast Cancer
Drug Resistance
Besides its involvement with classic cancer hallmarks, a group of
lncRNAs has also been linked to drug treatment resistance. The
expression of a diverse array of lncRNAs changes dynamically in
response to various drugs contributing to anti-tumor drug
resistance through various mechanisms, such as cell cycle
arrest, inhibition of apoptosis, DNA damage repair (87–89),
EMT (90), transport and internalization of drugs by cancer
cells (91, 92), and drug metabolism. lncRNAs involved in
breast cancer cell drug-resistance are UCA1 in doxorubicin
resistance (93), PANDA in anthracycline resistance (94), ARA
in adriamycin resistance (95), CCAT2 in 5-fluorouracil (96), and
BCAR4, HOTAIR, and M41 in tamoxifen resistance (97–99).
Since lncRNAs aberrant expression is a marker of drug resistance
(100), they are potential targets of new therapeutic strategies.
ZEBRAFISH XENOTRANSPLANTS TO
STUDY THE ROLE OF lncRNAs IN
BREAST CANCER

Although studies in cancer cell lines have advanced our
knowledge of lncRNAs functions at the molecular level, the use
of animal models provides a rich context in which to investigate
the phenotypic impact of these molecules in the breast cancer.

The involvement of lncRNAs in the breast cancer tumor
phenotype can be modeled in vivo by genetic modifications in an
animal, altering the expression of a lncRNA and studying the
effects on cancer development. However, breast cancer´s
multigenic and multifactorial nature requires an integrative
approach in which the genetic landscape that drives the
development of the disease is present.

Xenotransplantation, which is generated by implanting
human tumor cells into an animal host, allows the study of the
effects of altering a particular gene in the development of breast
cancer through genetic manipulation of human cell lines before
transplantation. Mouse xenotransplants were the first to be used,
but zebrafish have recently emerged due to the experimental,
economic, and visualization advantages they offer. In recent
years, several breast cancer cell lines have been successfully
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xenotransplanted in zebrafish, such as MDA-MB-468 (74),
MDA-MB-231 (101–104), MDA-MB-435 (105, 106), MDA-
MB-23 (102), HCC1806 (101), MCF-7 (36, 107–109) and BT-
474 (106) among others. These experiments allowed the
exploration of the participation of various genes in pathways
related to proliferation-tumorigenesis, apoptosis (109),
macrophage-mediated tumor cell invasion (104), migration-
metastasis, angiogenesis, drug resistance, stem cell maintenance
(106) and tumor microenvironment crosstalk (102, 103).

Zebrafish xenotransplantation represents a step forward in
modeling the complexity of breast cancer tumors, and the
involvement of a particular gene in each of the events that
accompany cancer, as cells are implanted into a living
organism in which many types of dynamic interactions can
occur. Xenotransplanted cancer cells do not depend on the
artificial addition of nutrients, serum, cytokines, and growth
factors. In zebrafish, with all functional organs, tumors can
engage in both local and systemic cell-cell interactions, shaping
tumor progression. These interactions occur between tumor and
host and vice versa, with long-distance communication, allowing
recapitulation of cancer features such as cell migration, invasion,
metastasis, angiogenesis, and immune evasion that are not
possible to observe in vitro. When breast cancer tumor cells
are implanted, many different zebrafish cells are recruited to the
tumor site following tumor instructions (102, 103). The zebrafish
xenotransplantation model allows simultaneous single-cell
resolution monitoring of tumorigenesis at various steps in vivo,
including tumor vascularization, localized tumor growth,
tumor invasion, and micrometastasis formation. Zebrafish
xenotransplantation of breast cancer cells enabled the discovery
of a new mechanism of metastatic niche formation, and the roles
of macrophages in this process were described. The experimental
advantages offered by zebrafish also allowed the discovery that
physiological migration of neutrophils controls tumor invasion
by conditioning the collagen matrix to facilitate the metastatic
niche (102).

Finally, drug sensitivity profiling of breast cancer cells using
the zebrafish xenotransplantation model allows the assessment of
pharmacokinetics, pharmacodynamics and toxicity in a whole
living organism, and in a short time. In vivo testing has great
advantages over in vitro assays. E.g., to produce in vivo
phenotypes, compounds must be absorbed, reach targets,
circumvent elimination, and cannot be too toxic, otherwise the
animal will not survive. The complexity of in vitro models is
given by the experience of the investigator, whereas in in vivo
models, the complexity is built according to the dynamic
instructions and signals of the tumor itself. Zebrafish
xenotransplantation also allows in vivo evaluation at the single
cell level of the cell autonomous and non-cell autonomous effects
of a drug on the different hallmarks of cancer (110).

There are several methodological advantages for using zebrafish,
such as their rapid and external development, the transparency of
their embryos (111), the availability of fluorescent cell reporter lines
(112), the ease of genetic manipulation (113), and pharmacological
approaches (114). Moreover, its wide range of growth temperatures
that allows xenotransplantation experiments to be carried out at
Frontiers in Oncology | www.frontiersin.org 5
temperatures close to human physiological ones. These
characteristics make the zebrafish an excellent in vivo model to
visualize the tumor cell behavior and interactions with the
host microenvironment.

In addition to facilitating in vivo assays related to the breast
tumor itself, zebrafish help study functional aspect related to
particular molecules such as lncRNAs in breast cancer hallmarks.
Xenotransplantation of breast cancer cell lines in zebrafish makes
it possible to study human lncRNAs’ role in the tumor
phenotype and microenvironment, giving a comprehensive in
vivo perspective of the functions of this molecule.

Zebrafish xenotransplant facilitates the study of signaling
mechanisms involved at the whole organism level during cancer
initiation and progression. Furthermore, there is significant
conservation of oncogenes and tumor suppressor genes between
zebrafish and humans, so the data obtained from zebrafish are
relevant to humans (115). The xenotransplantation platform in
zebrafish is also helpful for drug discovery in the context of
breast cancer research (116). Zebrafish cell xenotransplantation
studies have the advantage of maintaining the effects of the
microenvironment in cell communication and cancer progression,
even when there are inter species differences.

Zebrafish present ideal characteristics that allow multiple
statistically robust experiments to be performed simultaneously;
however, the zebrafish xenotransplantation platform is not
without limitations. On the one hand, the lack of an adaptive
immune response is beneficial for initial transplantation and
injection, but could become a limitation for translation of
findings, as adaptive immune cells may play vital roles in
promoting or inhibiting breast cancer progression and the
effects of some treatments (117, 118).

The zebrafish and human genomes are 70% similar based on the
conservation of individual genes, including cancer-related coding
and non-coding genes. However, zebrafish are not mammalian, so
some important pathways in breast cancer tumor development are
absent, including BRCA1, p16 (CDKN2A), Leukemia Inhibitory
Factor (LIF), oncostation M (OSM) and interleukin 6 (IL6) (119).
These absent pathways pose several challenges when studying the
functions of these “missing” genes or the pathways in which they
play a role. Furthermore, when foreign tissues and cells are
introduced into fishes, there is no guarantee that all molecular
mechanisms linking the recipient tissue and xenograft are fully
conserved, which could affect interactions between host cells and the
cancerous xenograft. This issue is especially relevant to the study of
breast cancer as there is no orthotopic site in fish. However, it may
be possible to “add” the necessary cells or growth signals to mitigate
this problem during xenotransplantation, or to “humanize” the fish
by creating transgenic animals that express appropriate human
growth factors, receptors and/or cytokines, as has been done in
mice (120).

Zebrafish offers two options for cancer modeling by
xenotransplantation of breast cancer cell lines or patient-derived
tumor cells by microinjection, (Figure 1). In 48 hpf (hours post-
fertilization) embryos, into the yolk sac, duct of Cuvier (common
cardinal vein), caudal vein, or perivitelline space. In adults, into the
intraperitoneal cavity, (Figures 1A–C). Either option may result in
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tumor masses, which induce a neo-vascular response around the
tumor and consequent migration and metastasis, (Figure 1D).
Embryo assays are the top choice in most work, given their
methodological advantages for fast results, low-cost experiments,
Frontiers in Oncology | www.frontiersin.org 6
compatibility for microscopic imaging, and drug screening potential
taking advantage of their small size, (Figures 1E–G) (121).

On the other hand, adult animal assays are ideal for studying
human physiological temperature-dependent characteristics
A

B

C

D

E

F

G

H

I

J

FIGURE 1 | Comparison between xenotransplantation assays in zebrafish embryos and adult animals. (A) Common sites of injection. Shown are the most
commonly used injection sites for xenotransplantation of a zebrafish in two different stages of development. Left: 48 hpf Stage. The yolk sac is the most common site
of injection, but hindbrain ventricle, caudal vein; previteline space and duct of cuvier can be used also. Right: Juvenile Adult. The majority of xenografts occur within
the intraperitoneal cavity, and hinbrain ventricle can be used also. (B) Xenotransplantation of cancer cell lines and (C) patient-derived cells can be performed in both
embryos and adults. (D) Xenotransplantation allows evaluating the rate of tumor formation, metastasis and angiogenesis. (E–J) Advantages and disadvantages of
xenotransplantation in embryos versus adult fish assays.
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such as tumor growth rate or determining the dose using oral
gavage, (Figures 1H–J) (121, 122).

The use of fishes with fluorescent vasculatures such as Tg(Fli :
EGFP) or VEGFR2:G-RCFP allows the visualization of
angiogenesis in vivo (123–125). In xenotransplantation, the
zebrafish provides the necessary signals for the transplanted
cells to integrate into the organs, migrate, proliferate and
interact with the zebrafish microenvironment (126, 127).

Xenotransplantation has evolved as one of the most valuable
strategies to study breast cancer’s discrete aspects, as evidenced
by the growing volume of scientific publications on this subject
over the last 15 years, (Supplementary Table 1). Xenotransplants
of breast cancer cell lines in zebrafish allow rapid in vivo testing
of coding and non-coding genes, pathways involved in
tumorigenesis, migration, angiogenesis, or screening for new
drugs. Moreover, in recent years, in vivo modeling by zebrafish
xenotransplantation revealed important information on the role
of some lncRNAs in breast cancer hallmarks (36, 107, 128, 129)
(Supplementary Table 1, blue data). We recently uncovered the
role of lncRNA-HAL in promoting the stemness in breast cancer
cells; the action of lncRNA LINC00052 in the suppression of
migration, as well as the role of LncMat2B in the induction of
breast cancer cell invasiveness using in vivo xenotransplantation
assays in zebrafish (36, 107, 129). Likewise, Peperstrate et al.
showed that lncRNA H19 increases breast cancer cells’ invasive
capacities in xenografted transgenic zebrafish models (128). In
this work, breast cancer cell lines were modified to alter the
expression of lncRNAs, then stained or labeled with reporter
genes and transplanted into zebrafish embryos. Tumor cells that
migrated to distant sites within the fish embryos, and the growth
of the transplanted mass, or the development of tumors at
secondary sites, were related to the different hallmarks of cancer
to infer the involvement of the lncRNA ones in these events.

In conclusion, zebrafish xenotransplants allow the in vivo
functional study of the involvement of lncRNAs in breast cancer
in short timescales.
ZEBRAFISH XENOTRASPLANT FOR THE
STUDY OF lncRNAs IN BREAST CANCER
TUMOR MICROENVIRONMENT

One of the most attractive advantages of using an in vivo model
for the study of breast cancer as a complement of an in vitro
model is the possibility of representing the complex context of
the tumor microenvironment.

As discussed above, lncRNAs are involved in a various
molecular pathways related to communication from the tumor
microenvironment to the tumor cells themselves to promote
cancer establishment and progression. The zebrafish
xenotransplantation platform for breast cancer will facilitate
the discovery of functional information of lncRNAs in the
complex process of communication with the tumor
microenvironment. Zebrafish xenotransplantation allows
visualization of in vivo events in a real time and cellular level,
such as cell-cell interaction. Together with assays to alter the
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expression of lncRNAs in xenotransplanted cells, the zebrafish
xenotransplantation model could provide valuable information
on the participation of lncRNAs in this complex process. As
previously stated, zebrafish xenotransplantation models are
efficient for providing information about several breast cancer
hallmarks, e.g. tumor progression, angiogenesis, spread,
metastasis or drugs response, revealing the existence of
interactions between cancer cells and cellular and non-cellular
components of the host inter-species microenvironment.

Xenotransplantation assays in zebrafish have shown that it is
possible to investigate the mechanisms and biological
implications of tumor-host cell crosstalk. A clear example is the
molecular interaction between breast cancer cells and zebrafish
host cells. They allow the recapitulation of cancer hallmarks such
as angiogenesis in CXCR4 chemokine signaling across zebrafish
and humans in xenotransplantation experiments. Tullota et al.
showed that human cancer cells expressing CXCR4 responded
to the zebrafish Cxcl12 ligand, and zebrafish cells expressing
Cxcr4 migrated to the human CXCL12 ligands (130). On the
other hand, substantial evidence supporting the molecular
interrelationship between human and zebrafish, and involving a
lncRNA, is the resistance to tumor formation of a zebrafish
knockout of Thor (THOR-/-) (an oncogenic lncRNA conserved
between zebrafish and human) after xenotransplantation with
NRAS61K melanoma cells (131).

The interaction between cancer cells and zebrafish immune
cells was discovered by experiments transplanting cancer cells
directly into the blood circulation through the duct of Cuvier or
the perivitelline space. Neutrophil and macrophage infiltration
surrounding the tumor was observed by using transgenic
zebrafish strains with labeling in immune system cells (Tg
(mpx:GFP)i114 (132) in neutrophils, Tg(mpeg1:eGFP)gl22 (133)
and Tg(mpeg1: mCherry)UMSF001 (134) for macrophages (135);
and the interaction of cancer cells with endothelium using vessel-
tagged strains such as Tg(fli:eGFP)y1 (112), Tg(flk1:eGFP)s843

(136) and Tg(flk1:mCherry) (137). The zebrafish immune cells
are recruited and localized near the breast cancer cells at the
primary tumor growth and secondary micrometastasis sites.
Also, it was observed that the non-disseminated tumor cells
associated with the endothelium of the duct of Cuvier and
remodeled it, forming new vessel-like structures and then
forming functional vasculature. Subsequently, by knocking
down the expression of myeloid differentiation transcription
factors in zebrafish, the suppression of tumor vascularization,
invasion and micrometastasis was observed (102), showing the
dynamic interaction of zebrafish immune cells with human
breast cancer cells.

On the other hand, using vasculature-tagged reporter strains,
cancer cells injected into the yolk of zebrafish embryos were
shown to interact with the endothelium of the embryos blood
vessels, migrate through them and form secondary tumors (138).
The induction of angiogenesis mediated by the interaction
between zebrafish immune cells and transplanted human
breast cancer cells was also confirmed through the positive
correlation between the expression levels of vascular
endothelial growth factor A (VEGFA) secreted by transplanted
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breast cancer cell line, the number of immune cells recruited
around the tumor, the interaction of macrophages with the
vessels, and the induction of new vessel formation around the
tumor in zebrafish (103).

In recent work, it was observed that one of the mechanisms by
which the interaction between host cells and tumor cells occurs is
through the transfer of cytoplasm from zebrafish macrophages to
the transplanted tumor cells. Although it is unknown what
components are exchanged, it is presumed that it could be
RNA molecules (139).

Zebrafish xenotransplantation assays of breast cancer cells,
coupled with single cell transcriptional analyses, could facilitate
the elucidation of the molecular mechanisms and lncRNAs
involved in the communication between the tumor micro
environment and cancer cells.
lncRNAs AND ZEBRAFISH PATIENT-
DERIVED XENOTRANSPLANTATION
(zPDX) IN THE SEARCH FOR
PERSONALIZED BREAST
CANCER TREATMENTS

Due to breast cancer’s genomic advances, one of the greatest
challenges in translational and personalized medicine is quick,
cheap and reproducible in vivo disease modeling. Although
molecular breast cancer markers and pharmacogenomics
analyses help to predict the best treatment option, many
patients do not respond as expected. This event is probably
due to the heterogeneity of breast tumors, in which there are
non-responding cells immersed in a large group of responding
cells, which will escape treatment.

LncRNAs have been associated to breast cancer progression by
modulating a large number of oncogenic processes. These results
point toward the possibility that they could be useful as future
targets for therapeutic intervention against breast cancer (129, 140,
141). In addition, Several studies have proposed lncRNA
signatures that could potentially be used for predictive and
prognostic value in response to breast cancer treatments
(142–144).

LncRNAs can be targeted for inhibition through multiple
mechanisms, such as antisense oligonucleotides (ASOs), short
hairpin RNAs (shRNAs), short interfering RNAs (siRNAs),
aptamers, CRISPR-Cas approaches and small molecule
inhibitors (145, 146). There is evidence that ASOs could be a
potential targeted therapy for cancer-associated lncRNAs (147).
It was recently reported that ASOSs directed against the breast
cancer-associated lncRNA MALAT1 effectively suppressed
cancer spread to the lung in a murine model of breast cancer
xenotransplantation (148).

The use of avatars or patient derived xenotransplantation
(PDX) breast cancer models may help evaluate in vivo the global
response of tumor cells, detect those that escape the drug, and
find and decide the most appropriate treatment for that patient.
Zebrafishes offer suitable characteristics for breast cancer
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modeling using PDX, such as the embryo transparency, the
possibility of real time visualization, and the short time to obtain
results (149). Patient derived xenotransplantation in zebrafish
(zPDX) consists of obtaining a very small fraction of the patient’s
tumor by biopsy and transplanting it into zebrafish directly or after
obtaining a primary culture of cells, (Figures 2A, C).

The combination of zPDX with the lncRNAs based
transcriptomic analysis-guided drug screening assays would
enable the finding of efficient and personalized anti-breast
cancer treatments, (Figures 2B–D). The zebrafish xenograft
model allows rapid sensitivity profiling to new anticancer drugs
but is also ideal for determining the effects of different therapeutic
combinations on tumorigenesis, metastasis, and angiogenesis, in a
timeframe compatible with the clinical decision-making process
(110), (Figures 2D–F). More important, these assays maximize
the use of the small amount of breast cancer tissue available after a
biopsy, which can be a limiting factor in precision medicine.
ZEBRAFISH CONSERVED lncRNAs IN
THE FUTURE DIRECTIONS FOR
BREAST CANCER MODELING
BY XENOTRANSPLANTATION

LncRNAs are key players in the communication between tumor
cells and the surrounding microenvironment, actively
participating in cancer progression. These non-coding RNAs
can travel free or via exosomes to neighbor cells in the tumor
microenvironment and carry out their function in a cell-non-
autonomous manner (19). Breast cancer xenotransplantation
assays in zebrafish showed that there is interspecies molecular
communication that allows the development and progression of
cancer in the animal model. Despite the low conservation of
interspecies sequences of lncRNAs, the knowledge of those that
are conserved between human and zebrafish will allow the study
of their cell-non-autonomous function, and to test their potential
as therapeutic targets.

LncRNAs can be evolutionarily conserved through sequence,
structure, function, and expression of the locus of synthesis. In
general, lncRNAs do not have high sequence conservation across
the full-length sequence because partial sequences or local spatial
structures mainly mediate their biological functions. The speed
of base change in lncRNA sequences exceeds the evolutionary
time scale. It follows that lncRNAs evolve faster than protein
coding genes, suggesting that nucleotide sequence conservation
is not essential for preserving lncRNAs functionality (150, 151).
lncRNAs follow different conservation criteria than those of
protein coding genes (150, 152). Identity concentrates on short
sections and the secondary structure, unlike coding genes that
focus on conservation in all their length to preserve the open
reading frame and ensure similarity in amino acid sequence
(150). In order to find these conserved segments, diverse groups
have generated tools that allow us to study their evolution and to
estimate the functional conservation of lncRNAs across species,
for example PLAR (153), Gencode V7 (154), Lncipedia (12), and
ZFLNC (11). Currently, there are databases focused mainly on
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zebrafish lncRNAs annotation and expression profiles, such as
ZFLNC and zflncRNApedia, for a total of 13,604 genes that
transcribe 21,128 lncRNAs (11), of which 1,890 are conserved
in human.

One of the most important characteristics observed in the
expression patterns of zebrafish lncRNAs is the strong dynamics
of temporal expression compared to protein-coding genes (155).
This feature is undoubtedly relevant to consider these molecules
as indicators or markers in disease processes. Also, it has been
found that not only specific gene regions of the lncRNAs are
conserved, but there is also significant conservation into the
upstream regulatory regions (156), and the epigenetic regulatory
mechanisms in the lncRNAs between zebrafish and human
(155), suggesting that additional conserved non-coding RNAs
have not been identified. Knockdown assays have revealed
functional conservation between zebrafish and human
lncRNAs. For example, morphological defects generated by
Cyrano and Megamind knockdown in zebrafish (lncRNAs
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involved in the development of the nervous system) were
rescued with mature RNA from their corresponding human
orthologous (157). Similarly, Tuna knockdown resulted in fish
with motor and locomotion defects revealing functional
conservation with their human counterpart, known as
lncRNAs involved in Huntington’s disease (158). These results
suggest that despite the evolutionary distance between zebrafish
and humans, and the discrete conservation of these molecules in
sequence, lncRNAs are essential in homeostasis and health
maintenance throughout evolution.

Given the functional and expression conservation of zebrafish
and human lncRNAs, these molecules are likely to play a crucial
role in developing cancer in zebrafish. We found 15 lncRNAs
annotated in the zebrafish genome, orthologous to 18 human
lncRNAs associated with breast cancer, using the Gencode (154),
Lnc2Cancer v2.0 (30), LNCipedia (12), and ZFLNC (11)
databases. The 18 human lncRNAs conserved in the zebrafish
genome participate in oncogenic processes such as cell cycle
A

B

C

D

E
F

FIGURE 2 | Workflow of zAVATARS in the context of personalized medicine. (A–C) Experimental setup for generating zebrafish xenotransplant models. Cells
derived from itumor biopsy are analyzed by RNAseq, subsequently labeled and microinjected in the 2dpf larvae. (D) One day after injection, larvae are screened for
successful injection and distributed in groups for testing chemo-, and/or biological therapies. (E) Three days after treatment, larvae are processed for in vivo
microscopy for analysis of proliferation, cell death, angiogenesis, and metastatic potential. (F) Treatment decision of breast cancer patients based on response of
zebrafish cancer hallmarks in drug screening. hpf: hours post fertilization. dpi: days post injection. BRCA zPDX trials: Trial of patient-derived xenotransplants in
zebrafish for the study of breast cancer.
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control, proliferation, differentiation, migration, invasion,
metastasis, angiogenesis and maintenance of cancer stem cells,
according to CancerSEA (http://biocc.hrbmu.edu.cn/
CancerSEA), LncTarD and Lnc2Cancer v2.0 data (Table 2).

Zebrafish offer experimental advantages for manipulating of
gene expression, facilitating the study of functional aspects of
genes. Altering the expression of conserved lncRNAs in zebrafish
by knockdown with morpholinos or genomic editing by CRISPR
cas9, will allow the study of the non-autonomous functions of
lncRNAs in the tumor microenvironment during breast cancer
xenotransplantation trials, as previously carried out in the
melanoma cell xenotransplants (131).
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CONCLUSION

Addressing breast cancer in a comprehensive manner, which
involves early diagnosis through sensitive tumor markers and
advancing personalized treatment design, are two of the most
critical challenges in breast cancer medicine and biomedical
research. Breast cancer study through xenotransplantation in
zebrafish is a valuable tool given the speed with which tumors are
obtained andexperiments are concluded.Transplantationof human
breast cancer cells infish allows the discriminated and efficient study
of aspects related to disease development, such as tumorigenesis,
migration, metastasis, angiogenesis and response to drugs.
TABLE 2 | Functional relationship between conserved lncRNAs and breast cancer hallmarks.

Zebrafish name Human
lncRNA
name

lncRNA type Activate Inhibited O or
S

Expression

ZFLNCT16634 (LOC103909273 un-characterized) DLX6-AS1 Antisense P, I, EMT, Mi, T Ap, CellC, D, DNAd,
DNAr, H, Inf, Q

O Up-
regulated

ZFLNCT02505 (ENSDART00000153684.2,
CR751227.1-201)

HAGLR
(HOXD-AS1)

Antisense, An, D, Inf, Me DNA r, I, Q O _

ZFLNCT08532 (NONDRET012204.1) HOTAIR Antisense,
lincRNA

D, Mi, Me, I, T DNAr, EMT, I, Ap O Up-
regulated

ZFLNCT02498 (ENSDART00000155072.3,
ENSDART00000155419.2, ENSDART00000155896.2,
LOC103910246)

HOXA11-AS Antisense,
sponge

CellC, Inf, Q, P, I, Me, Mi DNAd, DNAr, I, Ap O/S
in
OC

Up-
regulated

HOXA-AS2 Antisense,
ceRNA, sponge

Ch, P, I, Mi, T, Prog, EMT D, Ap O –

HOXA-AS3 Antisense,
sponge

P, Mi, I, S, Me EMT, Inf, Me, An, Ap O Up-
regulated

HOXB-AS1 Antisense,
ceRNA

P, CellC, I, Mi Ap O Up-
regulated

ZFLNCT19656 (si:dkey-81p22.11) HOXC-AS3 Sponge P, H, T, I, Mi, Me Q O Up-
regulated

ZFLNCT01281 LINC00649 Antisense An, Ap, cellC, D,
EMT, H, I, Me, P, Q

_ Down-
regulated

ZFLNCT17432 (ENSDART00000153409.2) LINC00324 lincRNA P, I, Me, Mi, S Ap O Up-
regulated

ZFLNCT14004 (ENSDART00000149569.3) LINC00461 lincRNA, ceRNA,
Sponge

P, cellC, DNAd, S, Mi, I, Me,
T, EMT

An, H, Q, Ap O Up-
regulated

ZFLNCT12716 (lnc2_zgc:194285, lnc1_zgc:194285) MALAT1 Sponge, ceRNA,
lincRNA

Mi, I, EMT, An, H, S, P, Me,
Ap

An, CellC, DNAd,
DNAr, EMT, Inf, I,
Me, Q, P

O
and
S

_

ZFLNCT01941 (lnc_ghrhra) MAPT-AS1 Antisense CellC, S. In ER negative
BRCA induce P and Mi.

Ap, DNAd, DNAr,
EMT, H, I, Me, P, Q

S _

ZFLNCT11804 (oip5-as1-202, Cyrano) OIP5-AS1
(Linc-OIP5,
Cyrano)

ceRNA P, Mi, I, T, CellC, DNAd, S,
Me, EMT

P, RR (CRC) O
ans
S

Up-
regulated

ZFLNCT11748 (NONDRET002400.1) PAX8-AS1 Processed
transcript

Ap Ap, CellC, DNAd,
DNAr, H, Inf, I, Me,
P, Q, S

S Down-
regulated

ZFLNCT19020 (PF102167.1-201,
ENSDART00000149948.3, sox2ot, si:ch73-334e23.1,
LOC101883930)

SOX2-OT Sense
overlapping

P, I, Me Ap, CellC, D, DNAd,
DNAr, H, Q

O Up-
regulated

ZFLNCT09180 (BX571737.1-201) TTN-AS1 Antisense,
ceRNA, sponge,
lincRNA

DNAd, P and Me in ESCC. P,
I, EMT and Mi in BRCA and
CRC

Ap, CellC, DNAd,
DNAr, EMT, H, Inf, I,
Me

O Up-
regulated

PTENP1 PTENP1 ceRNA, sponge Ap Mi, P, I S Down-
regulated
May 2021 | Volume
 11 | A
P, proliferation; An, angiogenesis; Me, metastasis; CellC, Cell cycle; D, differentiation; DNAd, DNA damage; H, Hypoxia; Inf, Inflamation; Q, quiescence; I, Invasion; Mi, Migration; EMT,
Epithelial-Mesenchymal transition; T, Tumorigenesis; S, Stemness; Ch, Chemoresitance; Prog, Progression; DR, Drug resistance; RR, Radio resistance; BRCA, Breast cancer; O,
oncogenic roll; S, Tumor suppressor roll.
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Today, these assays are mainly used to validate in vitro assays;
however, the significant finding of conservation of zebrafish’s
lncRNAs and their expression change during the zebrafish
cancer process broadens the perspective. We propose that this
in vivo model will allow the study of the functional impact of
lncRNA dysregulation in the host microenvironment allowing a
simultaneous search for new breast cancer-associated lncRNAs
through transcriptional studies. The fine dynamics of lncRNAs
expression and their relationship with the alteration of the tumor
microenvironment show that these molecules are excellent
candidates for the prediction and prognosis assays and possible
therapeutic targets in the area of drug development.

The advantages of xenotransplantation experiments in
zebrafish compared to other models suggest their potential in
the personalized approach to the breast cancer treatment. One of
the main strategies is zPDXs modeling, and subsequent drug
screening. Subtle variations in lncRNAs expression could
effectively predict the response of cancer cells to drugs and may
in turn serve as new targets in the development of new treatments.
The combination of the ease of performing drug screening,
including lncRNAs targeted drugs, on zebrafish embryos after
xenotransplantation, and the possibility of evaluating the
functional in vivo response through the real time microscopy
study, increases the robustness of xenotransplantation models.
In addition, the conservation in cancer-related pathways
between humans and zebrafish and the existence of interspecies
molecular crosstalk during xenotransplantation support the use of
knockdown and knockout zebrafish for conserved lncRNAs to
determine the nature of the molecular pathways that respond to
lncRNAs signaling. In the same way, xenotransplantation assays on
a knockout or overexpressing cancer-related lncRNAs in zebrafish
could reveal the non-autonomous function of lncRNAs in the
tumor microenvironment. Besides, drug-screening trials targeting
zebrafish lncRNAs or related pathways are another area that could
benefit from xenotransplantation assays. An additional benefit is
Frontiers in Oncology | www.frontiersin.org 11
that the zebrafish transparency will elucidate the relationship of
each of the cancer cellular phenotypes (migratory, proliferative,
angiogenic) with specific zebrafish lncRNAs expression, facilitating
the interpretation and analysis of the results.
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Using Zebrafish Xenografts: Drawbacks for Mimicking the Human
Microenvironment. Cells (2020) 9(9):1978. doi: 10.3390/cells9091978

128. Garcia-Venzor A, Mandujano-Tinoco EA, Lizarraga F, Zampedri C, Krotzsch
E, Salgado RM, et al. Microenvironment-Regulated lncRNA-HAL Is Able to
Promote Stemness in Breast Cancer Cells. Biochim Biophys Acta Mol Cell Res
(2019) 1866(12):118523. doi: 10.1016/j.bbamcr.2019.118523

129. Peperstraete E, Lecerf C, Collette J, Vennin C, Raby L, Volkel P, et al.
Enhancement of Breast Cancer Cell Aggressiveness by Lncrna H19 and Its
Mir-675 Derivative: Insight Into Shared and Different Actions. Cancers
(Basel) (2020) 12(7):1730. doi: 10.3390/cancers12071730

130. Tulotta C, Snaar-Jagalska BE. CXCR4 Signalling, Metastasis and
Immunotherapy: Zebrafish Xenograft Model as Translational Tool for
Anti-Cancer Discovery. J Cancer Metastasis Treat (2019) 2019:1–11. doi:
10.20517/2394-4722.2019.022

131. Hosono Y, Niknafs YS, Prensner JR, Iyer MK, Dhanasekaran SM, Mehra R,
et al. Oncogenic Role of THOR, a Conserved Cancer/Testis Long Non-
Coding RNA. Cell (2017) 171:1559–72.e1520. doi: 10.1016/j.cell.2017.11.040

132. Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW,Whyte MK.
A Transgenic Zebrafish Model of Neutrophilic Inflammation. Blood (2006)
108:3976–8. doi: 10.1182/blood-2006-05-024075

133. Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ. mpeg1
Promoter Transgenes Direct Macrophage-Lineage Expression in Zebrafish.
Blood (2011) 117:e49–56. doi: 10.1182/blood-2010-10-314120

134. Bernut A, Herrmann JL, Kissa K, Dubremetz JF, Gaillard JL, Lutfalla G, et al.
Mycobacterium Abscessus Cording Prevents Phagocytosis and Promotes
Abscess Formation. Proc Natl Acad Sci USA (2014) 111:E943–52. doi:
10.1073/pnas.1321390111

135. Tulotta C, He S, Chen L, Groenewoud A, Van Der Ent W, Meijer AH, et al.
Imaging of Human Cancer Cell Proliferation, Invasion, and Micrometastasis
in a Zebrafish Xenogeneic Engraftment Model. Methods Mol Biol (2016)
1451:155–69. doi: 10.1007/978-1-4939-3771-4_11

136. Jin SW, Beis D, Mitchell T, Chen JN, Stainier DY. Cellular and Molecular
Analyses of Vascular Tube and Lumen Formation in Zebrafish. Development
(2005) 132:5199–209. doi: 10.1242/dev.02087

137. Wang Y, Kaiser MS, Larson JD, Nasevicius A, Clark KJ, Wadman SA,
et al. Moesin1 and Ve-cadherin Are Required in Endothelial Cells During
In Vivo Tubulogenesis. Development (2010) 137:3119–28. doi: 10.1242/
dev.048785

138. Hill D, Chen L, Snaar-Jagalska E, Chaudhry B. Embryonic Zebrafish
Xenograft Assay of Human Cancer Metastasis. F1000Res (2018) 7:1682.
doi: 10.12688/f1000research.16659.2
May 2021 | Volume 11 | Article 687594

https://doi.org/10.1038/onc.2015.340
https://doi.org/10.1016/j.dnarep.2016.06.003
https://doi.org/10.1002/path.4013
https://doi.org/10.1242/dmm.035998
https://doi.org/10.1242/jcs.223321
https://doi.org/10.18632/aging.102323
https://doi.org/10.1158/0008-5472.CAN-06-4268
https://doi.org/10.4161/cc.10.21.17921
https://doi.org/10.3389/fphar.2016.00128
https://doi.org/10.3389/fphar.2016.00128
https://doi.org/10.1093/carcin/bgaa078
https://doi.org/10.3233/CBM-200337
https://doi.org/10.3233/CBM-200337
https://doi.org/10.3390/cancers12071769
https://doi.org/10.1002/aja.1002030302
https://doi.org/10.1006/dbio.2002.0711
https://doi.org/10.1038/cr.2013.45
https://doi.org/10.1126/scitranslmed.3007672
https://doi.org/10.1089/zeb.2009.0608
https://doi.org/10.1089/zeb.2009.0608
https://doi.org/10.1158/0008-5472.CAN-18-1029
https://doi.org/10.1016/j.cell.2006.11.001
https://doi.org/10.1007/s10911-011-9224-2
https://doi.org/10.1007/s10911-011-9224-2
https://doi.org/10.1038/nature12111
https://doi.org/10.1016/j.coi.2013.05.012
https://doi.org/10.14670/HH-11-853
https://doi.org/10.1016/j.ebiom.2019.08.016
https://doi.org/10.1007/s10456-006-9040-2
https://doi.org/10.1038/nprot.2007.412
https://doi.org/10.1038/s41598-020-69907-x
https://doi.org/10.1002/dvdy.20471
https://doi.org/10.3390/cells9091978
https://doi.org/10.1016/j.bbamcr.2019.118523
https://doi.org/10.3390/cancers12071730
https://doi.org/10.20517/2394-4722.2019.022
https://doi.org/10.1016/j.cell.2017.11.040
https://doi.org/10.1182/blood-2006-05-024075
https://doi.org/10.1182/blood-2010-10-314120
https://doi.org/10.1073/pnas.1321390111
https://doi.org/10.1007/978-1-4939-3771-4_11
https://doi.org/10.1242/dev.02087
https://doi.org/10.1242/dev.048785
https://doi.org/10.1242/dev.048785
https://doi.org/10.12688/f1000research.16659.2
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zampedri et al. Zebrafish Models for lncRNAs Studies
139. Roh-Johnson M, Shah AN, Stonick JA, Poudel KR, Kargl J, Yang GH,
et al. Macrophage-Dependent Cytoplasmic Transfer During Melanoma
Invasion In Vivo. Dev Cell (2017) 43:549–62.e546. doi: 10.1016/
j.devcel.2017.11.003

140. Deng C, Zhang B, Zhang Y, Xu X, Xiong D, Chen X, et al. A Long Non-
Coding RNA OLBC15 Promotes Triple-Negative Breast Cancer Progression
Via Enhancing ZNF326 Degradation. J Clin Lab Anal (2020) 34:e23304. doi:
10.1002/jcla.23304

141. Hua K, Deng X, Hu J, Ji C, Yu Y, Li J, et al. Long Noncoding RNA HOST2,
Working as a Competitive Endogenous RNA, Promotes STAT3-mediated
Cell Proliferation and Migration Via Decoying of let-7b in Triple-Negative
Breast Cancer. J Exp Clin Cancer Res (2020) 39:58. doi: 10.1186/s13046-020-
01561-7

142. Jiang YZ, Liu YR, Xu XE, Jin X, Hu X, Yu KD, et al. Transcriptome Analysis
of Triple-Negative Breast Cancer Reveals an Integrated mRNA-lncRNA
Signature With Predictive and Prognostic Value. Cancer Res (2016) 76
(8):2105–14. doi: 10.1158/0008-5472.CAN-15-3284

143. Wang G, Chen X, Liang Y, Wang W, Shen K. A Long Noncoding RNA
Signature That Predicts Pathological Complete Remission Rate Sensitively in
Neoadjuvant Treatment of Breast Cancer. Transl Oncol (2017) 10:988–97.
doi: 10.1016/j.tranon.2017.09.005

144. Wang Q, Li C, Tang P, Ji R, Chen S, Wen J. A Minimal lncRNA-
mRNA Signature Predicts Sensitivity to Neoadjuvant Chemotherapy in Triple-
Negative Breast Cancer. Cell Physiol Biochem (2018) 48:2539–48. doi: 10.1159/
000492698

145. Hong D, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, et al.
AZD9150, a Next-Generation Antisense Oligonucleotide Inhibitor of STAT3
With Early Evidence of Clinical Activity in Lymphoma and Lung Cancer.
Sci Transl Med (2015) 7:314ra185. doi: 10.1126/scitranslmed.aac5272

146. Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, Rigo F. Towards a
Therapy for Angelman Syndrome by Targeting a Long Non-Coding RNA.
Nature (2015) 518:409–12. doi: 10.1038/nature13975

147. Ling H, Fabbri M, Calin GA. MicroRNAs and Other Non-Coding RNAs as
Targets for Anticancer Drug Development. Nat Rev Drug Discovery (2013)
12(11):847–65. doi: 10.1038/nrd4140

148. Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G, et al. The
Noncoding RNA MALAT1 Is a Critical Regulator of the Metastasis
Phenotype of Lung Cancer Cells. Cancer Res (2013) 73:1180–9. doi:
10.1158/0008-5472.CAN-12-2850

149. Mercatali L, La Manna F, Groenewoud A, Casadei R, Recine F, Miserocchi G,
et al. Development of a Patient-Derived Xenograft (PDX) of Breast Cancer
Bone Metastasis in a Zebrafish Model. Int J Mol Sci (2016) 17(8):1375. doi:
10.3390/ijms17081375
Frontiers in Oncology | www.frontiersin.org 15
150. Pang KC, Frith MC, Mattick JS. Rapid Evolution of Noncoding RNAs: Lack
of Conservation Does Not Mean Lack of Function. Trends Genet (2006) 22
(1):1–5. doi: 10.1016/j.tig.2005.10.003

151. Mercer TR, Dinger ME, Mattick JS. Long Non-Coding RNAs: Insights Into
Functions. Nat Rev Genet (2009) 10:155–9. doi: 10.1038/nrg2521

152. GuttmanM, Amit I, GarberM, French C, LinMF, Feldser D, et al. Chromatin
Signature Reveals Over a Thousand Highly Conserved Large Non-Coding
RNAs in Mammals. Nature (2009) 458:223–7. doi: 10.1038/nature07672

153. Hezroni H, Koppstein D, Schwartz MG, Avrutin A, Bartel DP, Ulitsky I.
Principles of Long Noncoding RNA Evolution Derived From Direct
Comparison of Transcriptomes in 17 Species. Cell Rep (2015) 11:1110–22.
doi: 10.1016/j.celrep.2015.04.023

154. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The
GENCODE V7 Catalog of Human Long Noncoding RNAs: Analysis of Their
Gene Structure, Evolution, and Expression. Genome Res (2012) 22:1775–89.
doi: 10.1101/gr.132159.111

155. Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, et al.
Systematic Identification of Long Noncoding RNAs Expressed During
Zebrafish Embryogenesis. Genome Res (2012) 22:577–91. doi: 10.1101/
gr.133009.111

156. Chen W, Zhang X, Li J, Huang S, Xiang S, Hu X, et al. Comprehensive
Analysis of Coding-lncRNA Gene Co-Expression Network Uncovers
Conserved Functional lncRNAs in Zebrafish. BMC Genomics (2018)
19:112. doi: 10.1186/s12864-018-4458-7

157. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP. Conserved Function of
lincRNAs in Vertebrate Embryonic Development Despite Rapid Sequence
Evolution. Cell (2011) 147:1537–50. doi: 10.1016/j.cell.2011.11.055

158. Lin N, Chang KY, Li Z, Gates K, Rana ZA, Dang J, et al. An Evolutionarily
Conserved Long Noncoding RNA TUNA Controls Pluripotency and Neural
Lineage Commitment. Mol Cell (2014) 53:1005–19. doi: 10.1016/j.molcel.
2014.01.021

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.
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