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ABSTRACT

Motivation: Prior biological knowledge greatly facilitates the mean-

ingful interpretation of gene-expression data. Causal networks

constructed from individual relationships curated from the literature

are particularly suited for this task, since they create mechanistic

hypotheses that explain the expression changes observed in datasets.

Results: We present and discuss a suite of algorithms and tools for

inferring and scoring regulator networks upstream of gene-expression

data based on a large-scale causal network derived from the Ingenuity

Knowledge Base. We extend the method to predict downstream

effects on biological functions and diseases and demonstrate the

validity of our approach by applying it to example datasets.

Availability: The causal analytics tools ‘Upstream Regulator Analysis’,

‘Mechanistic Networks’, ‘Causal Network Analysis’ and ‘Downstream

Effects Analysis’ are implemented and available within Ingenuity

Pathway Analysis (IPA, http://www.ingenuity.com).

Supplementary information: Supplementary material is available at

Bioinformatics online.
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1 INTRODUCTION

The interpretation of high-throughput gene-expression data
is greatly facilitated by the consideration of prior biological
knowledge. Traditionally this has been done using statistical

gene-set-enrichment methods where differentially expressed
genes are intersected with sets of genes that are associated with
a particular biological function or pathway (Abatangelo et al.,

2009). One more recent approach involves the application of
causal networks that integrate previously observed cause–effect
relationships reported in the literature (Chindelevitch et al.,

2012a; Felciano et al., 2013; Kumar et al. 2010; Martin et al.,
2012; Pollard et al., 2005). While still depending on statistics, this
is more powerful than gene-set enrichment since it leverages
knowledge about the direction of effects rather than mere asso-

ciations. In this article, we describe causal analysis approaches
that have been implemented in Ingenuity Pathway Analysis
(IPA) with particular focus on the details of the underlying

algorithms, and the application to a number of real-world use
cases. IPA is a commercial software package and is described in
the supplementary material.

Given a gene-expression dataset, our main goals are to eluci-
date the upstream biological causes and probable downstream

effects on cellular and organismal biology. It is critical to infer

the identity of upstream regulatory molecules and associated
mechanisms to provide biological insight to the observed expres-
sion changes. We also aim to predict whether such regulators
are activated or inhibited based on the distinct up- and down-

regulation pattern of the expressed genes, and determine which
causal relationships previously reported in the literature are
likely relevant for the biological mechanisms underlying the

data. Upstream regulators are not limited to transcription fac-
tors; they can be any gene or small molecule that has been
observed experimentally to affect gene expression in some

direct or indirect way. A similar approach, relying on the same
methodology is also used to predict downstream functional ef-
fects and phenotypes. Apart from generating likely mechanistic

hypotheses, causal inference can also be used to find potential
upstream regulators with a response opposite to the observed
expression pattern, which is useful for the prediction of thera-
peutic compound effects. This application is similar to the

approach taken by the Connectivity Map tool (Lamb et al.,
2006), except that here we rely on the wide range of literature-
curated biological findings about compounds and their inter-

actions instead of a gene-expression database derived from
in vitro tested compounds.
The causal network underlying our algorithms is based on the

Ingenuity Knowledge Base, a large structured collection of
observations in various experimental contexts with nearly 5 mil-
lion findings manually curated from the biomedical literature or
integrated from third-party databases. The network contains

�40 000 nodes that represent mammalian genes and their prod-
ucts, chemical compounds, microRNA molecules and biological
functions. Nodes are connected by �1 480 000 edges representing

experimentally observed cause–effect relationships that relate
to expression, transcription, activation, molecular modification
and transport as well as binding events. Network edges are also

associated with a direction of the causal effect, i.e. either activat-
ing or inhibiting.
We describe four causal analytics algorithms that are available

in IPA: (i) UpstreamRegulator Analysis (URA) determines likely
upstream regulators that are connected to dataset genes through a
set of direct or indirect relationships; (ii) Mechanistic Networks
(MN) builds on URA by connecting regulators that are likely

part of the same signaling or causal mechanism in hypothesis
networks; (iii) Causal Network Analysis (CNA) is a generaliza-
tion of URA that connects upstream regulators to dataset mol-

ecules but takes advantage of paths that involve more than one
link (i.e. through intermediate regulators), and can be used to
generate a more complete picture of possible root causes for the

observed expression changes; and (iv) Downstream Effects*To whom correspondence should be addressed.
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Analysis (DEA) applies themethodology ofURA to the inference
of and impact on biological functions and diseases that are down-
stream of the genes whose expression has been altered in a

dataset. Using several examples we show how these tools are
applied to gene-expression data in practice.

2 APPROACH

The inference of upstream regulators needs to be based on stat-

istics since it cannot be guaranteed that all relationships present
in the causal network are relevant and actually occur in the given
experimental context. Also, genes are often modulated by several

upstream regulators (sometimes with opposing effects), and it is
not known a priori which will dominate in a particular system.
Filtering literature findings by specific contexts (e.g. by a par-

ticular tissue or cell line) generally does not work well because it
leads to networks that are too sparse for meaningful inference.
We therefore construct many possible upstream regulators and

networks serving as hypotheses for the actual biological mech-
anism underlying the data, and then score those regulators by
their statistical significance. In particular, we use two scores that

address two independent aspects of the inference problem: an
‘enrichment’ score [Fisher’s exact test (FET) P-value] that meas-
ures overlap of observed and predicted regulated gene sets, and a

Z-score assessing the match of observed and predicted up/down
regulation patterns. We find that a Z-score is particularly suited
for this kind of problem since it serves as both a significance

measure and a predictor for the activation state of the regulator.
A similar approach has been reported in Pollard et al. (2005)

where ‘richness’ and ‘concordance’ P-values are used to score

regulators of expression changes derived from type 2 diabetes
patients. More recently Chindelevitch et al. (2012a,b) present a
rigorous discussion of statistical significance in a causal network

with signed interactions based on a ‘ternary dot product distri-
bution’. This is achieved by transforming the network such
that edge signs are projected onto the nodes, and exact

P-values are computed separately for both possible activation
states of a given upstream regulator. In contrast, the Z-score
used in the present approach, represents an (asymptotic

Gaussian) approximation, but is easier to compute and combines
both cases into one score.

3 METHODS

The various causal analysis methods used in IPA are described below.

3.1 Causal network

Causal analysis algorithms are based on a ‘master’ network which is

derived from the Ingenuity Knowledge Base, and given by a directed

multigraph G ¼ ðV,EÞ with nodes v 2 V representing mammalian genes,

chemicals, protein families, complexes, microRNA species and biological

processes, and edges e 2 E reflecting observed cause–effect relationships.

For the following let Vg � V be the set of all genes, and Vp � V the set of

all biological processes. For each edge e 2 E, we define functions �ðeÞ and

�ðeÞ that map e to its unique source and target nodes, respectively. The

graph G has no self-edges, i.e. 8e 2 E : �ðeÞ 6¼ �ðeÞ: Each edge in e 2 E is

associated with a set of underlying findings FðeÞ obtained from the litera-

ture, where each finding f 2 FðeÞ is associated with a ‘sign’

~sð f Þ 2 f�1, 0, 1g that represents the regulation direction of the causal

effect. If ~sð f Þ ¼ 1ð�1Þ effect is activating (inhibiting), and for ~sð f Þ ¼ 0,

the direction of the effect is unknown or ambiguous. Depending on the

underlying findings, edges are classified into the distinct types, ‘T’, ‘A’ and

‘P’, represented by three disjoint subsets of E: Et, Ea and Ep. T-edges are

related to transcription and expression events including protein–DNA

binding (i.e. regulation of the abundance of the target node), while

A-edges represent the functional activation or inhibition of the target

node (e.g. through phosphorylation in a signaling cascade). P-edges are

associated with the regulation of biological processes (e.g. apoptosis). The

master network G is a multigraph since two given source and target nodes

can be connected by a T-edge, and an A-edge at the same time.

The various finding categories and their respective association with

edge types and signs are given in a table in the Supplementary

Material. Findings about changes of molecular modification states (e.g.

phosphorylation) are included in the A-edge type if an activating or

inhibiting effect can be inferred. All T-edges are connected to genes

as their target nodes, e 2 Et ) �ðeÞ 2 Vg, and all P-edges connect to

biological processes, e 2 Ep ) �ðeÞ 2 Vp: Depending on the signs of the

underlying findings, each edge e 2 E is in turn associated with a unique

direction of the causal effect that is either activating, inhibiting or

unknown, and represented by the sign sðeÞ 2 f�1, 0, 1g: In addition, we

also associate edges with weights wðeÞ 2 ½0, 1Þ reflecting our confidence in

the assigned direction of the effect. Details are given in the Supplementary

Material.

3.2 Gene-expression data

All differentially expressed genes in a given dataset that are also present

as nodes in the master network form a subset D � Vg: The methods

described here do not take individual expression levels into account but

instead assume that transcriptionally altered genes have been determined

using a suitable cut off applied to the measured expression change.

Each gene in the dataset, d 2 D, can be either up- or down-regulated

which is represented by the sign sDðdÞ 2 f�1, 1g:

3.3 Upstream Regulator Analysis

The goal of URA is to identify molecules upstream of the genes in the

dataset that potentially explain the observed expression changes. Since

it is a priori unknown which causal edges in the master network are

applicable to the experimental context, we use a statistical approach to

determine and score those regulators whose network connections

to dataset genes as well as associated regulation directions are unlikely

to occur in a random model. In particular, we define an overlap P-value

measuring enrichment of network-regulated genes in the dataset, as

well as an activation Z-score which can be used to find likely regulating

molecules based on a statistically significant pattern match of up- and

down-regulation, and also to predict the activation state (either activated

or inhibited) of a putative regulator.

Here, we consider transcription and expression (T) edges only by look-

ing at the subgraph G0 ¼ ðV,EtÞ, and defining the subset of genes that are

regulated by at least one edge in G0,

Vrg :¼ v 2 Vgj9e 2 Et : v ¼ � eð Þ
� �

:

A potential regulator r can be any node in V that is either a gene, protein

family, complex, microRNA, or chemical. For a particular given regula-

tor r 2 V, we define the set of downstream regulated genes as

R rð Þ :¼ v 2 Vrgj9e 2 Et : r ¼ � eð Þ ^ v ¼ � eð Þ
� �

:

For each v 2 RðrÞ, the sign of v is defined as regulation direction of v

under the assumption that r is activated, which is given by the regulation

direction of the connecting edge, as

sR r, vð Þ :¼ s eð Þ where r ¼ � eð Þ ^ v ¼ � eð Þ and e 2 Et:

Similarly we define the weight associated with v to be

wR r, vð Þ :¼ w eð Þ where r ¼ � eð Þ ^ v ¼ � eð Þ and e 2 Et:
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3.3.1 Overlap P-value For a particular regulator r the overlap

P-value p(r) measures enrichment of r-regulated genes in the dataset D

without taking into account the regulation direction, i.e. independent of

the edge weight or sign (Fig. 1A). Protein–DNA-binding edges with sign

equal to zero are included. The calculation is based on the one-sided FET

which assumes a random dataset with a constant number of genes as the

null model, and where the P-value is given by

pðrÞ ¼
Xminðc, dÞ

k¼0

ðaþ bÞ!ðcþ dÞ!ðaþ cÞ!ðbþ dÞ!

ðaþ kÞ!ðb� kÞ!ðc� kÞ!ðdþ kÞ!n!

where n ¼ Vrg

�� �� is the size of the ‘universe’ Vrg, the ‘overlap’ is given by

OðrÞ ¼ RðrÞ \D
�� ��, and a ¼ OðrÞ

�� ��, b ¼ D \ Vrg

�� ��� OðrÞ
�� ��, c ¼ RðrÞ

�� ���
OðrÞ
�� �� and d ¼ n� a� b� c:

3.3.2. Activation Z-score The activation Z-score makes predictions

about potential regulators by using information about the direction of

gene regulation. Its purpose is two-fold: first, it can be used to infer the

activation state of a putative regulator (i.e. whether the regulator is

activated or inhibited). This is achieved by assessing consistency of the

pattern match between the up/down gene-regulation pattern and the

activation/inhibition pattern given by the network relative to a random

pattern. Second, similar to the overlap P-value, the Z-score can be used to

determine likely regulators based on statistical significance of the pattern

match. However, the latter use requires careful assessment whether the

underlying null model is appropriate, which is discussed in more detail

below. For the purpose of the activation Z-score we only consider edges

where the regulation direction is well-defined, i.e. s 2 f�1, 1g (Fig. 1B).

For a particular regulator r the ‘overlap’ between r-regulated genes and

the dataset is then given by

~O rð Þ : ¼ v 2 R rð ÞjsR r, vð Þ 6¼ 0 ^ v 2 D
� �

and we define the activation Z-score as

z rð Þ ¼

P
v2 ~O

wR r, vð ÞsR r, vð ÞsD vð Þ

P
v2 ~O

wR r, vð Þ½ �
2

 !1=2
:

As shown below z(r) is approximately normally distributed for random

signs sRðr, vÞ or sDðvÞ, so we can interpret z in the following way: if jzj is

high enough (say jzj42) we consider the match between the signs sRðr, vÞ

and sDðvÞ as being significant. The sign of z then determines whether the

regulator r is predicted to be activated or inhibited. For z50 the signs

sRðr, vÞ and sRðr, vÞ are mostly opposite, consistent with the regulator

being in an inhibited state, while for z40 both signs are mostly the

same, consistent with an activated regulator.

In the following, we take a detailed look at the underlying null

model: Let N ¼ j ~Oj and the index i ¼ 1, . . . ,N runs over all nodes

vi 2 ~O. We consider the product sRðr, viÞsDðviÞ as being represented by

independent and identically distributed random variables xi 2 f�1, 1g

where both values �1 and 1 have equal probabilities 1=2. Expectation

value and variance of xi are then given by E½xi� ¼ 0 and V½xi� ¼ 1. Let

wi ¼ wRðr, viÞ be the weights of the edges connecting r to vi. Setting now

y ¼
P

i wixi with E½y� ¼ 0, and V½y� ¼ �2 ¼
P

i w
2
i , and noting that

z ¼ y=� it is seen that approximately z � Nð0, 1Þ for large enough N.

The validity of z(r) to test for statistical significance of the regulator

depends on whether the null model described above is deemed appropri-

ate. Consider the extreme case where all dataset genes are up-regulated

and the regulator r has only activating downstream connections.

Assuming for simplicity that all weights are equal to 1, we then have

zðrÞ ¼
ffiffiffiffi
N
p

which is42 for N44. However, this would not be perceived

as a significant match since any regulator with only activating down-

stream edges (and N44) would come up as significant for this dataset.

A better null model for calling significant regulators is based on rando-

mizing the data rather than randomly flipping regulation directions.

One possibility is to permute labels of genes in D while keeping their

regulation direction and the size of the overlap N constant. This can be

achieved approximately by skewing the distribution of the random

variables xi defined above, i.e. by setting their expectation value � to a

non-zero value � ¼ �D�R where �D (or �R) is given by the expectation

value of the sign when randomly (and independently) picking a dataset

gene (or an edge downstream of r). In particular we have �D ¼
1
ND

P
sD

and �R ¼
1
NR

P
sR, where the sums run over all ND dataset genes, and

over all NR r-regulated genes. For the approximation to be valid, we also

assume that j�j is not too close to 1, and for simplicity we keep the

weights wi fixed.

The activation Z-score z(r) reflects a reasonable null model for calling

significant regulators if the expectation value � is sufficiently close to

zero. In practice, we flag all regulators where j�j40:25 to indicate that

the calculated Z-score should not be used for significance calls. In the

case when the regulation directions of the dataset and downstream causal

edges are skewed, it is possible to define a ‘bias-corrected’ Z-score

(described in the Supplementary Material and available as an option in

IPA) that can be used to determine statistically significant regulators.

3.4 Mechanistic Networks: inferring likely causal

mechanisms

Regulators determined with URA are not necessarily independent of each

other. It is for instance possible that the causal effect of a regulator r1 on

the dataset is relayed through another regulator r2, with both regulators

r1 and r2 coming up as independent significant hits. One indication for

this is that r1 and r2 are themselves connected by a causal edge r1 ! r2
in G. The goal of the MN algorithm is to determine those network edges

between pre-determined upstream regulators for which there is statistical

evidence that the corresponding relationship is likely relevant for the

causal mechanism behind the dataset. The most significant causal edges

between regulators are then used to construct networks downstream of

a ‘master’ regulator in order to indicate possible causal (e.g. signaling)

mechanisms.

The algorithm is based on the following idea: if the causal effect of r1
on some data set molecule d 2 D is transmitted through the intermediate

regulator r2, we expect an elevated occurrence of cases where all three

edges, r1 ! r2, r2 ! d and r1 ! d are present in the network, and the

edge r1 ! d is explained by the path r1 ! r2 ! d. We therefore look for

statistical enrichment of these ‘causal transitive triangles’ (Fig. 2A). This

enrichment is given by the intersection of the overlaps of the regulated

gene setsOðr1Þ \Oðr2Þ in the dataset (Fig. 2B and C), i.e. we compute the

FET P-value with D \ Rrg serving as the universe. These FET P-values

are calculated for every edge r1 ! r2 in G for which the regulators r1 and

r2 meet pre-defined cut-offs with respect to their overlap P-value p(r) and

activation Z-score z(r). For every upstream regulator r, the MN algo-

rithm then constructs downstream networks with predefined ‘breadth’ N

Fig. 1. Overlap P-value (A) and activation Z-score (B) calculation (see

text). In (B) the pointed arrowheads represent activating relationships,

and the blunt arrowheads represent inhibitory relationships
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and ‘depth’K from significant causal edges that connect r to dataset genes

through several links by using the following recursive algorithm.

(1) Starting from any upstream regulator r, select N regulators si that

are connected downstream through causal edges with lowest edge

P-values.

(2) For each si: if maximal path length K is reached or a cycle is

detected, skip, else set r :¼ si and go to (1).

(3) Build network from union of all traversed edges.

Through the inference of likely relevant causal relationships the MN al-

gorithm makes a prediction about which previously identified regulators

are closer to the dataset genes than others in a causal chain of events.

However, it is possible that the constructed networks are incomplete be-

cause not enough statistical evidence could be collected for missing edges.

The algorithm does not enforce consistency of the predicted activation

states and also accepts protein–protein binding edges as causal connec-

tions between upstream regulators.

3.5 Causal Network Analysis: exhaustive enumeration of

possible root causes

The CNA algorithm generalizes URA by including paths from regulators

to regulated molecules that involve more than one edge. For a given ‘root’

regulator r this is done by constructing shortest paths up to a certain

length from r to dataset molecules, and constructing networks from the

union of those paths in order to build mechanistic hypotheses.

Hypothesis networks are then statistically scored using overlap P-value

and activation Z-scores, and the activation state of the root regulator

is determined. In contrast to URA, for simplicity, we are not taking

continuous edge weights into account, but instead set all edge weights

to 1 if they pass a predefined cut off � (set to � ¼ 0:25 in the implemen-

tation). We only consider edges with non-ambiguous directions of regu-

lation, i.e. non-zero sign s(e). The algorithm operates on the multigraph

G ¼ ðV, ~Ea [ ~EtÞ, where the included sets of A- and T-edges are given

by ~Ea=t ¼ fe 2 Ea=tjwðeÞ � �g, and the set of regulated genes (through

T-edges) is ~Vrg ¼ fv 2 Vgj9e 2 ~Et : v ¼ �ðeÞg:

For each node r 2 V, we construct all shortest paths P from r to every

gene v 2 ~Vrg in G. These paths with length K are represented by sets of

edges P ¼ fe1, . . . , eKg, where e1, . . . eK�1 2 ~Ea, eK 2 ~Et and �ðe1Þ ¼ r,

�ðeKÞ ¼ v, �ðei�1Þ ¼ �ðeiÞ. For any given path P, we define the sign

sP Pð Þ ¼
Y
e2P

s eð Þ

which represents the composite direction of regulation for a signal passed

through the path as a causal sequence of events.

For each pair of nodes r 2 V, v 2 ~Vrgðr 6¼ vÞ with at least one shortest

path P connecting r and v, we define a ‘virtual’ edge r! v representing

all shortest paths connecting r and v if all those paths are consistent,

i.e. have the same net effect sP (Fig. 3A and B). We then collect

all virtual edges corresponding to paths with length K in a set EK.

Note that E1 ¼ ~Et and all sets EK are disjoint. The sign sðeÞ 2 f�1, 1g

of e 2 EK is then defined by sðeÞ :¼ sPðPÞ where P is any shortest path

associated with e. We proceed by constructing graphs GK composed of

virtual edges, representing paths with maximal length K:

GK ¼ V,
[K
k¼1

Ek

 !
:

Note, that the GK are nested subgraphs of each other, i.e. GK � GL

if K5L, , with the special case G1 ¼ ðV, ~EtÞ:
For every potential regulator r 2 V the algorithm computes overlap

P-values pKðrÞ and activation Z-scores zKðrÞ by applying URA (with all

edge weights set to 1) independently to all networks GK. Hypothesis

networks are then constructed from the union of all paths P connecting

r to the dataset molecules. For any given regulator r there may be multiple

hypotheses corresponding to the different values of K. These hypotheses

again represent nested subgraphs with their sets of regulated genes given

by ~RKðrÞ ¼ fv 2 ~Vrgj9e 2 EK : v ¼ �ðeÞ ^ r ¼ �ðeÞg, and ~RKðrÞ � ~RLðrÞ if

K5L: In practice we only construct hypotheses with K � 3:

In order to limit the number of networks returned by the algorithm

we only include hypotheses that add substantial information to the

‘sub’-hypotheses that are contained in the same network, i.e. in the

spirit of Occam’s razor preference is given to simpler networks. In par-

ticular, we require that (i) the overlap P-value of a hypothesis is more

significant than the P-value of a contained hypothesis, pKðrÞ5pK�1ðrÞ,

and (ii) the set of regulated molecules is different from the set of molecules

targeted by any individual sub-network.

We note that all constructed hypothesis networks are completely

consistent with respect to their direction of edge effects, and may contain

loops only if a regulator node appears as a dataset molecule in D at the

same time.

3.6 Network-bias-corrected P-value

Overlap P-values p(r) calculated using the method described in Section

3.3 may be skewed, i.e. may appear too significant because of the presence

of network hub genes in the dataset. Hub genes are connected to many

upstream regulators so their occurrence in a hypothesis network is less

surprising. To correct for this network bias, we also calculate a network-

bias-corrected P-value that measures significance of the overlap between

the dataset and regulated genes by comparing to overlaps of random

datasets with distributions of in-degrees similar to the actual dataset,

and therefore preserving network topology. To perform this statistic,

we divide the sets of regulated genes Vrg or ~Vrg into bins containing

only genes whose in-degree lies within a certain range. We sample

Fig. 3. Replacing multi-step paths from root regulators to target genes

(A) by ‘virtual’ edges with the same net effect (B). The pointed arrow-

heads represent activating (þ1) relationships, and the blunt arrowheads

represent inhibitory relationships (–1). The dashed lines indicate virtual

relationships composed of the net effect of the paths between the root

regulator and the target genes

Fig. 2. Enrichment of ‘causal transitive triangles’ (A) indicates causal

dependency of upstream regulators A and B [compare (B) versus (C);

see text]

526
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independently from each bin such that the number of genes drawn cor-

responds to the number of dataset genes that fall in that bin. The (right-

sided) P-value is then calculated from the distribution of the overlap with

the hypothesis-regulated genes as before. If there is only one bin contain-

ing all genes, the resulting P-value is the regular FET overlap P-value

defined in Section 3.3. If the number of bins is41, this P-value needs

to be calculated numerically by explicit permutation sampling. In our

implementation, this is done using at most 10 000 independent permuta-

tions of genes (fewer if the estimated P-value40.01). The minimum

P-value that can be computed this way is therefore 10�4. The computa-

tion of the network-bias-corrected P-value uses bins based on a logarith-

mic scale with base 2, so the ranges of in-degrees are {1}, {2,3}, {4, . . . ,7},

{8, . . . ,15}, {16, . . . ,31}, etc.

3.7 Downstream Effects Analysis

The goal of DEA is to identify those biological processes and functions

that are likely to be causally affected by up- and down-regulated genes. In

addition, it is also predicted whether those processes are increased or

decreased. The approach is very similar to that of URA, except that

the direction of edges connecting the dataset genes with the predicted

entity (here, the biological process or disease) is reversed. The calculation

of the overlap P-value is essentially the same as in standard enrichment

functional analysis (an existing IPA feature).

For the calculation of the activation Z-score, we consider the graph

G ¼ ðVg [ Vp,EpÞ as the underlying network, and define edge signs and

weights as sRðv, pÞ :¼ sðeÞ and wRðv, pÞ :¼ sðeÞ where v ¼ �ðeÞ ^ p ¼ �ðeÞ

and e 2 Ep: For any given process p, the set of genes regulating that

process is

~R pð Þ ¼ v 2 Vgj9e 2 Ep : v ¼ � eð Þ ^ p ¼ � eð Þ ^ sR v, pð Þ 6¼ 0
� �

and the overlap with the dataset is given by

~O pð Þ ¼ ~R pð Þ \D:

The activation Z-score z(p) is then given by the corresponding formula in

Section 3.3 and its sign is used to predict whether the downstream process

is increased or decreased.

4 IMPLEMENTATION

IPA enables end-users to execute URA, MN, DEA and CNA

prediction algorithms when analyzing their datasets. In this web

application, the user selects a gene-expression dataset to analyze,

and specifies several optional settings that will tailor the analysis

as desired. After the analysis job is submitted, IPA performs a

number of different calculations on the dataset, including the

prediction algorithms, and produces an analysis result. This

result can be viewed within IPA and it displays conclusions in

a variety of ways, depending on the algorithm.
URA is always executed as part of IPA’s dataset analysis,

and there are no options to choose before running the analysis.

The results are displayed in a table in which each row shows

information about a particular regulator and the molecules in

the dataset that the regulator targets (see example in Fig. 4).

Columns for predicted state, Z-score, and P-value enable users

to identify regulators of interest. The table can be sorted and

filtered, and toolbar operations support the creation of network

diagrams and lists based on items in the table.
The MN algorithm is run upon the regulators from the URA

results, and generated networks are accessible from the

‘Mechanistic Network’ column to the far right in the upstream

regulator table. The column displays the number of dataset mol-

ecules targeted by the network followed in parenthesis by the

number of regulators in the network. Clicking on the link in

this column will display the corresponding network (see example

in Fig. 5).

Unlike URA, the MN algorithm can be influenced by a var-

iety of parameters. When the analysis is initially run, default

values are used for these settings. After the initial run of the

analysis, the user can re-run the algorithm with different values

for P-value and Z-score cut offs, included relationship types, and

parameters that control the shapes of the resulting networks.

When the algorithm re-executes, the new mechanistic networks

will replace the old ones in the result table.

Like the other prediction features, the CNA executes as part

of a dataset analysis in IPA. Because of the large number of

hypothesis networks that are typically returned, the CNA tool

provides a means to automatically annotate each hypothesis for

its connection to a particular biological concept such as a disease,

Fig. 5. Mechanistic network for beta-estradiol [example (1) in Section

5.1]. In this network, beta-estradiol is postulated to activate ESR1 (the

estrogen receptor), NCOA3 (a key estrogen receptor co-regulator) and to

affect a number of other regulators to explain the gene-expression

changes in the dataset. The set of regulators in total connect to 320

dataset genes (not shown), with beta-estradiol connecting directly to

183 of them

Fig. 4. URA result table for example (1) in Section 5.1 (beta-estradiol-treated MCF-7 cells)
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phenotype, biological process, compound or gene. If the user

enters such a concept into the tool, then after the hypotheses
are created, IPA evaluates whether there are known relationships

in the Ingenuity Knowledge Base between the root regulator of

each hypothesis and that concept.
The results of DEA are displayed in a tree map (Shneiderman

et al.,1992) (see Fig. 6 as an example) which clusters related
functions together, thus providing a high-level view of the

function families. The organization makes it easier to see cases

where related functions are predicted to increase/decrease most
significantly as a group. The user can then drill down to specific

functions to see the predictions at a more granular level.

5 BIOLOGICAL RESULTS FOR EXAMPLE USE
CASES

5.1 Upstream Regulator Analysis and Mechanistic

Networks

One means to validate the effectiveness of the URA is to test its
predictive capabilities using datasets derived from cells treated

with a defined upstream stimulus. To this end, we retrieved from

GEO (http://www.ncbi.nlm.nih.gov/geo) relevant gene-expres-
sion datasets which had not been curated by Ingenuity:

(1) MCF-7 human breast cancer cells exposed to beta-estra-
diol, a well-known agonist of the alpha and beta estrogen

receptors (the transcription factors ESR1 and ESR2 in

humans). Retrieved from GSE11352 (Lin et al., 2007).

(2) Primary human endothelial cells (HUVEC) stimulated
with the cytokine TNF. Retrieved from GSE2639

(Viemann et al., 2006).

The raw microarray data files were processed through an auto-

mated feature extraction and normalization pipeline developed at

Ingenuity Systems (and based on R/Bioconductor), and

significantly differentially expressed geneswere uploaded and ana-

lyzed in IPA. The three top-most predicted activated upstream

regulators byZ-score for the dataset involving beta-estradiol trea-

ted cells are beta-estradiol itself, the more general parent com-

pound estrogen, and the estrogen receptor (ESR1). A

mechanistic network generated for beta-estradiol in this analysis

(see Fig. 5) shows that it may exert its effects on the observed gene

expressionbyinteractingwithESR1(asexpected)andalsothrough

co-activators and other regulatorymolecules. The set of 11 regula-

tors plus beta-estradiol in total connects to 320 dataset genes.
The three top-most predicted inhibited upstream regulators

(by negative Z-score, data not shown) are tretinoin, fulvestrant

and 3-deazaneplanocin. Compounds like these that are predicted

to be ‘inhibited’ produce expression patterns in the dataset

partially or completely opposite to the effect observed in the

literature. This can imply therapeutic utility for these com-

pounds, by potentially reversing a phenotype observed in the

disease state. Indeed, fulvestrant is a known selective estrogen

receptor down-regulator approved for treatment of hormone re-

ceptor positive metastatic breast cancer. Tretinoin is the active

metabolite of vitamin A (also known as all-trans retinoic acid)

and is an RXR agonist that has been shown to inhibit the pro-

liferation of MCF-7 cells and is indicated for certain cancers

(Arteaga et al., 2013; Wang et al., 2000; Zhu et al., 1997). It

may affect proliferation in MCF-7 cells by interfering with the

estrogen receptor’s ability to activate its downstream target genes

(Ombra et al., 2013) or through other means (Muller et al., 2002).

3-deazaneplanocin A (also known as DZNep) affects histone

methylation and recent work suggests it might have therapeutic

value for breast cancer (Hayden et al., 2011).
In the second example of the HUVEC cells treated with the

cytokine TNF, the top-predicted activated regulators are

TNF itself, followed by lipopolysaccharide, NF-�B complex,

Fig. 6. DEA results for example (2) in Section 5.2 (TNF-stimulated HUVEC cells). The visualization is a TreeMap (hierarchical heatmap) where the

major boxes represent a family (or category) of related functions. Each individual colored rectangle is a particular biological function or disease and the

color orange indicates its predicted state: increasing (orange), or decreasing (blue). Darker colors indicate higher absolute Z-scores. In this default view,

the size of the rectangles is correlated with increasing overlap significance (using FET P-value). The image has been cropped for better readability
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IFNG and poly rI:rC-RNA. Several of these regulators initi-
ate an inflammatory response much like TNF does (i.e. lipopoly-

saccharide and poly rI:rC-RNA), and NF-�B is the key
downstream transcription factor activated when TNF activates

its receptor. To further validate the algorithm, we retrieved nine
additional gene-expression datasets from GEO all derived from

mammalian cells directly exposed to TNF. The 10 datasets in

total come from human, mouse, rat and cow, and include a
variety of cell types such as fibroblasts, epithelial cells and mono-

cytes, and are from several technology platforms including
Affymetrix, Agilent and Illumina (RNA-Seq). In eight of 10 of

these datasets, IPA predicted TNF as the top-activated regulator,
and ranked it second and third in the other two datasets (see

Supplementary Tables). This high level of consistency lends sup-

port to the premise that the URA has predictive power across
mammalian cell types and species, and is independent of expres-

sion measurement technology.

5.2 Downstream Effects Analysis

To highlight the utility of DEA we examined its predictions for

theHUVEC cells treated with TNF. As shown in Figure 6, a large
number or biological processes are predicted to be increased by

TNF, especially those in the ‘Hematological SystemDevelopment
and Function’, ‘Cellular Movement’, ‘Immune cell Trafficking’,

‘Cell-to-Cell Signaling and Interaction’ and ‘Inflammatory
Response’ categories. Examples of specific increased function

among those categories are ‘leukocyte migration’ (Z-score

5.006), ‘inflammatory response’ (Z-score 4.578) and ‘quantity of
T lymphocytes’ (Z-score 3.934). Increases in these types of biolo-

gical functions are expected for TNF.

5.3 Causal Network Analysis

The power of CNA is its ability to detect novel master upstream

regulators that operate though other regulators, especially in
cases where few or no relationships exist directly between it

and the dataset genes. To highlight this capability we obtained
a gene-expression dataset derived from a mouse model of anky-

losing spondylitis (Haynes et al., 2012). This disease is character-
ized by initial inflammation that progresses to osteoproliferation

leading to inappropriate bone formation and eventually joint

fusion. The pathology can be produced in mouse by injecting
human cartilage proteoglycan extract several times over a
12-week period by which time inflammation leads to bone

overgrowth in the spine.
The authors sought to find evidence in the expression data that

the Wnt signaling system was perturbed. By using RT-PCR and
immunohistochemistry they were able to show that the Wnt
pathway inhibitory molecules DKK1 and SOST were slightly

reduced in concentration both at the mRNA and protein levels
in the spinal tissue. Using CNA in IPA with the authors’ micro-

array-based mRNA expression data as input, we found that
SOST was predicted to be significantly inhibited with a Z-score

of �1.96, with a network depth of 3, meaning that some paths
from SOST to the dataset molecules involve three distinct ‘hops’
(with two intervening regulators), such as the path SOST !

Smad ! EGFR ! LCN2 as shown in Figure 7. The gene for
SOST itself was not detectably differentially expressed in this

experiment based on the microarray data, highlighting the sen-
sitivity of the causal analysis.
As a point of interest, the canonical pathway in IPA which

shares the highest overlap with the regulators in this causal net-
work is the pathway called ‘Role of Osteoblasts, Osteoclasts

and Chondrocytes in Rheumatoid Arthritis’, (containing
SOST, the Smad family, SMAD1, BMP6, and RUNX2),

indicating the relevance of SOST and its downstream targets
both in bone homeostasis and inflammatory disease.

6 DISCUSSION

This article describes algorithms, tools and visualizations recently

added to IPA that enable scientists to combine the directional
information encoded in their gene-expression datasets with

knowledge extracted from the literature to infer the underlying
causes of their observed transcriptional changes and to predict

likely outcomes. This is a significant advance compared to tools
that just look for statistical enrichment in overlap to sets of
genes. An aspect of upstream analysis that makes it especially

powerful is that it is essentially an activity-based prediction, in
that the measurement of the activity of a transcriptional regula-

tor is via the measurement of genes known to be differentially
expressed by it in a defined direction. The data being analyzed

Fig. 7. CNA result for SOST (see Section 5.3). SOST is the master regulator (or ‘root’ regulator) of a small causal network containing five intermediate

regulators that may explain the up and down regulation of the 26 dataset molecules shown in the bottom row (red indicates up-regulation and green

down-regulation). The regulators are colored by their predicted activation state: activated (orange) or inhibited (blue). Darker colors indicate higher

absolute Z-scores. The edges connecting the nodes are colored orange when leading to activation of the downstream node, blue when leading to its

inhibition, and yellow if the findings underlying the relationship are inconsistent with the state of the downstream node. Pointed arrowheads indicate that

the downstream node is expected to be activated if the upstream node connected to it is activated, while blunt arrowheads indicate that the downstream

node is expected to be inhibited if the upstream node that connects to it is activated
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has measured that differential expression. This can be contrasted

with for example pathway overlap prediction, where in general

there is no guarantee that the members of the pathway are

differentially expressed upon pathway activation or inhibition.
As described above, the algorithms operate over a large-scale

causal graph assembled from individual literature-supported re-

lationships between molecules, diseases and biological processes

in the Ingenuity Knowledge Base. These relationships are derived

from a myriad of experimental systems in mouse, rat and human.

Though possibly counter-intuitive to mix relationships derived

from a variety of contexts to analyze data from a particular

context, the results are generally valid due to the conserved ac-

tivity of most genes and proteins across tissues and cell types.

That being said, it may be possible in the future to automatically

infer a context based on the expression data and to filter accord-

ingly to only relevant relationships for a particular analysis.
There are at least 30 papers that have already made use of

these new causal tools in IPA. One of the first to use URA

demonstrated how transcription factor activation differs between

mouse, macaque, and swine in response to infection by the 2009

pandemic H1N1 influenza virus (Go et al., 2012). Another used

both URA and DEA to help characterize the mechanisms that

provide breast cancer protection during pregnancy (Meier-Abt

et al.,2013). There are certain to be additional applications of

these powerful analytics as scientists discover and adopt them

in their research.
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