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Model-based analysis of sample index hopping
reveals its widespread artifacts in multiplexed
single-cell RNA-sequencing
Rick Farouni 1,2✉, Haig Djambazian 1,2, Lorenzo E. Ferri3, Jiannis Ragoussis 1,2 &

Hamed S. Najafabadi 1,2✉

Index hopping is the main cause of incorrect sample assignment of sequencing reads in

multiplexed pooled libraries. We introduce a statistical model for estimating the sample

index-hopping rate in multiplexed droplet-based single-cell RNA-seq data and for probabil-

istic inference of the true sample of origin of hopped reads. We analyze several datasets and

estimate the sample index hopping probability to range between 0.003–0.009, a small

number that counter-intuitively gives rise to a large fraction of phantom molecules — the

fraction of phantom molecules exceeds 8% in more than 25% of samples and reaches as high

as 85% in low-complexity samples. Phantom molecules lead to widespread complications in

downstream analyses, including transcriptome mixing across cells, emergence of phantom

copies of cells from other samples, and misclassification of empty droplets as cells. We

demonstrate that our approach can correct for these artifacts by accurately purging the

majority of phantom molecules from the data.
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Due to the increasing capacity of modern sequencing
platforms, sample multiplexing, the pooling of barcoded
DNA from multiple samples in the same lane of a high-

throughput sequencer, is rapidly becoming the default option in
single-cell RNA-seq (scRNA-seq) experiments. However, as sev-
eral studies have recently shown1,2, multiplexing leads to incor-
rect sample assignment of a significant fraction of demultiplexed
sequencing reads. Out of several mechanisms that can introduce
sample index missassignment3, the presence of free-floating
indexing primers that attach to the pooled cDNA fragments just
before the exclusion amplification step in patterned sequencing
flowcells has been shown to be the main culprit4. This phe-
nomenon is known as sample index hopping and results in a data
cross-contamination artifact that takes the form of phantom
molecules, molecules that exist in the data only by virtue of read
misassignment (Fig. 1a). See Supplementary Note 1 for a more
detailed overview of the phenomenon of sample index hopping.

The presence of phantom molecules in droplet-based scRNA-
seq data should be a cause of great concern: they can introduce
phantom cells (i.e., cells that do not exist in one sample, but
appear only as a result of hopping of reads from cells of another
sample); they can cause transcriptomes to mix2,4 (when hopped
reads happen to carry the same cell barcode as one of the cells in
the target sample); or they can lead to incorrect classification of
barcodes that correspond to empty droplets. As a result, identi-
fication of cell subpopulations (especially rare cell types) as well as
genes that are differentially expressed across cell types can be
confounded in downstream analyses. Importantly, it is

conceivable that even when the index-hopping rate is very small,
the fraction of phantom molecules can still be high due to the
distributional properties of sequencing reads across samples: PCR
amplification during library preparation can create several copies
of the same molecule, and sample misassignment of the
sequencing read from only one of these copies is enough to create
one phantom molecule (Fig. 1b).

Despite recent attempts to computationally estimate the rate of
sample index hopping in plate-based scRNA-seq data5,6, no sta-
tistical model of index hopping for droplet-based scRNA-seq data
has yet been proposed. Consequently, current computational
methods can neither accurately estimate the underlying rate of
index hopping nor adequately remove the resulting phantom
molecules in droplet-based scRNA-seq data. This has been a
challenging problem since droplet-based libraries are tagged with
a single sample index rather than a unique combinatorial pair of
sample indices such as those used in plate-based approaches (see
Supplementary Note 2 for more details). As a solution to this
problem, we here propose a statistical framework that provides
(1) a generative probabilistic model that formalizes in a mathe-
matically rigorous manner the phenomenon of index hopping,
(2) a statistical approach for inferring the sample index-hopping
rate (SIHR) in droplet-based scRNA-seq data at the level of
individual reads, (3) a non-heuristic, model-based approach for
probabilistic inference of the true sample of origin of hopped
sequencing reads, and (4) a data decontamination procedure for
purging phantom molecules that optimally minimizes the false
positive (FP) rate of molecule reassignments. We validate our
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d

Fig. 1 A model for sample index hopping. a A schematic representation of sample index hopping. b A toy example showing a read count matrix (left) and
the resulting molecule count matrix (right). In this example, the true sample of origin of all reads is sample 1. Blue depicts the reads/molecules that are
correctly assigned to their true sample of origin, whereas red represents the hopped reads and the resulting phantom molecules, with the color intensity
showing relative counts. A CUG is a unique cell–UMI–gene combination—CUGs that have a nonzero count in only one sample are called non-chimeric,
whereas CUGs with nonzero counts in more than one sample are chimeric. See also Supplementary Tables 9–10. c Venn diagram showing the number of
CUG collisions between two libraries that were sequenced on two separate HiSeq 4000 lanes (see “Methods”). Note the minuscule fraction of CUGs that
collide (<6 in a million). d The proportion of hopped sample indices by source sample across a range of PCR amplification levels r, in a multiplexed dataset
with known ground truth (the sample of origin of each CUG was determined based on non-multiplexed sequencing runs of the same libraries on two
separate lanes, i.e., c). The straight dashed line shows the marginal mean of proportion of hopped reads. Note that the different lengths of the red and blue
lines reflect the range of r for which there were enough observations in each sample to calculate the index-hopping rate.
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model-based approach using simulated data as well as a multi-
plexed scRNA-seq dataset in which the true sample of origin of
each sequencing read is known. Furthermore, we systematically
analyze several previously published multiplexed droplet-based
scRNA-seq datasets and show that a substantial fraction of
molecules (and cells) in these datasets are artifacts of sample
index hopping, but which can be effectively detected and removed
using our method.

Results
A generative model of index hopping. The probabilistic model
we propose starts with the observation that each cDNA fragment,
in addition to its sample barcode index, has a cell barcode and a
unique molecular identifier (UMI), and maps to a specific gene
(Supplementary Methods). We make two simplifying assump-
tions to derive a tractable probability distribution for the
sample–cell–UMI–gene combinations encoded in the sequencing
reads, while taking into account the index hopping. First, as it has
been suggested previously6, we make the assumption that any
unique cell–UMI–gene combination (hereafter referred to as
CUG) is so unlikely that it cannot arise independently in any two
different samples. Accordingly, each CUG would represent one
unique molecule and all sequencing reads with the same com-
bination would correspond to PCR amplification products of that
original molecule. Second, we assume that the probability of
index hopping is the same for all reads, regardless of the source or
target sample of the read or the number of other reads that have
the same CUG (Supplementary Methods).

To validate the first assumption, we sequenced two 10x
Genomics scRNA-seq samples separately on two different lanes of
HiSeq 4000, and examined the CUGs that were shared between
the sequencing reads of these two samples. As predicted by
assumption I, only a minuscule fraction of CUGs from the two
libraries were common (<6 in every 1 × 106, Fig. 1c). To validate
the second assumption, we then multiplexed the same two
libraries on the same lane of HiSeq 4000 and cross-referenced
each sequencing read to the non-multiplexed set of sequences,
based on the CUG label of the read. This allowed us to infer the
true sample of origin of each read and compare it with the
apparent sample of origin in the multiplexed experiment. As
predicted by assumption II, the rates of sample misassignment
were highly similar for reads that originated from any of the two
samples (within 10% of the marginal mean of 0.00326), and were
largely constant across PCR amplification levels (Fig. 1d).

These two simplifying assumptions allowed us to derive a
mixture-of-multinomials model for the observed sample indices
of the sequencing reads (see “Methods” and Supplementary
Methods). In this generative model, the (unobserved) true sample
of origin of each CUG is drawn from a categorical distribution,
and the observed sample indices of the reads that originate from
that CUG are drawn from a multinomial distribution governed by
a single index-hopping parameter (Supplementary Fig. 1).

Estimating the sample index-hopping rate. We used this model
to further derive a closed-form expression of the probability
distribution of chimeric observations, namely, CUGs whose
corresponding reads are assigned to multiple samples (Fig. 2a and
Supplementary Methods). We were then able to estimate the
index-hopping rate by fitting the resulting generalized linear
model to the empirically observed distribution of chimeric CUGs
across PCR amplification levels (see “Methods” and Supplemen-
tary Methods).

Two lines of evidence suggest that this approach provides
accurate estimates of SIHR: first, we applied our model to the
two-sample multiplexed library described in the previous section

to estimate the SIHR, and then compared it with the empirical
SIHR that was calculated based on the ground truth (i.e., based on
the true sample of origin of reads). In this dataset, the model-
based estimated SIHR was within 5% of the empirical SIHR
(Fig. 2b). Second, we observed close agreement between the
observed and fitted non-chimeric CUGs across multiple datasets,
including two eight-sample HiSeq datasets from mouse epithelial
cells6,7 and two 16-sample NovaSeq 6000 datasets from Tabula
Muris8 (Fig. 2c and Supplementary Fig. 2). Overall, we found that
SIHR ranges between 0.3% and 0.9% in the data we analyzed
(Supplementary Table 1).

Model-based purging of phantom molecules. We used our
probabilistic model to also derive a closed-form expression for the
posterior distribution of the true sample of origin of each CUG,
given its read counts across samples, the SIHR, and the molecular
proportions of the samples conditional on the PCR amplification
level (see “Methods” and Supplementary Methods). In other
words, for each CUG (molecule), we can calculate the probability
of belonging to each sample based on its read count distribution
across samples (Fig. 3a). We can then assign each CUG to the
most likely sample of origin, i.e. the sample with the largest
posterior probability, and remove the other phantom molecules,
i.e. copies of that CUG that are mistakenly assigned to other
samples. Application of this approach to our two-sample multi-
plexed dataset with the known ground truth revealed that by
simply assigning each CUG to the most likely sample, we can
remove >97% of the phantom molecules, while keeping >99.9%
of the true molecules.

We can further decontaminate the data by removing assign-
ments that have low posterior probability. We have devised an
approach for estimating the number of FP and false negatives
(FN) for distinguishing true molecules from phantom molecules
after decontamination at different posterior probability cutoffs
(see Supplementary Methods; Supplementary Fig. 3; Supplemen-
tary Table 2). Application of this approach to the multiplexed
dataset with known ground truth revealed that the estimated FP
and FN counts closely follow the empirical estimates (Fig. 3b).
While the FP vs. FN counts relationship can be directly examined
to select an appropriate cutoff, our approach also enables the
selection of a cutoff based on a user-specified marginal trade-off
ratio (TOR), representing the number of real molecules one is
willing to discard in order to correctly purge one extra phantom
molecule (Supplementary Fig. 4 and Supplementary Methods).
We evaluated the TOR cutoff approach by contrasting it with two
alternative actions: no purging, where we leave the data as it is,
and no discarding, where we assign each CUG to the most likely
sample (and therefore purge predicted phantom copies of those
CUGs) but refrain from further discarding the CUGs whose
inferred sample of origins have low posterior probabilities
(equivalent to a TOR cutoff of zero). In most cases, a TOR
cutoff of 3 provides a suitable trade-off between FP and FN
counts (Fig. 3b, c). Overall, we observed that we can achieve a
sensitivity of 0.999 (down from 1 in the original non-purged data)
and specificity >0.97 (up from 0 in the non-purged data) in
distinguishing true molecules from phantom molecules across all
samples (Fig. 3 and Supplementary Tables 3–4).

Comparison with existing phantom purging approaches. Using
the multiplexed scRNA-seq data with known ground truth, we
found that our proposed model-based purging of phantom
molecules substantially outperforms a previous heuristic
approach6 that is based on retaining molecules with a certain
minimum read fraction (MRF) assigned to one sample (Fig. 3b).
For example, at comparable specificity to the default MRF ≥ 0.8
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cutoff, our probability-based approach results in almost half as
many FN (i.e., true molecules that are incorrectly labeled as
phantom molecules; Supplementary Table 3 and Fig. 3b).

To more comprehensively evaluate the performance of our
approach, we set out to simulate data in a way that they capture a
range of SIHR values as well as different library complexities. In a
multiplexed experiment, often samples that vary in their library
complexity are sequenced together, where we define library
complexity as the expected number of unique molecules sampled
with a finite number of sequencing reads generated in a given
high-throughput sequencing run. Samples may differ in their
total number of unique transcripts due to a host of factors,
ranging from the presence of varying amounts of RNA that
characterize different cell types to accidental errors in library
preparation that could cause cells to break up and lose their
endogenous mRNA. In other words, even if the total number of
available sequencing reads were budgeted evenly over the
multiplexed samples, the number of unique molecules detected
in the sequencing run could vary widely across the samples. We
formulate the library complexity of a set of multiplexed samples
as the molecular proportions of the samples conditional on the
PCR amplification level, which we term the molecular propor-
tions complexity (MPC) profile. The MPC profiles of four
empirical datasets that we analyzed are shown in Supplementary
Fig. 5 (see Supplementary Methods for a more detailed discussion
of MPC profiles).

We first used the MPC profile of a library of eight mouse
epithelial samples multiplexed on HiSeq 40006 (Supplementary
Fig. 5b) as the basis for simulating datasets with varying SIHR
values. As Supplementary Table 4 and Fig. 3c show, our
probabilistic approach gives an FN proportion that is about
three times lower than the MRF approach at a comparable FP
proportion. More importantly, the entire range of the FP/FN
trade-off curve provides a more optimal choice than the MRF

approach, irrespective of the SIHR (Fig. 3c). Furthermore,
changing the MRF threshold had little effect on the FP rate,
indicating that FP cannot be controlled with this heuristic
method. We also simulated additional datasets with two different
MPC profiles, and again observed that our probability-based
model substantially outperforms the MRF approach across a
range of FP/FN TOR (Supplementary Fig. 6), irrespective of the
MPC profile.

Prevalence of phantom molecules in scRNA-seq data. We
applied our model-based approach to quantify and purge phan-
tom molecules across several previously published datasets6–8,
and found that the proportion of phantom molecules (PPM) for
individual samples can depart drastically from the marginal PPM
of the entire dataset, with sample variation depending on the
MPC profile of the multiplexed samples (Fig. 4a). For example, in
a library of eight mouse epithelial samples multiplexed on HiSeq
40006, two low-complexity samples (i.e., samples in which a
relatively small number of unique molecules contribute to the
majority of sequencing reads) obtain PPM values exceeding 80%
(Fig. 4b and Supplementary Table 5). In other words, in these
samples, >80% of the UMI counts correspond to phantom
molecules that originated from other samples. The unexpectedly
large PPM values can also be observed in other datasets. For
example, in the Tabula Muris data8, PPM of some samples
reaches values as high as 17% (Supplementary Table 6). The high
abundance of phantom molecules in these samples is surprising
given the relatively low index-hopping rate in these datasets
(SIHR ≈ 0.008; Supplementary Table 1). As shown in Fig. 4b for
the HiSeq 4000 dataset6, high PPM values seem to largely cor-
respond to samples with high read-to-molecule ratios (RMR), a
good proxy measure of the extent of sample-specific PCR
amplification bias which we define as the ratio of the total

a

b

c

Fig. 2 Estimation of sample index-hopping rate. a A heatmap depicting the probability of observing a chimera, i.e., a CUG whose reads map to more than
one sample, as a function of sample index-hopping rate (SIHR) and PCR amplification level r. See “Methods” for the probability function. The top histogram
shows the distribution of r for an example multiplexed HiSeq 4000 dataset6. b Validation data showing the ground truth proportion of hopped reads by
sample conditional on the PCR duplication level alongside the ground truth marginal mean proportion of hopped reads and the model-estimated sample
index-hopping rate (same dataset as Fig. 1c, d). c Concordance between model predictions and empirically observed number of chimeras for four previously
published datasets. Each plot shows the proportion (probability) of chimeras conditional on PCR amplification level, with red dots depicting observed
values and blue line representing the model prediction. The ECDF (empirical cumulative distribution function) of r (gray) shows the cumulative proportion
of CUGs with at most r reads. Top left: mouse epithelial non-multiplexed HiSeq 2500 dataset7; top right: mouse epithelial multiplexed HiSeq 4000
dataset6. Bottom left: Tabula Muris NovaSeq 6000 dataset (Lane 1)8. Bottom right: Tabula Muris NovaSeq 6000 dataset (Lane 2)8.
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number of mapped reads over total number of molecules (i.e.,
library size divided by library complexity). Similarly, the samples
with the highest RMR also have the highest PPM in both lanes of
the Tabula Muris dataset (Supplementary Table 6). This obser-
vation suggests that even in multiplexed libraries with small
index-hopping rate, low-complexity samples are highly suscep-
tible to large numbers of phantom molecules. Overall, in the
datasets that we analyzed, in >25% of samples at least 8% of the
UMI counts correspond to phantom molecules (Supplementary
Tables 5–6).

Effects of phantoms on identifying RNA-containing cells. As
mentioned previously, phantom molecules can confound several
aspects of the downstream analysis of scRNA-seq data, including
identification of RNA-containing cells. To assess the extent to
which phantom molecules may affect cell calling, we used the
EmptyDrops9 algorithm to classify cell barcodes in order to
determine whether a cell barcode originated from a cell or an
empty droplet. For each dataset, we ran EmptyDrops on the
unpurged data as well as the purged data (i.e., after removing
phantom molecules). The results of this analysis are shown in
Supplementary Tables 7–8. For example, we see that for the
B1 sample in the HiSeq 4000 dataset6, before purging the phan-
tom molecules, a total of 1023 cell barcodes are classified as actual
cells, whereas rerunning cell calling on purged data produces no
more than 16 cells (Supplementary Table 7), suggesting that the
majority of the 1023 cells are artifacts of index hopping. These
results are consistent with the previous observation that the
samples B1 and B2 share many cell barcodes with other samples
of the HiSeq 4000 dataset6, likely due to extensive index hopping.

For the NovaSeq 6000 datasets8, the effects of contamination
are less severe than those seen in the HiSeq 4000 dataset
(Supplementary Table 8). Nonetheless, for several samples, the
barcodes that are reclassified as empty droplets after purging can
make up a substantial fraction of total cells (e.g., samples P7-1
and P7-8). To understand how misclassification of cell barcodes
can affect the interpretation of data, we examined the gene
expression profiles associated with each cell barcode before
purging phantom molecules. As Fig. 4c shows, in two samples of
the Tabula Muris dataset8, we identified a cluster of cells that
appear to form a distinct cell type based on their expression
profiles; however, the large majority of these cells are reclassified
as empty droplets after purging phantom molecules, suggesting
that these distinct cell types are artifacts of index hopping.

Discussion
Our probabilistic framework, as we showed in the “Results”
section, provides a principled approach to calculating the index-
hopping rate in any given multiplexed droplet-based scRNA-seq
dataset. Importantly, it also provides a method for calculating the
posterior probability of assignment of each molecule to each
sample. Having these posterior probabilities, we can accurately
estimate the FP and FN rates for distinguishing true and phantom
molecules, without knowing the ground truth about their sample
of origin.

As our analyses of several datasets suggest, low-complexity
samples in multiplexed datasets often contain a large PPM. We
believe that high PPM values might in fact be common in mul-
tiplexed datasets that contain both low- and high-complexity
samples, since hopping of even a small fraction of reads from

a

b
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Fig. 3 Identification and purging of index-hopping artifacts. a A toy example, depicting the simplex containing all ten possible read count outcomes at
PCR amplification level (r= 3) and for the case of three samples (see also Supplementary Fig. 8). The pie charts depict the posterior probabilities of the
true sample of origin for each outcome. π3 represents the proportion of molecules with r= 3 that originate from each sample in this toy example. See
“Methods” for derivation of the posterior probabilities. b Performance on a multiplexed dataset of two libraries with known ground truth (same dataset as
Fig. 1c, d). Each dot represents the FN/FP counts, based on the ground truth, at different posterior probability cutoffs. The dashed line represents the
model-based estimation of FP/FN. The no purging dot represents the total number of phantom molecules in the uncorrected multiplexed dataset (red dot).
The inset shows a zoomed-in view of the graph for posterior probability cutoffs that correspond to trade-off ratio (TOR) cutoffs values of 0 and 3, in
addition to a previous heuristic approach6 that is based on retaining CUGs with a certain fraction of reads assigned to only one sample. c Performance on
simulated data. The colored dots represent FP and FN proportions for distinguishing true molecules from phantom molecules, after filtering at different
posterior probability cutoffs. The color of each dot represents the trade-off ratio (TOR), i.e., the number of real molecules lost for every extra phantom
molecule that is correctly purged. The point that corresponds to TOR cutoff= 3 is marked with a plus. The simulations were performed for four evenly
spaced values of SIHR (sample index-hopping rate). The open circles show the FN/FP values obtained by the heuristic approach6 with three choices of the
minimum read fraction (MRF) threshold: 0.6, 0.8, and 0.9.
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high- to low-complexity samples can create more phantom
molecules than the unique real molecules native to the low-
complexity sample. We expect this phenomenon to be wide-
spread, as we observed that in almost all datasets that we ana-
lyzed, different samples have widely different MPC profiles
(Supplementary Fig. 5).

These phantom molecules can be a substantial confounding
factor in multiplexed scRNA-seq experiments. For example, our
analysis of the multiplexed dataset with known ground truth
indicates that large numbers of genes (Fig. 4d) and cells (Fig. 4e)
in each sample are heavily contaminated by phantom molecules.
This not only leads to mixing of transcriptomes, but also creates
many phantom cells that are entirely made up of molecules
hopped from another sample (Supplementary Fig. 7). However,
purging of phantom molecules through our model-based
approach almost completely remedies the effect of index hop-
ping at the gene and cell level (Fig. 4d, e).

We also found that sample index hopping has a large effect on
the accuracy of cell-calling algorithms (i.e., detection of empty
droplets from cell-containing droplets). First, a large number of
empty droplets appear to be simply artifacts of phantom mole-
cules, and disappear once phantom molecules are purged (Sup-
plementary Tables 7–8). More importantly, a large fraction of
droplets that are classified as cells are reclassified as empty dro-
plets once phantom molecules are purged. For example, in one of

the samples from the multiplexed mouse epithelial samples6,
>98% (1007 out of 1023) of the cells are in fact empty droplets
that are misclassified due to the abundance of phantom molecules
(Supplementary Table 7). This effect can also be seen in other
datasets, e.g., in the Tabula Muris dataset8 where in one of the
samples >25% of the called cells are reclassified as empty droplets
after purging the phantom molecules (see samples P7-1 in Sup-
plementary Table 8). These artifactual cells can lead to mis-
interpretation of data by appearing as novel cell types with a
distinct expression profile (Fig. 4c).

Overall, given that sample index hopping appears to be present
in almost any multiplexed dataset, and almost always leads to
substantial contamination of droplet-based scRNA-seq data at the
level of molecule counts, we believe purging of index-hopping
artifacts should become a standard procedure. Our probabilistic
framework provides a principled, model-based solution to this
problem.

Nonetheless, our method has limitations that warrants further
improvements (see Supplementary Discussion for a more detailed
description of model limitations). First, while the empirical data
often fits our model well, at certain ranges and values the data
depart from the model’s assumptions. For example, as Supple-
mentary Fig. 2 shows, the observed chimeric proportions for the
experimental datasets show a downward deviation from the
model-predicted mean trend at high PCR amplification levels,

a

b e

c d

Fig. 4 Impact of sample index hopping. a The molecular proportions complexity (MPC) profile of a dataset of eight samples sequenced on HiSeq 40007.
Each curve represents one sample, with the y-axis showing the proportion of molecules that belong to that sample conditional on the PCR amplification
level (i.e., reads per CUG, r, which is shown on the x-axis). The MPC profile is shown for r≤ 300 since there are few CUGs beyond that point to enable
accurate estimation of molecular proportions. b The proportion of real and phantom molecules in each of the eight samples, the fraction of molecules and
mapped reads that belong to each sample, the read-to-molecule ratio (RMR) per sample, and the corresponding FDR statistics (i.e., the within-sample
proportion of molecules that we miss-classify as real after purging) for the HiSeq 4000 dataset. See Supplementary Tables 5–6 for additional datasets. c
Example cases showing the effect of index hopping on cell type identification. The graphs show the UMAP embedding of cells, based on non-purged data,
in two samples from the Tabula Muris dataset8 (top: sample P7-1; bottom: sample P7-8; UMAP embedding based on normalized gene expression profiles).
Dotted circles highlight two clusters that are almost entirely made up of cells that are reclassified as empty droplets after purging phantom molecules. d
The effect of purging on gene expression profiling in the validation dataset with known ground truth. Each dot represents one gene expression
measurement in one cell. Dots are colored based on cell-sample assignment in the ground truth, with red and blue representing cell barcodes that are
found only in sample 1 or sample 2, respectively. Green represents cell barcodes that are found in both samples (barcode collision). Note that the nonzero
sample 1 UMI counts for blue dots and nonzero sample 2 UMI counts for red dots represent phantom molecules. e Same as (d), but with the counts
aggregated per cell (each dots represents one cell). Blue dots with high counts in sample 1 and red dots with high counts in sample 2 represent phantom
cells. Green dots represent potential transcriptome mixing.
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especially for the top 1% of observations that are characterized by
noisiness and sparsity. As for the validation dataset, we notice two
trends that seem to slightly depart from the model’s assumption.
First, there is a minor difference between the two samples’ pro-
portion of hopped reads, with the SIHR from S1 to S2 being
0.00346 vs. SIHR for S2 to S1 being 0.00302. Second, the ground
truth estimates for both samples start out at higher proportion
values but stabilize starting at r= 10. These trends could be
subsampling artifacts of the filtering procedure steps. For exam-
ple, we retain CUGs that are observed in both the multiplexed
and non-multiplexed samples (in order to establish the ground
truth), which results in relative depletion of CUGs with low read
counts (as they are less likely to be captured in both non-
multiplexed and multiplexed data). Alternatively, these trends
could reflect an underlying mechanism that the model we have
proposed here does not perfectly capture. A model that is gov-
erned by several sample-specific hopping rates that are also
dependent on the PCR amplification level could provide better
accuracy but likely at the cost of intractable computational and
mathematical complexity.

Finally, non-negligible probability of CUG collision across
samples can be another source of deviation from our model’s
assumptions when the number of samples is large. As the number
of multiplexed samples increases, our first assumption would no
longer hold since the probability of observing, in more than one
sample, a given CUG label combination becomes non-negligible.
That said, in single-cell experiments, multiplexing more than
16 samples on a single lane is not common given that it leads to
smaller library sizes and lower genomic coverage. Furthermore,
the adoption of longer UMI indexes in more recent droplet-based
assays would further reduce the probability of potential collisions,
thus rendering this concern less of a problem.

Methods
A summary of the methods is described here. However, a detailed and extensive
statement of the model, its assumptions, motivations, mathematical derivations,
and limitations are provided in the Supplementary Notes 1–2, Supplementary
Methods, and Supplementary Discussion.

Modeling sequencing read counts. We can formally formulate the process of
observing index-hopped reads as a two-stage hierarchical sampling process, where
we first sample a molecule sl from a library sample sl according to the categorical
model, then we amplify the molecule by generating r PCR read duplicates
according to the multinomial model. We denote the observed vector of read counts
with hopped and unhopped reads by yl= (yl1,…, yls,…, ylS), where l= {1,…,mr}
refers to an observed CUG label (i.e., molecule) originating from an unobserved
source sample sl 2 S :¼ f1; ¼ ; Sg and mr refers to the number of observations
with a PCR duplication level r. Note that the number of molecules originating from
a given sample with a given PCR read duplicates r is determined by the parameter
vector πr, whereas the number of PCR duplicated reads that end up hopping to
other samples is determined by the parameter vector ðpsl Þ. As we show in more
detail in Supplementary Methods, this hierarchical sampling can be represented as
a mixture-of-multinomials model under the assumptions that each CUG represents
only one unique real molecule and that sample index hopping is independent of the
source or target sample:

sl � CategoricalðπrÞ
yl jsl � Multinomialðr; psl Þ

l ¼ 1; ¼ ;mr ;

ð1Þ

where l indexes the mr observations (molecules) that have PCR duplication level r;
and the probability vector πr represents the proportion of molecules across the S
samples at PCR duplication level r. We refer to the set of all molecular proportions
Π :¼ fπrgRr¼1 as the MPC profile (see Supplementary Methods). The vector psl
denotes the probability that a read originating from sample sl ends up being
assigned to each of the S samples, and its elements are equal to ph= (1− p)/(S− 1)
for samples other than sl, and p for the sample sl itself, where p is the probability of
no index hopping.

Estimating the sample index-hopping rate (SIHR). As we show in Supplemen-
tary Methods, at any given PCR amplification level r, the number of non-chimeric
observations, i.e. labels l that are observed in only one sample, follows a binomial

distribution:

zr ¼
Xmr

l¼1

wl � Binomial mr ; p
r þ ðS� 1Þ ´ 1� p

S� 1

� �r� �
; ð2Þ

where wl is a Bernouli random variable denoting whether observation l is non-
chimeric, and zr is the sum of counts of non-chimeric observations l at the PCR
amplification level r. Subsequently, the joint sampling distribution of the non-
chimeras at all PCR duplication level values, concatenated as a vector z, can be
decomposed as follows:

PðzjθÞ ¼
YR

r¼1

Binomial zr jmr ; p
r þ ðS� 1Þ ´ 1� p

S� 1

� �r� �
; ð3Þ

where zr is the number of non-chimeric molecules out of the mr observed mole-
cules at PCR amplification level r.

We estimate the value of p, the complement of index-hopping rate, by fitting the
joint sampling distribution to the observed non-chimera counts, as discussed
in Supplementary Methods.

Reassigning reads and purging phantom molecules. For each molecule l with
observed read counts yl across S samples, the posterior probability that it originated
from sample s can be calculated as:

Pðsjyl ; r; p̂; π̂rÞ ¼
S�1
1
p̂�1

� �yls

π̂rs

PS
s¼1

S�1
1
p̂�1

� �yls

π̂rs

; ð4Þ

where the plug-in estimates π̂rs is the proportion of molecules in sample s at PCR
duplication level r and p̂ is the complement of the SIHR.

We label the sample with the maximum posterior probability as the true sample
of origin, the molecule corresponding to that sample as a real molecule, and all
others (with nonzero reads) as phantom molecules. Such a procedure achieves the
minimum possible number of FN (i.e., real molecules that are incorrectly labeled as
phantom), but at the expense of FP (i.e., phantom molecules that are incorrectly
labeled as real). To reduce the FP rate, we would need to find a posterior
probability cutoff, below which the observations that we labeled as real molecules
are also now relabeled as phantom. We select this cutoff based on the trade-off
between FP and FN, which are estimated based on the distribution of posterior
probability scores. For more details and mathematical derivations
see Supplementary Methods.

Validation data. Two 10x Genomics scRNA-seq sample libraries were sequenced
in two conditions. In the first condition, the samples were multiplexed on the same
lane. In the second condition, two sample libraries were sequenced on two separate
lanes of HiSeq 4000 (this non-multiplexed condition provides a ground truth for
the true sample of origin of each CUG). Cell Ranger 3.0.0 was run with the default
options on each of the four samples (two-sample multiplexed on the same lane and
the same two samples non-multiplexed). A joined read count table was created.
The joined table had 16,547,728 unique CUGs, out of which 9,252,147 CUGs were
present in both the multiplexed and non-mulitplexed samples. These common
CUGs were retained and a column containing the ground truth labels was added to
the resulting inner joined data table. Rows corresponding to colliding CUGs were
filtered out and the table was saved to file (see the reproducible R markdown
notebook validation_hiseq4000_1.nb.html for details).

Preprocessing of published datasets. We applied the proposed model on three
publicly available 10x Genomics scRNA-seq datasets: (1) a control non-multiplexed
dataset in which each sample was sequenced on a separate lane of HiSeq 2500; (2) a
multiplexed dataset sequenced on HiSeq 4000; and (3) a multiplexed dataset
sequenced on NovaSeq 6000. The HiSeq 2500 and HiSeq 4000 datasets consist of
eight libraries of mouse epithelial cells, which have also been used previously6 for
analysis of sample index hopping. The two datasets were downloaded from the
authors’ host server using the get_data.sh script available on our paper’s GitHub
repo (for a more detailed description of the data, please refer to the original
publication7). The third dataset was obtained from the Tabula Muris project’s
repository. It consisted of 16 libraries (i.e., the P7 libraries) of mouse tissue samples,
which were pooled and multiplexed on two lanes of an S2 flowcell in a single
NovaSeq 6000 sequencing run8. BAM files for the 16 samples were downloaded
from the SRA data repository (SRA accession number SRP131661) and converted
back to FASTQ files using the 10x Genomics bamtofastq utility. Cell Ranger 3.0.0
was run with the default options on each set of samples multiplexed on the
same lane.

Simulated data. To further benchmark the performance of the proposed approach
and compare with a previous heuristic method6, we simulated data for (S= 8)
samples using the MPC profile computed for the mouse epithelial cells HiSeq 4000
data. For computational feasibility, outcomes were simulated for all r values up to a
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maximum of r= 15 for a range of four SIHR values (0.018, 0.014, 0.010, 0.006).
Simulated reads were generated based on our generative probabilistic model.

In order to assess the performance of the approach under a variety of MPC
profile instances: we wrote a function that is able to capture the statistical
regularities we observe in empirical MPC profiles. We observed that the truncated
geometric distribution approximates rather well a sample’s molecular proportions
especially in the PCR amplification level range between r= 1 and r= 30. We use
the function to extend the simulations to higher PCR amplification level r= 30,
smaller number of samples (S= 4), and for two dissimilar molecular complexity
profiles simulated conditions. Simulating and computing the probabilities for all
the possible outcomes that make up each Pascal’s r-Simplex for a larger range of r
is computationally demanding. Furthermore, empirical data tend to be very sparse
at this range and the statistical regularities are not easily captured by a simple
model such as the truncated geometric distribution. A reproducible analysis
notebook showing how the data can be simulated is available at this link https://
csglab.github.io/PhantomPurgeR/assets/notebooks/simulation.html.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw data and read count tables associated with the scRNA-seq validation set are available
via GEO (accession GSE149087).

Code availability
The GitHub project’s website, https://csglab.github.io/PhantomPurgeR, contains links to
the paper’s reproducible analysis notebooks. The associated R package is available at
https://github.com/csglab/PhantomPurgeR.
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