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Abstract: Terpenoids represent one of the high-value groups of specialized metabolites with vast
structural diversity. They exhibit versatile human benefits and have been successfully exploited
in several sectors of day-to-day life applications, including cosmetics, foods, and pharmaceuticals.
Historically, the potential use of terpenoids is challenging, and highly hampered by their bioavail-
ability in their natural sources. Significant progress has been made in recent years to overcome such
challenges by advancing the heterologous production platforms of hosts and metabolic engineering
technologies. Herein, we summarize the latest developments associated with analytical platforms,
metabolic engineering, and synthetic biology, with a focus on two terpenoid classes: monoterpenoids
and sesquiterpenoids. Accumulated data showed that subcellular localization of both the precursor
pool and the introduced enzymes were the crucial factors for increasing the production of targeted
terpenoids in plants. We believe this timely review provides a glimpse of current state-of-the-art tech-
niques/methodologies related to terpenoid engineering that would facilitate further improvements
in terpenoids research.

Keywords: metabolic engineering; synthetic biology; linalool; costunolide; FPP-farnesyl pyrophosphate;
GPP-geranyl pyrophosphate

1. Introduction

Terpenoids are the most chemically, physically, and functionally complex family of
natural chemicals found in living creatures, with over 80,000 compounds identified to
date, and many more expected to exist [1]. They are the most structurally varied group of
plant-derived natural compounds, and are economically significant due to their use in a
variety of industrial products, including pharmaceuticals, flavoring agents, insecticides,
antimicrobial agents, and perfumes [2]. They play an important role in plant–environment,
plant–plant, plant–insect, and plant–animal interactions in nature [3]. Many terpenoids
have a strong link to primary metabolism (e.g., phytol, the plant hormone gibberellin, and
carotenoid pigments), while others are common secondary metabolites in plants [4].

Terpene biochemistry and chemistry have been studied for over a century, mainly
in plants [5]. Recently, genes that encode enzymes and regulators engaged in terpene
biosynthesis have been discovered, and their genomic location, mode of expression, and
long-term evolution have been investigated [6]. Despite their considerable structural
variations, all terpenoids are derived from the universal isoprene C5 building blocks. The
terpenoid backbone is synthesized from two precursors: IPP (isopentenyl pyrophosphate),
and its isomer dimethylallyl pyrophosphate (DMAPP). Terpene biosynthesis is a complex
mechanism involving two independent biosynthetic pathways. The cytosolic mevalonate
(MVA) pathway is found in most eukaryotes (all mammals, the cytosol and mitochondria of
plants, fungi), archea, and some bacteria [7,8]. They are utilized in the production of bigger
compounds, such as sesquiterpenes (C15), triterpenes (C30), sterols (C27–29), and dolichols
(C40–50). The methylerythritol phosphate (MEP) pathway is found in plant chloroplasts,
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bacteria, algae, and cyanobacteria. This pathway predominantly produces mono-terpenes
(C10), diterpenes (C20), and tetraterpenes (C40). Unlike most microbial organisms, both
pathways operate in plants—the MEP pathway in the chloroplast and the MVA pathway
in the cytoplasm—and the labor division between them represents a complex array of
chemicals that control the development and growth of plants, and interact with plants and
their surroundings to control these interactions [9].

Over recent years, efforts to generate large amounts of monoterpenes and sesquiter-
penes in transgenic plants proved effective. Many plant species have been genetically
modified, with the overexpression of terpene synthase under constitutive promoters being
the most common. Plants with overexpressed linalool synthase genes that were produced
include tomato, petunia, Arabidopsis, potato, and carnation [10–14]. Such plants generated
and released linalool and its glycosylated or hydroxylated derivatives. Similarly, α-pinene,
γ-terpinene, and limonene synthases were shown to alter the terpenoid profile of tobacco
and mint plants [15]. The overexpression of gene encoding enzymes from various stages
of the MEP pathway may result in even higher levels of terpenoid precursors (DXR and
HDR) [16]. The genes encoding enzymes that modify the monoterpene composition have
also been effectively overexpressed or knocked down in mint and tobacco. Sesquiterpene
production in transgenic plants is more difficult than monoterpene production. In an
effort to engineer sesquiterpenes in plants using terpene synthases, tobacco plants were
transformed with Artemisia annua amorpha-4,11-diene synthase and fungal trichodiene
synthase on either side, but this resulted in only a low-level yield [17,18].

Owing to their traditionally known pharmacological importance, terpenoids have
at-attracted attention from plant breeders, biochemists, and pharmacologists, who have
exploited them for their diverse metabolite/chemical profile. Several attempts have been
made to decode their distinct metabolic profiles through high throughput metabolic finger-
printing methods including nuclear magnetic resonance (NMR), gas chromatography-mass
spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and capillary
electrophoresis-mass spectrometry (CE-MS), and so-called metabolomics [19]. Metabolic
engineering is an appropriate system to either enhance or manipulate the synthesis of
terpenes in plant species that naturally produce them, or to integrate terpene biosynthetic
pathways into certain plants [20]. A number of attempts have been made over the last
decade to engineer the production of monoterpenoid and sesquiterpenoid compounds
in various plant species and tissues. Implementing modern analytical techniques is the
best way to improve the qualitative and quantitative aspects of terpenes and terpenoids in
plants and other products [21].

All plants produce a variety of terpenoid compounds that serve as phytohormones
and anti-oxidants, or have other functions. Hundreds of distinct terpenoids are synthesized
by different plant lineages, with the overall number of such advanced plant terpenoids
estimated to be in the thousands [22]. A clear understanding of a plant’s chemical composi-
tion enables a more accurate assessment of its medicinal potential. Modern chemistry can
unravel the primary metabolic functions of plants, including cell division, development,
respiration, storage, and reproduction. It helps improve our understanding of process com-
ponents, such as glycolysis, the cancer or cycles of citric acid, and photosynthesis [23]. Small
molecules, such as sugars, amino acids, proteins, nucleic acids, and polysaccharides, are
examples of primary metabolites [24,25]. Secondary plant metabolites are a diverse group
of chemical compounds synthesized by the plant cell through metabolic pathways derived
from primary metabolic pathways [26]. By the mid-twentieth century, advancements in
analytical techniques such as GC-MS, LC-MS, CE-MS, and NMR enabled the recovery of an
increasing number of these molecules, providing a basis for the development of phytochem-
istry. Secondary plant metabolites are classified into specific categories: phenolics, alkaloids,
saponins, terpenes, lipids, and carbohydrates [27]. Terpenes are the major and most varied
category of secondary metabolites found in plants. Green plants, especially flowering
plants, have an extraordinarily high number of terpenoids compared to other living or-
ganisms [22]. Isoprene units in the molecules, mono-terpenoids (C10), sesquiterpenoids
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(C15), diterpenoids (C20), and triterpenoids (C30) are considered secondary metabolites.
Many terpenoids are commercially interesting because of their use as flavors and fra-
grances in foods and cosmetics (e.g., menthol, nootkatone, and sclareol) or because they
are important for the quality of agricultural products, for example, with the flavor of fruits
and the fragrance of flowers (e.g., linalool) [28]. In addition, terpenoids have medicinal
properties including anti-carcinogenic (e.g., taxol and perilla alcohol), antimalarial (e.g.,
artemisinin), anti-ulcer, hepaticidal, antimicrobial, and diuretic (e.g., glycyrrhizin) activi-
ties [29]. Terpenoids have also been shown to be of ecological significance. Compounds,
such as the bitter triterpenoid cucurbitacins and the pungent diterpenoid polygodial, have
been shown to be involved in insect resistance [30]. Other terpenoid substances are active
in plant interactions, plant–microorganism interactions, and plant–arthropod herbivore
interactions (for example, spider mite feeding induces (E, E)-a-farnesene in cucumber) [31].
In this review, we provide an overview of the recent developments in relation to different
biosynthetic and regulatory aspects of monoterpenoid and sesquiterpenoid metabolism in
plants. Moreover, we report on the remarkable improvement in metabolic engineering for
advanced terpenoid production in various platforms.

2. Biosynthesis and Precursors of Terpenoids

Plants possess two distinct pathways to produce terpenoids: the plastidial 2-C-methyl-
D-erythritol-4-phosphate (MEP) pathway and the acetyl-CoA dependent cytosolic meval-
onate (MVA) pathway (Figure 1). The C5 unit’s IPP (isopentenyl pyrophosphate) and its
allylic isomer dimethylallyl pyrophosphate (DMAPP), the fundamental terpenoid biosyn-
thesis building blocks, are produced through a metabolic assembly of multiples in both
terpenoids pathways. Prenyl transferases use DMAPP and IPP in condensation reactions to
generate bigger prenyl diphosphates, including the sesquiterpene precursor FPP (farnesyl
pyrophosphate), monoterpene precursor GPP (geranyl pyrophosphate), and C40 carotenoid
and diterpene precursor GGPP (geranylgeranyl pyrophosphate) in both compartments
(Figure 1). Although there is increasing evidence that there is an exchange of intermediates
between these compartments [32,33], the cytoplasmic MVA pathway is generally consid-
ered to supply the precursors for the production of sesquiterpenes. In the plastids, the MEP
pathway supplies the precursors for the production of monoterpenes (Figure 1). The MVA
pathway consists of seven enzymatic processes that convert the precursor acetyl-CoA to IPP
and DMAPP (Figure 1). The MEP pathway requires eight enzymatic steps to convert the
initial materials pyruvate and glyceraldehyde-3-phosphate to IPP and DMAPP (Figure 1).
Even though IPP and DMAPP are separated spatially, they are exchanged between cytosol
and plastids during the production of various terpenoids [34]. Using precursors such as
GPP, FPP and GGPP are cyclized or rearranged by different terpene synthase enzymes, and
are responsible for the synthesis of different classes of terpenoids; they can easily acquire
new catalytic properties by minor changes in the structure [35].

Monoterpenoids are C10 compounds derived from GPP through the enzymatic activity
of geranyl pyrophosphate synthase (GPS). Through the cyclization process, the range
of monoterpenes is rapidly increased, and monocyclic or bicyclic compounds can be
synthesized. The dephosphorylation and ionization of geranyl diphosphate to geranyl
carbo-cation initiates the production of monoterpenes [36]. Linalyl pyrophosphate and
neryl pyrophosphate are isomers of GPP by ionization to the allylic cation. This allows for
changes in the attachment of the diphosphate group or changes in stereochemistry at the
double bond. Monoterpene synthase (or monoterpene cyclase) is an enzyme that catalyzes
the formation of cyclic monoterpenoids. There is an essential enzyme involved in the
synthesis of each monoterpenoids, such as linalool synthase for linalool, limonene synthase
for limonene, pinene synthase for pinene, and myrcene synthase for myrcene [37,38]
(Figure 1).
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Figure 1. Terpenoid biosynthesis in plants. There are two distinct pathways in plants for the synthesis of the universal
precursors isopentenyl pyrophosphate (IPP) and dimethyl-allyl pyrophosphate (DMAPP): the cytoplasm-localized
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mevalonate (MVA) pathway and the plastid-localized methyl erythritol phosphate (MEP) pathway. The brown color
indicates intermediate precursors of plastids (geranyl pyrophosphate) and cytosol (farnesyl pyrophosphate). AACT
acetoacetyl-CoA thiolase; HMGCAS 3-hydroxy-3-methylglutaryl-CoA synthase; HMGR 3-hydroxy-3-methylglutaryl-
CoA reductase; MK mevalonate-5-kinase; PMK phosphomevalonate kinase; MPD mevalonate-5-phpshate decarboxylase;
MPPD mevalonate pyrophosphate decarboxylase; IPK isopentyl pyrophosphate kinase; FPS farnesyl pyrophosphate
synthase. DXS 1-deoxy-D-xylulose-5-phosphate synthase; DXR 1-deoxy-D-xylulose 5-phosphate reductoisomerase; CMS
2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; CMK 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; MCS
2-C-methyl-D-erythritol 2, 4-cyclodiphosphate synthase; HDS 4-hydroxy-3-methyl-but-2-enyldiphosphate synthase; HDR
4-hydroxy-3-methyl-but-2-enyldiphosphate reductase; GPPS geranyl pyrophosphate synthase; GGPPS geranylgeranyl
pyrophosphate synthase; STPS sesquiterpene synthase; LPP linalyl pyrophosphate; NPP neryl pyrophosphate; GAO
germacrene A oxidase; GAS germacrene A synthase; CTS costunolide synthase; PTS parthenolide synthase; LNS linalool
synthase; LMS limonene synthase; PES pinene synthase; MCS myrcene synthase. As representative examples of terpenoids:
linalool, limonene, α-pinene, β-myrcene, germacrene A, germacrene A acid, costunolide and parthenolide are illustrated in
chemical structure.

C15 sesquiterpenoids are derived from FPP by the action of farnesyl pyrophosphate
synthase (FPS), and is the common precursor of all sesquiterpenoid lactones (STLs).
Sesquiterpene synthase (STPS) catalyzes the cyclisation of FPP in the first step of STL
biosynthesis [39]. They are mainly located in the cytosol and are characterized by their plas-
ticity, showing the capacity of multiple substrate utilization. Germacrene A synthase (GAS)
is one of the best-characterized STPS, converting FPP into germacrene A (GA). Germacrene
A oxidase (GAO), a cytochrome P450-like enzyme, converts GA into germacrene A acid
(GAA). To produce costunolide, GAA is further oxidized by the costunolide synthase.
Furthermore, to produce the end product of parthenolide, this costunolide catalyzes the
epoxidation of the C4-C5 double bond. Figure 1 depicts the overall biosynthetic pathway
and intermediate chemical structure of monoterpenoids and sesquiterpenoids [40].

2.1. Monoterpenoid Chemical Compounds

Monoterpenoids are substances that can be found in essential oils derived from dif-
ferent plants, including vegetables, fruits, herbs, and spices [41–43]. Monoterpenes are
C10 molecules that can be acyclic, monocyclic, or bicyclic. Monoterpene synthase uses
GPP (geranyl pyrophosphate) as a substrate to produce them. Additionally, GPP is also a
substrate for the production of GGPP (geranyl-geranyl pyrophosphate) and FPP (farnesyl
pyrophosphate), two important substances in animal, plant, and yeast cell metabolism [22].
Monoterpenoid compounds are classified as acyclic (e.g., linalool, geraniol, β-myrcene, (+)-
citronellol, nerol), monocyclic (thymol, (−)-menthol, limonene, eugenol, γ-terpinene, ter-
pinolene, and piperitone), bicyclic (α-pinene, (−)-β-pinene, camphene, sabinene, myrtenol,
(+)-camphor, (−)-borneol, (+)-cis-verbenol, ∆3-terpinene, eucalyptol, sabinene hydrate,
and fenchone), and others (α-phellandrene, ρ-cymene, ocimene, fenchol, (−)-isopulegol
terpinen-4-ol, α-terpineol, (+)-dihydrocarvone, pulegone, carvone, geranyl acetate, methol-
isomer, and safranal) [44]. Monoterpenoids are found mostly in the taxonomic groups
Asteraceae, Apiaceae, Verbenaceae, Poaceae, Myrtaceae, Lamiaceae, Pinaceae, Rutaceae,
Lauraceae, and Cannabaceae. The following monoterpenoid compounds are significant in
plant species: α- and β- pinene (Pinus palustris), δ-3-carene, α-phellandrene, and myrcene
(Lippia citriodora) are found as complex mixtures in most essential oils, particularly in
those extracted from plant leaves, while seed and flower oils contain more specialized
monoterpenes and present fruity or flowery odors. Linalool has two stereoisomers are
present: (R)-(−)-linalool and (S)-(+)-linalool. S-linalool is found in major constituents of
the essential oils of coriander (Coriandrum sativum L.) seed, palmarosa (Cymbopogon martinii
var martinii (Roxb.) Wats), and sweet orange (Citrus sinensis Osbeck) flowers. Meanwhile,
(R)-Linalool is present in Ho oils from Cinnamomun camphora, rosewood oil, lavender
(Lavandula officinalis Chaix), laurel (Laurus nobilis), and sweet basil (Ocimum basilicum) [2].
D-carvone from caraway (Carum carvi), with its spicy and bread-like fragrance; menthol is
derived from wild mint (Mentha arvensis) and has a strong minty aroma; D-limonene from
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citrus species with a fresh orange peel odor; citral from lemongrass (Cymbopogon citratus)
having a fresh lemon peel odor; Eucalyptol, also known as 1,8-cineole from eucalyptus
(Eucalyptus globulus) having a camphoraceous cool odor. Menthone and isomenthone
are components of essential oils such as pennyroyal, peppermint, Pelargonium geraniums,
and others. Thymol (Thymus vulgaris); camphor derived from camphor tee (Cinnamomun
camphora) [45].

2.2. Sesquiterpenoid Chemical Compounds

Sesquiterpenoids are C15 compounds with three isoprene (C5H8) units that are primar-
ily present in fresh raw plant materials. They form the most diverse terpenoids group, and
the biosynthesis of sesquiterpenoids is synthesized using mevalonic acid [46–48]. There
are about 150 known sesquiterpenes compounds including artemisinin, (−)-β-elemene, β-
caryophyllene, aromaadendrene, trans-β-farnesene, α-humulene, valencene, ledene, trans-
nerollidol, caryophyllene oxide, globulol, viridiflorol, (−)-guaiol, (+)-cedrol, β-eudesmol,
α-bisabolol, cis-muurola-4(15), 5-diene, germacrene D, costunolide, parthenolide, guat-
terin A, dihydromadolin, madolin-K, madolin-W, malayscaphiol, sarcanolides A and B,
perovskanol, eudesmane-type I and II, chrysanolide A, isocyperotun-done, and 1,4-epoxy-
4-hydroxy-4-5-seco-guain-11-en-5-1 [49]. Sesquiterpenoids are predominantly found in the
taxonomic groups Poaceae, Solanaceae, Araceae, Rutaceae, Zingiberaceae, Cannabaceae,
Myrtaceae, and Cupressaceae. However, they are most common in the Asteraceae family,
where they are almost ubiquitous. Sesquiterpenoid compounds are associated with the
following plant species: Farnesol (Cymbopogon species), β-nerolidol (Citrus aurantium),
α-humlene (Humulus lupulus), Zingiberene (Zingiber officinale), β-Santol (Santalum album),
artemisinin (Artemisia annua), nootkaton (Citrus paradisi), costunolide (Saussurea costus),
and parthenolide (Rosmarinus officinalis) [50].

3. Analytical Platforms for Terpenoids
3.1. Chromatographic Techniques

A number of methods used for analyzing terpenoids have already been developed; the
most common approach is chromatographic analysis, specifically GC-MS or LC-MS. Com-
pounds of monoterpenoids and sesquiterpenoids were determined by various methods
such as GC-MS, GC-MS/MS, GC-FID (GC-Flame Ionization Detection), and GC-GC [51].
Each method has its own advantages and disadvantages. The main advantage of using
GC-MS is that it is sensitive and robust, and also capable of routinely and reproducibly
measuring hundreds of analytes across thousands of samples. Among the different meth-
ods, the best one for analyzing terpenes is solvent extraction followed by GC-FID analysis.
The FID is a powerful instrument for quality control because of its low cost, accuracy, and
simple interface. But the main disadvantage is that it provides little information other than
the retention time. For better identification and characterization, various types of columns,
dimensions, and oven programs were used (Table 1) [52–59]. Despite this, the optimum GC
detector for terpene analysis is still unknown. The column ZB-5 PLUSTM is used selectivity
for high temperature limitations, allowing for a high resolution of essential terpenoids.
Phenomenex TM groups that used this column in GC-FID identified 33 cannabis-derived
primary and secondary terpenes [56]. Another reliable method for determining terpenoids
is HS-GC-FID. Headspace sampling is a technique that involves heating a solid or liquid
sample inside a sealed vial (which converts the volatile substance to the gas phase). This
approach increases column lifetime and minimizes inlet maintenance by preventing non-
volatile material from entering the GC system. Apart from the aforementioned approaches,
the use of GC-MS, another frequently used technique, has the additional advantage of
spectral peak identification to ensure that selection is accurate. However, it may not be
the optimal detector for terpene analysis due to the structural and functional similarity of
terpene class molecules. Moreover, GC-MS provides a different level of sensitivity. GC-MS
with high-temperature headspace sampling was used to quantify selected terpenoids using
a TG-624 SilMS column [53]. The separated constituents were tentatively identified by
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comparing their mass spectra with those in the available MS library such as: Wiley, Flavors
and Fragrances of Natural and Synthetic Compounds (FFNSC) and NIST08 (National
Institute of Standards and Technology, Gaithersburg, MD, USA) and by comparing their
retention indices (RIs) with literature values. Each constituent was quantified based on
the comparison of its peak area with that of the internal standard, and the contents are
expressed as ng/g FW. Despite the advantages of various GC methods, the main disadvan-
tage is that degraded chemicals cannot be quantified effectively. In this case, researchers
prefer LC-MS/MS for the characterization of degraded chemicals such as GPP and FPP.
It is challenging to isolate these compounds using HPLC due to the ionic nature of the
phosphate groups. MS, on the other hand, has an adequate sensitivity and specificity.
These metabolites have been determined using HPLC-tandem MS (MS/MS) and ultra
HPLC-MS/MS [60,61]. Furthermore, obtaining the proper analytical result of terpene
analysis is a difficult task that necessitates the evaluation of a number of critical factors,
such as equipment selection, instrument parameters, and the optimization of extraction
methods.

Table 1. List of GC-MS column and oven program for terpenoid analysis.

Instrument Column Name Dimension (Length, Inner
Diameter & Thickness) Oven Program References

GC-MS DB-5MS-DG,
DB-17, VF-35

30 m × 0.25 µm ID × 0.25 µm,
30 m × 0.25 µm ID × 1.0 µm 60 ◦C (2 min), Ramp: 5 ◦C/min to 200 ◦C [52]

GC-MS TG-624 SilMS 30 m × 0.25 mm ID × 1.4 µm

60 ◦C (30 s), Ramp 1: 15 ◦C/min to 130
(3 min); Ramp 2 5 ◦C/min to 140 ◦C
(1 min); Ramp 3: 22◦ C/min 280 ◦C

(3 min)

[53]

GC-MS HP-5 30 m × 0.25 µm ID × 0.25 µm 50 ◦C (2 min), Ramp 1: 5 ◦C min to 180 ◦C,
Ramp 2: 20 ◦C/min to 270 ◦C [54]

GC-MS Rxi-624 Sil MS 30 m × 0.25 mm ID × 1.4 µm 80 ◦C (1 min), Ramp 1: 12 ◦C/min to 150
(1 min); Ramp 2 9 ◦C/min to 250 (1 min) [55]

GC-FID ZB-5 PLUSTM 20 m × 0.18 mm ID × 0.36 µm
Ramp 1: 35 ◦C to 105 ◦C 10 ◦C/min to
205 ◦C Ramp 2: 15 ◦C/min to 360 ◦C

Ramp 3: 35 ◦C/min for 1.9 min
[56]

GC-MSD DB-HeavyWax 30 m × 250 µm ID × 1.4 µm 50 ◦C (0.75 min), Ramp 1: 80 ◦C (0 min);
Ramp 2: 240 ◦C (5 min) [57]

GC-FID VF-624 ms 60 m × 0.32 mm ID × 1.8 µm 90◦ C (1 min), Ramp 1: 15 ◦C min to
181 ◦C (3 min) [58]

GC-MS Elite-5 30 m × 0.25 µm ID × 0.25 µm 100 ◦C (5 min), Ramp 1: 20 C/min
(200 ◦C), Ramp 2: 10 ◦C/min (270 ◦C) [59]

The general process of GC-MS analysis includes the injections of extracted compounds
directly into the GC, and the separation of different components using capillary columns
or similar columns of 30 m in length or greater. Helium (99.99%), the carrier gas, will
continuously pass through at a flow rate of 1 mL/min. Throughout all GC strokes, the
oven temperature is typically set to begin at 60 ◦C and then ramped up to 160 ◦C (at an
increasing rate of 5−10 ◦C/min). Following this initial stage, the temperature is often
raised to 360 ◦C in order to elute the chemicals. Electron ionization (EI) sources were used
in the GC-MS setup, with collision energies ranging from 15 to 70 eV depending on the
target molecules. Total GC analysis time ranged from 2 to 50 min. Despite the similarity
of several terpenes MS spectra, further identification was performed using the retention
index. The retention indices for the chemicals detected in each sample were determined
using an n-alkane standard analyzed on the same GC–MS instrument under identical GC
conditions [52–59]. Here, metabolic profiles of monoterpenoid (linalool, limonene, and
alpha-pinene) and sesquiterpenoid (costunolide, parthenolide, and trans-caryophyllene)
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groups, injected individually at a concentration of 100 µg/mL in GC-Q-Orbitrap-MS, are
shown in Figure 2.

Figure 2. GC-Q-Orbitrap-MS profiling of three major standard compounds from monoterpenoids (alpha-pinene, linalool
and limonene) and sesquiterpenoids (trans-caryophyllene, costunolide and parthenolide).
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3.2. Metabolic Profiling of Plant Terpenoids

In classic plant biotechnology, the metabolomic approach is generally used for metabolic
profiling of a target set of metabolites, such as fatty acids, alkaloids, terpenes, phenolics,
etc., in plant physiology and genetic research, along with other tools including genomics,
transcriptomics, and proteomics [62]. Different analytical approaches were employed to
determine the metabolomic compounds, and were utilized to estimate targeted metabolites
such as NMR, GC-MS, LC-MS, and CE-MS. In plant extracts, there are no specific chemical
technologies for the identification of monoterpenoids and sesquiterpenoids, unlike for
other secondary metabolites such as triterpenes, carotenoids, phytosterols, flavonoids, and
other primary metabolites [63]. Volatile compounds can be classified as endogenous or
emitted. Solvents such as hexane, pentane, diethyl ether, dichloromethane, chloroform,
ethyl acetate, and solvent mixtures can be used to extract endogenous volatiles. The use
of an organic solvent has the advantage of reducing the activation of enzymes, which
may alter the original composition of volatile compounds. A solid-phase extraction (SPE)
column has been used in some cases to remove nonvolatile compounds from the organic
solvent extracts. On the other hand, static headspace sampling techniques such as solid
phase microextraction, monotrap, and a dynamic headspace sampling system have been
used for emitted volatiles [64]. Earlier studies of terpenoid metabolite profiling from dif-
ferent plant species are as follows: twenty-three terpenes were recently analyzed using
different accelerated solvent extraction (ASE) methods [65]. In a comprehensive analysis of
terpenes and terpenoids in medicinal cannabis biomass, a total of 49 distinct individual
compounds were detected [52]. Using 12 cannabis samples, 30 terpene compounds were
detected in another study [66]. Nguyen et al. used a robust testing method to quantify 30 se-
lected terpenoids in dry plant materials, with 30 monoterpenoids and sesquiterpenoids
quantified [53]. Using a solid-phase microextraction method, 28 terpenes were identified
and quantified in Muscat grape cultivars [67]. In another study of Citrus medica (finger
citron), a total of 62 volatiles were detected, among which monoterpenoid limonene and γ-
terpinene were most abundant [68]. The different developmental stages of eight Artemisia
plants were analyzed by GC-MS profiles, which consisted of 40–90% of monoterpene and
sesquiterpene derivatives [54]. Another study comparing the terpene profiles of four im-
portant fruits (gooseberry, crab apple, cherry silver berry, and scarlet haw-thorn) identified
79 terpenoid compounds [69]. Three different extraction methods were used, and a total of
81 volatile compounds were identified in Exocarpium citri Grandis, around 58% of which
were terpenes [70]. Similarly, different methods were tested on Ocimum basilicum leaves
and 18 terpenoid compounds were identified [71]. Ma et al. performed metabolite profil-
ing on three different ginger (Zingiber officinale) lines containing 102 compounds, among
which 29 monoterpenoids and 47 sesquiterpenoids were identified [72]. Table 2 shows the
metabolite profiling and identified terpenoid compounds in the different plant species.
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Table 2. Identification of terpenoid metabolite compounds and analytical methods used.

Source Instrument * Method Identified
Terpenes References

Cannabis GC-MS ASE 23 [65]

Cannabis GC-MS Headspace, SPME and Liquid
injection 49 [52]

Cannabis varieties GC-MS HS-SPME 30 [66]

Cannabis GC-MS Headsapce 30 [53]

Muscat grape GC-MS HS-SPME 28 [67]

Finger Cirton GC-MS SPME 62 [68]

Fourteen Compositae plants GC-MS n-hexane 213 [54]

Goose berry, crabapple, cherry
silver berry, scarlet hawthornq GC × GC-TOF-MS SPME 79 [69]

Exocarpium citri Grandis GC-MS SP, HS-SPME & solvent
extraction 81 [70]

Basil & Tobacco GC-MS SP, Ultrasound-Assisted 18 [71]

Zinger GC-MS/LC-ESI-
MS MeOH 102 [72]

* GC-MS—Gas chromatography-mass spectrometry; GC-TOF-MS—Gas chromatography time of flight-mass spectrometry; LC-ESI-
MS—Liquid chromatography electrospray ionization mass spectrometry; ASE—Accelerated solvent extraction; HS-SPME—Headspace
solid-phase microextraction; SPME—Solid-phase microextraction; SP—Solid phase.

4. Metabolic Engineering of Terpenoids in Plants

Changing the availability of precursors is one method used to control terpenoid levels
in plants. It is possible that altering the terpenoid precursor pool alone is not enough to
elevate levels of target terpenoids, and that simultaneously engineering the downstream
genes would also be needed. In metabolic engineering, the availability of precursors is
a key concern. The level of an isoprenoid precursor that is limiting for the synthesis of
terpenoids is likely to vary depending on the plant tissue, species, and physiological condi-
tion [16]. A previous study of the metabolic engineering of monoterpenoids focused on
producing heterologous monoterpenes in spearmint, and the knocking down of limonene
synthase resulted in a huge reduction of limonene and carvone synthesis, while RNAi
plants showed an increased sesquiterpenoid level [73]. The overexpression of geranyl
diphosphate synthase small subunit 1(GPS SSU1) in Listea cubeba (Lour) plants showed
a significant increase in monoterpene levels [74]. Two potential genes in the MEP path-
way, namely, DXS and DXR, were cloned and developed in transgenic tobacco plants,
which resulted in an increased content of monoterpenoid and sesquiterpenoid linalool and
caryophyllene, respectively [75]. The co-expression of Solanum lycoperscum DXP, Arabidopsis
thaliana GPS1, and Mentha X piperita GPS SSU through transient expression in Nicotiana
benthamiana plants enhanced the production of monoterpenes such as limonene, linalool,
alpha/beta-pinene, and myrcene [76]. The monoterpene key enzyme terpene synthase
(TPS) subfamily was expressed in Osmanthus fragrans and the transient expression of leaves
exhibited a high level of linalool and trans-β-ocimene, hence TPS played an important
role in monoterpene production [77]. The development of transgenic Mentha spicata by
Agrobacterium tumefaciens mediated transformation with isopentyldiphospahte (IPP) iso-
merase, and limonene synthase gene resulted in high levels of terpenoid production [78].
The overexpression of HMG CoA reductase in Lavandula angustifolia resulted in high levels
of linalool production [79]. In another study, snapdragon (Antirrhinum majus) GPPS-SSU
was overexpressed in tomato fruits, resulting in the production of monoterpenes includ-
ing geraniol, geranial, neral, citronella, and citronellal [80]. Lucker et al. found that the
production level corresponding to three different monoterpene synthases was high in
transgenic tobacco plant flowers exhibiting three separate monoterpene synthases, but that
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the expression of endogenous linalool production was not affected [81]. In Arabidopsis,
to produce monoterpenes, the strawberry gene nerolidol synthase 1 was used, and this
resulted in the formation of linalool; this gene also encodes the dual function for the pro-
duction of monoterpenes and sesquiterpenoids [14]. In another study, Perilla frutescens
limonene synthase was introduced to tobacco plants, and limonene formation was detected
in the plastids and cytosol of transgenic plants [82]. In petunia, the overexpression of
S-linalool synthase resulted in the monoterpene production of newly formed linalool [10].
The overexpression of the S-linalool synthase gene in tomato (Lycopersicon esculentum)
resulted in high levels of monoterpenes [11]. The results of many of the studies reported to
date suggest that, in general, the direct precursor for monoterpene biosynthesis (i.e., GPP)
is largely available to introduced monoterpene synthases.

The metabolic engineering and overexpression of sesquiterpenoids is limited to certain
sources; β-caryophyllene synthase from Artemisia annua was introduced to a viral vector
and transferred into Agrobacterium, which was then agroinfiltrated into N. benthamiana
leaves and produced 26.5 mg of β-caryophyllene [83]. In an in vitro regeneration study,
sesquiterpene cyclase was transformed in the medicinal plant A. annua, and resulted in a
30% atremisinin content [84]. The co-expression of the parthenolide pathway candidate
genes was reconstituted by transient co-expression in N. benthamiana, and up to 1.4 µg of
the final product was produced [85]. The key enzyme amorpha-4,11-diene synthase was
transformed into Agrobacterium and agroinfiltrated into N. benthamiana, which resulted
in various sesquiterpene products [86]. Co-expression with different plant-specific genes,
such as feverfew germacrene A synthase (GAS), chicory germacrene A oxidase (GAO),
and chicory costunolide synthase (COS), was reconstituted and agroinfiltrated into N.
benthamiana, and results showed 60 ng g−1 of costunolide production [87]. Furthermore,
different plant species have been used successfully to produce valuable sesquiterpenoid
compounds using plant suspension cell culture technology [88,89]. Hitherto, five meval-
onate and artemisinin pathway genes were expressed in tobacco plant cell cultures using
a single vector, yielding 0.48–6.8 µg/g of artemisinin [90]. Similarly, constructing four
genes (amorpha-4,11-diene synthase, amorphadiene monooxygenase, aldehyde ∆ (13)
reductase, and aldehyde dehydrogenase) in N. tabacum leaf cells resulted in 0.01 mg/g of
artemisinic alcohol [91]. Likewise, five artemisinin biosynthesis genes were transferred
into Physcomitrella patens, which produced 0.21 mg/g of artemisinin after three days of
cultures [92]. Table 3 summarizes the overall documented list of metabolic engineering of
mono-terpenoids and sesquiterpenoids targeting genes and upregulated metabolites.

Table 3. Reports on the metabolic engineering of monoterpenoids, sesquiterpenoid targeted genes, their derivatives, as well
as their precursors and upregulated metabolites are listed.

Source Species Targeted Genes Up/Downregulated References

Monoterpenoids (C15)

Mentha Mentha spicata Limonene synthase Incresead in sesquiterpenoid [73]

Lour Litsea cubeba Geranyl diphosphate
synthase small subunit 1 Increase in monoterpene content [74]

Lilium Lilium “Siberia”

1-deoxy-D-xylulose-5-
phosphate synthase,

1-deoxy-D-xylulose-5-
phosphate

reductoisomerase

Linalool (mono), Caryophyllene
(sesqui) [75]

Mentha X piperita Nicotiania benthamiana
& Nicotiania tabacum

Geranyl diphosphate
synthase small subunit

(−) Limonene, (−)-Linalool,
(−)-β-pinene, (−)-α-pinene,

Myrcene
[76]

Sweet osmanthus Osmanthus fragrans Terpene synthase β-linalool, trans-β-ocimene,
α-farnesene [77]
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Table 3. Cont.

Source Species Targeted Genes Up/Downregulated References

Mentha Mentha spicata IPP isomerase & limonen
synthase

1,8-cineole, linalool, camphor,
terpinene, lomonene,

borneol, safranal, geraniol, thymol,
1-α-terpineol, methyl eugenol,

menthone, menthol-isomer,
thymol, piperitone

[78]

English lavender Lavandula angustifolia Linalool synthase,
HMG-CoA reductase Linalool [79]

Snapdragon Antirrhinum majus Geranyl diphosphate
synthase small sub unit

Increase in monoterpene and
sesquiterpene content [80]

Tobacco Nicotiania tabacum
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5. Synthetic Biology of Terpenoids

Synthetic biology is defined as the ‘design and building of novel biological compo-
nents such as enzymes, genetic circuits, or restructuring of existing biological system’.
Various monoterpenoids and sesquiterpenoids were synthesized over the last decade us-
ing engineered bacteria and yeast [93,94]. The most well-known example of synthetic
biology-based high value chemical production is artemisinic acid, the precursor of the
antimalarial drug arteminisin, which was synthesized in engineered Escherichia coli and
baker’s yeast, Saccharomyces cerevisiae, following ten years of optimization [95,96]. Further-
more, a specialized limonene and perillyl alcohol manufacturing system was established
in E. coli by co-expression of heterologous, codon-optimized, Staphylococus aureus, and S.
cerevisiae MVA pathway genes into E. coli with Abies grandis GPP synthase and Mentha
spicata limonene synthase genes. Optimum gene regulation and growing circumstance
resulted in a 400 mg/L limonene titre [97]. However, alternative strategies in E. coli focused
on the MEP pathway genes DXS, and because IDI was overexpressed, the resulting strains
provided a poor titre of 35.8 mg/L limonene [98]. Similarly, using Yarrowia lipolytica yeast,
sesquiterpenes (+)-nootkatone was synthesized by heterologous co-expressing genes such
as valencene synthase, nootkatone synthase, and NADPH-cytochrome P450 reductase,
resulting in 978.2 µg/L (+)-nootkatone [99]. As an application, most synthetic biology
research on monoterpenoids and sesquiterpenes has focused on the high level of produc-
tion in few compounds. However, a number of other monoterpenoids and sesquiterpenes
have been produced in E. coli or yeast, and other microbial systems by assembling and
optimizing biosynthetic pathways that contain a heterologous MVA or MEP pathway, as
well as GPP and FPP.
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Moreover, the field of synthetic biology in plants is still in its infancy. Synthetic biology
research on plants needs reliable and effective techniques for compiling and transforming
multi-component DNA constructions, such as a promoter and terminator. Reporter gene fu-
sion is also a regular task in this field. Hence, optimizing this procedure is likely to result in
significant productivity improvements. Traditionally, the required DNA construct has been
designed using the restriction of endonuclease-mediated cleavage together with T4 DNA
ligase-mediated joining. However, this approach takes a long time, and reliability along the
sequence is not good for a large number of structures in a very efficient assembly [100–102].
Synthetic biology, which was inspired by engineering and mechanical assembly lines,
uses standardized components to construct genetic creations. By using a Type IIS cloning
system such as Golden Gate, MoClo, GoldenBraid, Loop Assembly, Fragment exchange,
and others strategies for assembling synthetic constructs, high-throughput combinatorial
libraries of synthetic constructs were easily constructed [103,104]. Internal occurrences
of the recognition sequence are a constraint of Golden Gate Cloning. Type IIS restricted
enzymes are employed in Golden Gate Cloning. Such enzymes only cut at a single site
beyond their recognition-binding site sequence. BsaI detects the sequence 5′-GGTCTC-3′.
Each fragment that will be integrated into the target vector is bounded by BsaI sites in the
usual cloning process. [105]. Many of the reports included in the parts kit are also appli-
cable to non-plant species. Such parts apply directly to multiple systems. Combinatorial
pathway reconstruction includes all of the vector backbones and sequences needed for
domesticating additional sequences and assembling them into single and multigene binary
constructs [106]. These types of constructs are widely utilized in synthetic biology, and are
a vital part of combinatorial bioengineering in plants. Additionally, with the emergence
of CRISPR-Cas9 technology, large scale genome editing has become more feasible and
affordable. All of these technological developments have largely eliminated the bottleneck
associated with multi-gene transfer in plants. The development of new transformation
technologies to generate stable transformed vector and cell lines with multiple constructs
should be a high priority for commercial success in sustainable plant terpenoid metabolite
production using synthetic biology approaches. Together, these tools will improve the
bio-industrial production of monoterpenoids and sesquiterpenoids.

6. Terpenoids Pharmacological Activity

Terpenoids have been extensively utilized as raw materials in medicines because they
have anti-inflammatory, antitumor, antiviral, antibacterial, and antimalarial properties, and
they have the ability to increase transdermal absorption, prevent and cure cardiovascular
disease, and exhibit hypoglycemic properties.

6.1. Monoterpenoids

Monoterpenes are C10 terpenoids produced from plastids that have high volatility.
As a result, they are often found in plant essential oils. Below, we describe the three major
classes of monoterpenoids (linalool, limonene, and alpha-pinene) with well-documented
pharmacological properties.

6.1.1. Linalool

Linalool (C10H18O), also known as 3,7-dimethyl-1,6-octadien-3-ol, is an acyclic monoterpene
tertiary alcohol found in the essential oils of various plant species [107]. Linalool is the
primary element of various essential oils, which have been shown to have a range of biolog-
ical activities, including antibacterial as well as anti-plasmodial properties [108]. Linalool
has been shown to have anti-hyperalgesia, anti-inflammatory, and anti-inociceptive prop-
erties in a variety of animal models [109]. The anti-oxidant properties of Cinnamomum
osmophloeum (Lauraceae) oil scavenged the DPPH radical (IC50 value: 29.7 g/mL), and this
action was linked to the main component linalool, which made up 73% of the whole [110].
In the traditional medicinal system, different species of linalool and linalyl acetate are
utilized to alleviate symptoms and treat many chronic and acute ailments [111]. Linalool-
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producing species have been shown to have anti-inflammatory properties and a peripheral
analgesic impact [112,113].

6.1.2. Limonene

Limonene (C10H16)—(R)-4-Isopropenyl-1-methylethenyl-cyclohexene is a monocyclic
monoterpene found in a variety of plants and a common essential oil component of
aromatic plants [114]. Limonene has significant uses in cosmetics, soft drinks, and a
variety of flavoring products. It has received increased interest due to its anticancer,
antimicrobial, toxicity, and antiparasitic activities, among others [114]. Dabbah et al.
reported the antimicrobial activity of pure limonene and the oil to be extremely effective
when comparing the inhibitory impact of the essential oils from the fruits of lemon, orange,
mandarin, grapefruit, and d-limonene [115]. According to Keinan et al., the anti-oxidant
activity of limonene may readily saturate the pulmonary membrane, and therefore protect
lung cells against both endogenous and exogenous ozone [116].

6.1.3. Alpha-Pinene

Pinene (C10H16)—(1S,5S)-2,6,6-Trimethylbicyclo (3,1,1) hept-2-ene—is a bicyclic monoterpene
found in essential oils of pine (coniferous trees) [117]. Pinene has a wide range of biological
activities, which means it has a wide range of applications, including in fungicidal agents,
flavorings, perfumes, and antiviral agents [118]. Due to its toxic effects on membranes,
pinene is also employed as an antibacterial agent [119]. Furthermore, pinene has been
shown to suppress breast cancer and leukemia [120]. Moreover, pinene has potential as a
natural medicine; for example, it is particularly flexible in the synthesis of polymers [121].

6.1.4. Others

Several p-menthane monoterpenoids of pharmacological relevance are found in the
genus Mentha (Lamiaceae). (−)-Menthol, a key component of the essential oil of pepper-
mint (Mentha × piperita) since the 1950s, has been recognized to serve as a full agonist of
the CMR1 (Cold and Menthol Receptor 1) [122]. Cannabinoids were first used to describe a
group of prenylated phenolic substances found in Cannabis spp. (Cannabaceae) but now
comprise any ligand capable of interacting with human cannabinoid receptors; specifically,
this includes endogenously-generated cannabinoids with no molecular resemblance to
their plant-derived, terpene phenolic counterparts [123]. Cannabinoids, like p-menthane
monoterpenoids in the Lamiaceae, accumulate in glandular trichomes, while cannabinoid-
rich trichomes in the genus Cannabis are mainly found in the calyces and bracts of female
flowers [124].

6.2. Sesquiterpenoids

Sesquiterpenoids have been reported to exhibit many pharmacological effects, in-
cluding anti-inflammatory, antiviral, antibacterial, antifungal, antifeedant, antinocicep-
tive, antileshmanial, and cytotoxic effects; they also exhibit lymphocyte proliferation and
hydroxy radical scavenging. Below, we present three therapeutically important plant
sesquiterpenoids.

6.2.1. Costunolide

Costunolide (CT) is a well-known sesquiterpene lactone of the germacranolides class.
It is a white crystalline powder with the chemical formula C15H20O2. This chemical
was first isolated from the root of costus (Saussurea lappa Clarke), and later from lettuce
(Aucklandia lappa) and many other plant species [125]. Several studies have shown that
CT has effects on anitbladder cancer [126], ovarian cancer [127], leukemia [128], and
prostate cancer [129]. It was also reported that costunolide inhibits angiogenic responses
by blocking the angiogenic factor signaling pathway and microtuble-interacting activity of
costunolide [130,131].
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6.2.2. Parthenolide

Parthenolide (C15H20O3) is considered to be one of the main active components in
feverfew, accounting for many of the plant’s biological characteristics [132]. Recently,
feverfew has been widely used for the prophylaxis of migraine headaches, relief of the
pain and inflammation associated with arthritis, and the treatment of psoriasis [133].
As well as occurring in feverfew, parthenolide is the major anti-inflammatory compo-
nent of tansy (Tanacetum vulgare). In animal studies, parthenolide significantly alleviated
carrageenan-induced paw oedema when administered orally, with a stronger effect follow-
ing intraperitoneal administration [134].

6.2.3. Trans-Caryophyllene

Trans-caryophyllene has been reported to possess many pharmacological effects.
For example, it displays antimicrobial [135] and analgesic activity [136], and has a well-
documented anti-inflammatory activity [137,138]. Additionally, trans-caryophyllene is
an effective treatment for intestinal smooth muscle, blocking the electromechanical and
ablepharmacochemical excitation–contraction coupling [139]. Those activities mean it is
considered as a potential anti-spasmodic agent in tracheal smooth muscle.

6.2.4. Others

On the basis of dozens of carbon skeletons, sesquiterpene synthases act on FDP to
produce hundreds of sesquiterpene hydrocarbons and alcohols. Clove, ginger (gingerol),
rosemary (-caryophyllene), cannabis, sandalwood (-santalene), rain (geosmin, a bacterial
sesquiterpene), and sandalwood (-santalene) are just a few examples that are responsible
for flavors and fragrances. Under normal conditions, they are the heaviest of the volatile
terpenes (heat is usually required to generate gases from diterpene hydrocarbons). Gera-
niaceae, Lamiaceae, Myrtaceae, Rutaceae, Gingeraceae, and Cannabaceae are among the
plant families that generate sesquiterpene volatiles. It is widely acknowledged that such
essential oils are used in traditional herbal treatments, including Ayurvedic and aromather-
apy medicine [41]. Wormwood (Artemisia annua L., also known as qinghaosu, in family
Asteraceae) is a Chinese plant that produces the sesquiterpene endoperoxide artemisinin,
which has been proven to be efficient in the treatment of malaria [140]. It is more effective
than conventional antimalarials, such as quinine, against a broader range of apicomplexan
parasite life cycle stages [141].

7. Conclusions and Future Perspectives

This review mainly focused on the metabolic engineering and synthetic biology caused
by the overexpression of terpenoid compounds in plants due to their diverse and biologi-
cally significant uses for humans. Over the last few years, research has taken advantage of
advances in genomics, transcriptomics, and metabolomics, which has resulted in a greater
understanding of the pathways and regulatory mechanisms involved in the biosynthesis
of specialized terpenoids. Furthermore, the identification of regulatory factors and gene
clusters involved in the biosynthesis of terpenoids in various plant species has provided a
means to improve the biosynthesis of specialized terpenoids. Despite their several chemical
constituents, monoterpenoids and sesquiterpenoids were investigated in detail. Particular
compounds were overexpressed using single-construct vectors. Future studies should
focus on the combination of multiple biosynthesis pathway genes constructed in single
cloning vectors and agro-infiltrated in models, as well as original plants which are essential
for the mass production of terpenoids in plants over a short period of time.
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