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Abstract

Older adults experience deficits in working memory (WM) that are acutely exacerbated by the 

presence of distracting information. Human neurophysiological studies have revealed that these 

changes are accompanied by a diminished ability to suppress visual cortical activity associated 

with task-irrelevant information. Although this is often attributed to deficits in top-down control 

from a prefrontal cortical source, this has not yet been directly demonstrated. Here we evaluate the 

neural basis of distraction’s negative impact on WM and the impairment in neural suppression in 

older adults by performing structural and functional MRIs while older participants engage in tasks 

that require remembering relevant visual stimuli in the context of overlapping irrelevant stimuli. 

Analysis supports both an age-related distraction effect and neural suppression deficit, and extends 

our understanding by revealing an alteration in functional connectivity between visual cortices and 

a region in the default network, the medial prefrontal cortex (mPFC). Moreover, within the older 

population, the magnitude of WM distractibility and neural suppression are both associated with 

individual differences in cortical volume and activity of the mPFC, as well as its associated white-

matter tracts.

INTRODUCTION

Interactions with the external environment involve engaging with multiple, competing, 

sensory stimuli1-3. Goal-directed, attentional mechanisms orient our limited cognitive 

resources toward task-relevant information and away from task-irrelevant, distracting 

stimuli2-5. Previous studies have shown that as we age, individuals become increasingly 

susceptible to a negative impact of distracting information on a diverse set of performance 

measures, suggesting a diminished capacity to effectively filter task-irrelevant stimuli (i.e., 

the inhibitory deficit hypothesis)1,6-8. Working memory (WM) is the ability to hold and 

manipulate information in mind to guide subsequent behavior4,9,10. Consistent with the 

inhibitory deficit hypothesis, older adults often experience greater impairment in WM 

performance in the presence of irrelevant, distracting information6-8.
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When an individual is presented with task-irrelevant stimuli, the neural representation of this 

information in stimulus-selective visual cortices is suppressed via top-down control 

mechanisms9-13. The prefrontal cortex has been established as a source of this goal directed, 

top-down modulation of activity in sensory cortex that serves to bias subsequent WM 

performance14,15 Older adults exhibit a selective deficit in the suppression of sensory based 

neural activity to irrelevant information that is predictive of their WM performance 

declines6,16,17. Despite the many studies characterizing this age-related top-down 

suppression deficit9,11-13, the underlying neural mechanisms – notably the role of the 

prefrontal cortex – and the basis for individual differences within the older population that 

mediate the impact of distraction on WM performance remain elusive.

The primary goal of this study was to explore how individual differences in the structure and 

function of prefrontal cortical control regions – particularly those linked to the process of 

neural suppression – relate to differences in suppression and WM distractibility within a 

population of older adults. Recent evidence in younger adults revealed that a network of 

distributed cortical regions that are deactivated during cognitively demanding tasks (i.e., the 

default network1-3,16-19, notably the medial prefrontal cortex (mPFC)) are functionally 

coupled to visual areas that selectively process irrelevant visual stimuli 2-5,9. Moreover, 

functional connectivity between mPFC and visual cortex is predictive of the degree of neural 

suppression and WM distractibility in younger adults. Since the mPFC seems to play a vital 

role in the active suppression of task-irrelevant information, we hypothesized that a 

functional disconnection between mPFC and visual cortical regions modulates the age-

related selective suppression deficit. Although age-related alterations in the function of the 

default network, such as the mPFC, have been reported1,6-9,18-20, a link has not yet been 

established with neural suppression abilities or WM distractibility in older adults.

In the current study, healthy older adults (60-85 years old) engaged in a selective-attention, 

working memory paradigm during an MRI recording session. Both univariate and functional 

connectivity fMRI data were directly compared to a previously collected dataset from 

younger adults (18-35 years old)4,9,10,21. Moreover, high-resolution structural and diffusion-

tensor imaging (DTI) data were acquired to probe neural and behavioral relationships within 

the older group, specifically assessing if individual differences in gray-matter volume and 

white-matter integrity correlate with measures of neural suppression and WM distractibility 

in older adults. The experimental paradigm involved 5 conditions presented in blocks (Fig. 

1). In two WM conditions, sequential images of two faces or two scenes were presented 

(i.e., no distraction) and participants were instructed to remember both stimuli over a short 

delay period and then respond to a memory probe (face-memory (FM) and scene-memory 

(SM)). In the remaining three conditions, the stimuli consisted of transparent faces 

overlapped with transparent scenes. Instructions prior to each block designated which 

stimuli should be remembered, with the other stimuli serving as distractors (face-memory-

overlap (FM-O), scene-memory-overlap (SM-O)), or if the overlapping stimuli should be 

passively viewed with no memory goals (passive-view-overlap (PV-O)). The advantage of 

this design is that neural indices of top-down suppression of visual cortical activity to 

irrelevant stimuli (‘suppression’) can be extracted by contrasting activity measures from the 

overlap WM conditions with the overlap Passive View condition, and behavioral indices of 

the impact of distraction on WM performance (‘distractibility’) can be obtained by 
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comparing accuracy on overlap WM conditions with non-overlap WM conditions6-10,20. 

Results converge to show that distractibility and suppression deficits in older adults stem 

from individual differences in the structure and function of the medial prefrontal cortex.

RESULTS

Age-related Changes in Distractibility

To investigate age-related changes in WM performance, accuracy and response time (RT) 

data were subjected to a 2 × 2 × 2 ANOVA with age (Younger, Older), distraction (Overlap, 

Non-overlap) and stimulus (Faces, Scenes) as factors. Analysis of accuracy data revealed a 

main effect of age (F(1,38)=12.36, p<0.001), such that younger participants showed 

significantly better WM performance (i.e. increased accuracy) compared to older 

participants (Supplementary Table 2; Supplementary Fig. 1A). In addition, there was a main 

effect of distraction (F(1,38)=108.11, p<0.0001), such that participants exhibited better WM 

performance on conditions when stimuli were not overlapped (FM and SM) compared to 

conditions with overlapped stimuli (FM-O and SM-O). No main effect of stimulus-type (i.e. 

Faces vs. Scenes) was observed (F(1,38)=1.72, p=0.2). Furthermore, there was no 

significant interaction between distraction and age (F(1,38)=1.46, p=0.2) and there were no 

other significant interactions for accuracy data (each p > 0.2).

For the ANOVA of correct-only RT, main-effects were significant for both age 

(F(1,38)=4.08, p<0.05) and distraction (F(1,38)=72.37, p<0.0001), such that older 

participants responded more slowly for all conditions compared to younger adults and the 

participants’ responses were slowed by the presence of overlapped, distracting stimuli. No 

significant effect was observed for stimulus-type (F(1,38)=3.33, p=0.1). In contrast to 

accuracy data, a significant interaction was observed between age and distraction 

(F(1,38)=4.07, p<0.05), such that older adults showed a significantly greater impact of 

distraction on RT in the overlapped conditions vs. non-overlapped conditions compared to 

the older adults ([FMO+SMO]-[FM+SM]; t(38)=2.02, p<0.05). That is, older adults 

disproportionately slowed their responses in the setting of distraction relative to young 

adults, revealing the presence of an age-related distraction effect that impacted WM 

performance by delaying the speed of recognition. No other significant interactions for RT 

were observed (each p > 0.2).

Age-related Changes in Suppression

To evaluate age-related changes in the top-down modulation of visual processing, activity 

measures were derived by modeling encoding-period activity using a general linear model. 

Parameter estimates (beta values) were computed for correct trials only from a scene-

selective region of interest (ROI), the left parahippocampal place area, (PPA)6,9-13,21, which 

has been shown to be the most robustly activated visual cortical region for scene 

stimuli6,9,10,14. Note that the FFA was not evaluated in this study, as even younger adults do 

not display suppression in this region (shown in previous reports6,9,10,16,17,22) and thus the 

FFA does not serve as a useful region to explore age-related changes in suppression. In the 

PPA of younger participants, the data revealed that scene stimuli presented in isolation 

induced significantly greater activity than face stimuli presented in isolation (bottom-up, 

Chadick et al. Page 3

Nat Commun. Author manuscript; available in PMC 2014 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stimulus-driven effect) (SM > FM: t(21)=7.12, p<0.0001) (Fig. 2A). In addition, there was a 

significant effect of top-down modulation, such that all three overlapped conditions revealed 

significantly different levels of activation depending on task goals: enhancement of PPA 

activity when scenes were relevant compared to passive-view baseline (SM-O > PV-O; 

t(21)=3.33, p<0.005), and significant suppression of PPA activity when scenes were 

irrelevant compared to baseline (FM-O < PV-O; t(21)=2.34, p<0.05). These three levels of 

activation (SM-O > PV-O > FM-O) represent a pure, top-down effect because bottom-up 

information was constant throughout the task. Moreover, the magnitude of the effects for the 

overlapped conditions fell between the levels attained in pure conditions (SM > SM-O > 

PV-O > FM-O > FM, p<0.05).

PPA data from the older participants also showed selectivity for scenes (SM) compared to 

faces (FM), such that scenes elicited a greater response (Fig. 2B; SM > FM: t(17)=7.95, 

p<0.0001), displaying the bottom-up selectivity of this region. In addition, older participants 

demonstrated neural enhancement when overlapped scenes were task-relevant compared to 

passive (SM-O > PV-O: t(17)=3.96, p<0.001). However, there was no significant top-down 

suppression when scenes were task-irrelevant compared to passive (FM-O < PV-O: 

t(17)=0.10, p=0.9). Since the current experimental paradigm included a direct measure of 

PPA bottom-up stimulus selectivity (i.e. SM vs. FM), the top-down effects (SM-O vs. PV-O 

vs. FM-O) can be normalized by each participant’s stimulus selectivity. When the measure 

of suppression (PV-O – FM-O) was expressed as a percentage of stimulus selectivity (SM – 

FM) there was still no significant level of suppression for older participants (t(17)=0.76, 

p=0.5), while enhancement was significant (t(17)=2.27, p<0.05).

Univariate data from the PPA were directly compared between younger and older 

participants using a 2×3 ANOVA with age and conditions (overlapped stimuli FM-O, PV-O, 

and SM-O) as factors. Analysis revealed a main-effect of condition (F(2,76)=27.23, 

p<0.0001), but not of age (F(2,38)=0.02, p=0.9). However, a significant interaction was 

observed between age and condition (F(2,38)=3.59, p<0.03). Post-hoc analysis revealed that 

younger and older participants did not show significant differences in enhancement at the 

group level (Fig. 2C, SM-O > PV-O: t(38)=-0.68, p=0.5), even when normalized for 

differences in bottom-up selectivity (t(38)=-0.45, p=0.7), but did show different degrees of 

suppression, such that younger participants showed significantly greater suppression than 

older participants (Fig. 2D, t(38)=1.83, p<0.05). This finding is consistent with a previous 

study demonstrating a selective age-related suppression deficit, wherein older participants 

exhibited diminished suppression of task-irrelevant visual stimuli in the setting of preserved 

enhancement6,9,11-13,23,24. Importantly, this age-related selective suppression deficit exists 

even when normalized for differences in bottom-up stimulus selectivity (t(38)=1.92, 

p<0.05), demonstrating that the observed effect is not driven by a loss of visual association 

cortex (VAC) selectivity in aging9,22,25.

Age-Related Changes in the Suppression Network

To investigate age-related changes in functional brain networks that are associated with 

neural suppression (‘the suppression network’), functional connectivity maps were 

generated and compared across age groups. Capitalizing on trial-by-trial variability, whole-
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brain functional connectivity maps were assessed by correlating activity from the left PPA 

seed region with voxels from the rest of the brain9,23,24. Regions that are highly correlated 

with a seed region across trials are presumed to be functionally connected, thereby defining 

large-scale networks associated with activity modulation within those regions. A 

suppression network map was generated by contrasting the PPA connectivity maps obtained 

from the FM-O and PV-O conditions (i.e., comparing the condition when scenes were task-

irrelevant to the condition when there were no top-down attentional demands)9,16,17,25-27.

As previously reported in younger participants, the suppression network (FM-O > PV-O) 

includes the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), 

retrosplenial cortex (ReSp), and bilateral parietal cortex (PC), which overlaps with the 

classically described default network9,18,28,29 (Fig. 3A, Supplementary Table 3). However, 

this same analysis in older participants did not reveal the mPFC to be a node in the 

suppression network, although PCC and, to some extent, bilateral PC connectivity were 

present (Fig. 3B, Supplementary Table 3). A difference in PPA-mPFC connectivity between 

younger and older participants was confirmed to be significant by a whole-brain contrast 

between younger and older data (Fig. 3C, Supplementary Table 3). PCC and right PC 

functional connectivity with the PPA did not show age-related differences, although the left 

PC did. Interestingly, older adults did show a significant increase in functional connectivity 

between the PPA and supplementary motor area (SMA) and the PPA and left superior 

parietal lobule. These network changes may represent a compensatory mechanism in the 

older brain, which is insufficient to prevent a decline in suppression abilities.

These results demonstrate that in addition to the suppression deficit in older participants, the 

suppression network is significantly altered in aging, notably the coupling between the 

mPFC and visual cortices representing irrelevant stimuli.

Age-Related Changes in the Default Network

The default network is a collection of regions that are deactivated during attentionally 

demanding tasks and have been associated with “internalized thought” processes, such as 

mind-wandering and introspection9,16,17,26,27. Interestingly, the default network has been 

shown to exhibit functional changes in aging16-18,26,28,29. For the goals of this study, it was 

demonstrated that brain regions of the default network (notably the mPFC and PCC) are 

functionally connected with visual cortical regions in a manner predictive of the degree of 

suppression of irrelevant information in the stimulus-selective visual cortex (i.e., in the 

PPA)9,16,17,26. Here, we evaluated age-related changes within default network to assess if 

these changes are consistent with our observed reduction in mPFC/visual-cortical functional 

connectivity. Default network activity modulation was derived using an independent task, 

distinct from the main experimental paradigm (see Materials and Methods), in both the 

younger and older adults, to assess deactivation patterns during an attentionally demanding 

visual n-back task relative to rest1-3,16,17,19,26,29 (Fig. 4).

Whole brain analysis of the younger participants revealed the canonical set of default 

network regions2-6,11,13,16,17,26,30, with deactivation of mPFC, PCC, and bilateral PC (Fig. 

4A), while older participants exhibited deactivation within several nodes of the default 

network (i.e., PCC, and bilateral PC), but no significant deactivation of the mPFC (Fig. 4B). 
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An across age group contrast supported the conclusion that older adults deactivate areas of 

the default network less than younger adults, consistent with previous studies1,6-8,10,19,29 

(Fig. 4C). Note that this independent analysis further positions the mPFC as an area of 

interest for age-related attentional changes, which parallels the age-related change in 

functional connectivity between the mPFC and the PPA during the selective-attention, WM 

task (Fig. 3C).

It should be noted that this analysis of default network activity identified age-based declines 

in an mPFC region (center of mass in MNI coordinates [−2 50 4]) that has 25.4% overlap 

with the age-based decline in mPFC activity identified by the suppression network analysis 

(center of mass in MNI coordinates [−4 58 0]). Therefore, these separate analyses converge 

to show age-related declines in a common subregion of the mPFC (overlapping center of 

mass MNI coordinates [−4 56 4]). To address whether the precise location of these age-

related changes in mPFC are consistent with previous reports of mPFC involvement in the 

default network, an mPFC ROI was created (7 mm radius sphere centered at Talairach 

coordinates [1 40 16]) from a previous report of age-related declines in default-mode 

activity 31. Default mode activity was averaged within this mPFC ROI for each participant 

and compared between the two age groups. Confirming our previous analyses, older adults 

exhibited less mPFC default mode deactivation (t(38)=2.22, p<0.05). This result extends our 

previous findings to show consistency with prior reports regarding the mPFC location of this 

age-based decline in default mode processes.

Relationship Between Distractibility and Suppression

To capitalize on within-group heterogeneity of the older population to explore relationships 

between individual differences in performance and neural measures, across-participant 

regression analyses were performed between the magnitude of suppression (PPA activity in 

PV-O – FM-O) and distractibility (WM Accuracy in FM – FM-O) in the older cohort. This 

analysis revealed a significant negative correlation (Fig. 5: r= −0.70, p<0.001), such that 

those individuals who least suppressed the irrelevant scenes exhibited the greatest impact of 

distraction on WM accuracy for faces. No similar relationship was revealed for WM RT (r= 

−0.01, p<0.99). This result supports previous data showing that successful suppression is 

critical for distraction resistant memory in older adults4,6,9-11,13,20,30. This correlation was 

not significant in younger participants (r= −0.22, p=0.3), consistent with previous 

studies6-8,10,32 and was significantly different across age-groups (p<0.05). However, this 

may be due to near ceiling performance in younger adults, as a relationship between WM 

performance and top-down modulation of visual cortical activity has been shown in other 

studies of younger adults9-13,20,33-35, including a relationship specific to 

suppression14,32,36,37.

To assess whether the age-related decline in PPA suppression is reflective of a more general 

cognitive decline, additional across-participant regression analyses in older adults were 

conducted between the magnitude of suppression and neuropsychologial data (listed in 

Table S1). This analysis revealed no significant correlations between PPA suppression and 

data from any neuropsychological test (each comparison p > 0.5, corrected). This suggests 
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that age-based declines in task-related WM performance are more likely attributed to a 

selective suppression deficit to distraction rather than generalized cognitive changes.

Gray Matter Relationship with Distractibility and Suppression

Older adults exhibit reduced gray-matter volume and thickness compared to healthy, 

younger adults6,16,17,33-35,38,39, which have been shown to relate to cognitive 

impairment9,11-13,36,37,40,41. We used voxel-based-morphometry (VBM)16-19,31,38,39 and 

whole-brain, across-participant regression analyses to assess the relationship of gray matter 

volume with distractibility and suppression in older individuals. The WM distractibility data 

demonstrated a prominent correlation with the volume of gray matter in the mPFC 

(corrected for multiple comparisons), such that older adults with the least mPFC gray matter 

volume (MNI coordinates: [−2,62,14]) exhibited the greatest impact of distraction on WM 

performance (Fig. 6A). The suppression analysis also revealed a parallel finding, such that 

reduced cortical volume within the mPFC (MNI coordinates: [2,62,2]) was associated with 

reduced suppression of activity within the PPA in the presence of irrelevant scenes (Fig. 

6B). Although we report different coordinates for the center-of-mass of these mPFC 

clusters, there is significant overlap between these mPFC regions at the group level. Taken 

together, these results reveal a dependency on cortical volume of the mPFC in older adults 

to resist the negative influence of distraction on WM performance, as well as to effectively 

engage top-down suppression mechanisms. Interestingly, although the mPFC is one of 

several nodes comprising the canonical default network, it was the only default network 

region that was revealed in these analyses.

White Matter Relationship with Distractibility and Suppression

Changes in the integrity of white-matter pathways have been observed to occur in normal 

aging9,40-43 and are associated with age-related cognitive deficits9,18-20,31,44-47. To 

investigate the relationship between white matter and distractibility and suppression across 

older individuals, diffusion tensor imaging (DTI) data were acquired and processed using a 

tract-based spatial statistical approach (TBSS) to analyze the fractional anisotropic (FA) 

data9,21,31,42,43. When TBSS-normalized FA data were regressed against the WM 

distractibility index, a significant correlation was found with several white matter tracts, 

such that older adults with the lower FA (i.e. decreased white-matter integrity) in prefrontal 

calossal fibers were more susceptible to the negative impact of distracting stimuli on WM 

performance (Fig. 7A). This frontal white-matter tract has previously been shown to be 

associated with age-related cognitive decline6,9,10,20,44-47. White-matter integrity was also 

positively correlated with suppression indices in the superior longitudinal fasciculus (SLF) 

in the older adults, such that those participants with lower FA levels exhibited lower levels 

of suppression (Fig. 7B). Interestingly, this pathway lies between the mPFC and PCC (two 

regions of the suppression and default networks). Moreover, decreased SLF integrity has 

been shown to be correlated with decreased executive function and default network function 

in older adults6,9,10,21,31,48.

Suppression Network Relationship with Distractibility and Suppression

An analysis to investigate if the degree of functional connectivity within the suppression 

network was predictive of distraction and suppression levels revealed no significant 
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correlation in older adults. Interestingly, previous results demonstrated that functional 

coupling between the mPFC and the PPA in the setting of suppression was predictive of the 

magnitude of both WM distractibility and suppression in younger adults6,9-11. This 

relationship was seemingly disrupted in older participants, i.e. increased PPA-mPFC 

coupling was not predictive of an older participant’s degree of PPA suppression (no regions 

survived a whole-brain analysis using p<0.05 threshold, corrected for multiple 

comparisons).

Default Network Relationship with Distractibility and Suppression

To evaluate if age-related dysfunction of activity modulation in the default network was 

related to the described neural and performance distraction effects on the WM task, across-

participant regression analyses was performed between WM task-induced mPFC 

suppression (measured via the index: PV-O activity – FM-O activity) and distractibility and 

suppression indices for each age group. The distractibility analysis revealed a significant 

relationship in older adults, such that those individuals who exhibited less task-induced 

mPFC suppression showed a greater impact of distraction on WM performance (Fig. 8A: r= 

−0.50, p<0.03). This relationship was not significant in younger participants (r= −0.23, 

p=0.3) but did not significantly differ between age groups (p=0.1). For the suppression 

analysis, older adults again showed a significant relationship, such that those participants 

who exhibited less mPFC suppression also showed less PPA suppression (Fig. 8B: r=0.54, 

p<0.02). This correlation was also not significant in younger adults (r=0.14, p=0.5), but was 

not significantly different between age groups (p=0.1). Taken together, these results 

demonstrate a link between mPFC function, WM distractibility distraction and PPA 

suppression in older adults.

DISCUSSION

The present study was designed to identify an underlying structural and functional neural 

basis for the impact of distraction on WM performance and the deficit in top-down 

suppression of irrelevant information experienced by older adults. Our analytical approach 

involved a series of across age group comparisons and within-group regression analyses of 

MRI and behavioral measures to capitalize on individual differences between older adults. 

Several age-related changes consistent with previous studies were revealed: Older adults 

exhibited: 1) WM impairment6,9,10,22,48, 2) a more negative influence of irrelevant 

information on WM performance 6,11,18,19,23,24,28,29,49, 3) a deficit in the suppression of 

activity in visual cortical regions representing irrelevant information6,9,22,25 and, 4) a 

diminished ability to suppress activity in the mPFC default network region in response to an 

attentionally demanding task 1,9,18,19,23,24,28,29,49-51. Also, consistent with previous 

findings, older adults who exhibited less suppression of visual cortical activity associated 

with task-irrelevant information experienced a more negative impact of distraction on WM 

performance6,9,16,17,25-27. Importantly, several novel results were obtained: 1) Older adults 

exhibited an alteration in functional connectivity of the suppression network relative to 

younger adults, notably a lack of coupling between visual association cortex and mPFC. 2) 

Those older adults with diminished task-induced mPFC suppression exhibited less 

suppression of irrelevant face information in the PPA and a greater impact of distraction on 
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face WM performance. 3) The magnitude of both PPA activity suppression and WM 

distractibility were correlated with gray-matter volume of the mPFC, such that older adults 

with lower volume showed greater WM distractibility and lower levels of suppression. 4) A 

similar relationship was observed for white matter integrity in prefrontal regions, such that 

reduced FA values in these pathways were correlated with increased WM distractibility and 

decreased suppression. Together, these results reveal a novel association between structural, 

functional, and behavioral measures in older adults, providing converging evidence that 

anatomical and physiological differences between older individuals in the mPFC, and 

associated fiber tracts, are associated with the impact of distraction on WM and the neural 

suppression of irrelevant information.

One prominent view of cognitive aging maintains that older adults exhibit a diminished 

ability to filter task-irrelevant, distracting information (inhibitory deficit 

hypothesis) 1,9,13,18,28,29,50,51. Results from a previous experiment from our lab using 

sequentially-presented face and scene stimuli, offered a neurophysiological basis for this 

hypothesis by revealing a selective suppression deficit in stimulus-selective visual cortices 

of older adults6,9,12,16,17,26,27. Using electroencephalography, the suppression deficit we 

showed this occur at very early stages of visual processing11,13,16-18,26,28,29, even if 

predictive information9,12,16,17,26,52,53 or extra time to prepare for a distractor11,22 was 

available. Here, we extend these findings by showing that the suppression deficit is present 

in older adults even when they are confronted with distracting stimuli that spatially and 

temporally overlap with task-relevant stimuli. This shows that simultaneous demands for 

visual processing resources that likely engage biased-competition mechanisms of 

suppression6,52,53 do not resolve this age-related deficit.

The design of the present study further clarified the top-down nature of the suppression 

deficit. Others have revealed that visual cortical areas become less stimulus-selective in 

older adults9,22. Although it seems unlikely that such a change would be the basis of a 

selective deficit in suppression that occurs in the setting of preserved neural enhancement of 

relevant information, this possibility could not be directly assessed with previous 

datasets6,19,31,34,54,55. In the current study, conditions were included that contained no 

distracting information (FM and SM). Thus, top-down effects (FM-O vs. PV-O vs. SM-O) 

could be normalized for bottom-up differences in stimulus representation (FM vs. SM) to 

determine if the age-related suppression deficit occurred through top-down mechanisms. 

Analysis revealed that the suppression deficit was observed even when normalizing for 

stimulus processing levels in the absence of distraction, supporting the conclusion that the 

age-related suppression deficit is due to changes in top-down modulation.

Of note, WM RT exhibited differences in distractibility between age groups while WM 

accuracy correlated with PPA suppression in older adults. Although this could reflect how 

different types of variance influence these statistical test results (i.e., across group ANOVA 

vs. within group regression), it might be argued that accuracy and RT reflect independent 

aspects of WM performance, thereby creating a disconnect between the observed PPA 

suppression deficit in older adults and age-related declines in WM performance. To address 

this, a regression analysis was conducted across all participants between distractibility 

measures of accuracy and RT. Results showed a significant correlation between these 
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measures (r=0.31, p=0.05), supporting previous reports that suggest accuracy and RT are not 

independent measures of WM performance 56,57. Moreover, it should be noted that both age 

groups exhibited declines in WM accuracy due to distraction, and that older adults were less 

accurate overall. Therefore, older adults may have disproportionately slowed their responses 

in the setting of distraction in order to maintain accuracy, which was already deficient 

relative to younger adults.

Importantly, the present results offer novel evidence for a role of the mPFC in distractibility 

and suppression abilities in older adults: 1) An age-related alteration in the suppression 

network prominently involves the mPFC (Fig. 3, Supplementary Table 3), 2) Activity 

regulation in regions of the default network, notably the mPFC, is compromised in aging 

(Fig. 4), 3) Activity suppression in this region predicts WM distractibility and neural 

suppression of irrelevant information in older adults (Fig. 8), and 4) The structural integrity 

of the mPFC and its white matter connections are associated with individual differences in 

inhibitory abilities in the older population: i.e., across-participant regression analysis 

revealed significant correlations between WM distractibility and neural suppression and 

mPFC gray matter volume (Fig. 6) and FA in underlying white matter (Fig. 7). Although 

this data is correlational and does not address whether structural changes in aging are causal 

of observed functional and behavioral effects, we hypothesize that gray and white matter 

structural changes precede functional changes and that this induces performance alterations; 

i.e., increased distractibility. Of note, we are not claiming that the role of the mPFC in these 

processes is the result of the aging process. Indeed, we have previously demonstrated a role 

of the mPFC in distractibility and suppression of irrelevant information in younger 

adults9,19,28,29,49,58. In the context of other studies that have shown the mPFC and 

underlying white matter are sensitive to age-related changes19,31,34,54,55,59, we hypothesize 

that alterations in the integrity of this region and its distributed networks occurs to varying 

degrees in older individuals resulting in a suppression deficit and distractibility that exceeds 

younger adults. Future research will be conducted to understand the root cause of the 

reported individual variability. In addition, exploring the progression from structural to 

functional to behavioral changes is critical for a comprehensive characterization of age-

related cognitive changes and may be best accomplished via longitudinal studies.

Although these data reveal a novel role of the mPFC in cognitive aging, alterations in this 

brain region in older adults have been reported. From a functional perspective, there are 

consistent descriptions that older individuals do not suppress mPFC activity during 

externally-directed tasks to the same degree as younger adults, most notably during more 

demanding tasks, and this has been associated with performance deficits on those 

tasks18,19,28,29,49,58. These mPFC changes are often considered to be reflective of more 

widespread, age-related default network dysfunction58,59. Functional connectivity between 

the mPFC and other regions of the default network during tasks are reduced in older 

adults18,31, and this has been related to disrupted cognitive performance58,60 and 

compromised white matter integrity31,61. Consistent with this, the default network as 

assessed by resting state functional connectivity is also diminished in aging, and this is 

associated with cognitive deficits27,60,62, although this may depend on the method 

used16,27,61,63. The current findings are supportive of these emerging trends in the literature 
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that reveal functional and structural dysfunction of the mPFC and its network connections in 

older adults, and extend them to deficits in the critical domain of inhibitory function (both 

neural measures and behavioral consequences).

A role of the mPFC in the age-related suppression deficit is consistent with recent findings 

that this region serves as a prominent node of the suppression network in younger adults, 

and that the degree of functional coupling between the mPFC and visual cortices is 

predictive of the neural suppression of task-irrelevant information. Accumulating evidence 

suggests that the default network is related to introspective or internalized cognitive 

processes, such as mind-wandering27,62,64 and retrospective and prospective 

memory16,27,62,63. Activity in default network, notably the mPFC 18,19,26,28,29,64,65, is 

increased during these processes18,27,31,62,66, while they are deactivated during externally 

directed tasks9,18,19,26,28,29,65, possibly to reduce the negative impact of internal distraction. 

Consistent with this notion, studies have found that the degree of deactivation and fidelity of 

this network in aging is predictive of performance18,31,66,67. We interpret the finding of a 

relationship between the suppression network and default network in younger adults, 

characterized as correlated activity modulation between mPFC and visual cortical areas that 

represent irrelevant stimuli, as evidence that suppression of external, distracting stimuli is 

coupled to the inhibition of internally-generated, distracting thoughts6,9,32. In other words, a 

common mode of suppression is engaged for interference with task goals, whether it is 

present in the internal or external environment. The current finding suggests that dysfunction 

of the default network in aging, particularly the mPFC, is associated with a disturbance of 

this relationship, resulting in greater WM distractibility and impaired neural suppression in 

agreement with others67.

The results of the present study support previous reports that demonstrate successful 

suppression of task-irrelevant information is associated with better WM performance in both 

younger and older adults6,32,68. Here we provide evidence linking individual differences in 

mPFC function and structural integrity with this relationship in older adults. More generally, 

these results serve to bridge the literature of inhibitory deficits and default network 

dysfunction in older adults.

Methods

Participants

Functional and high-resolution anatomical MRI images were obtained from 23 healthy 

younger participants (ages: 18-34, mean: 23.7, females: 11) and 20 healthy, older 

participants (ages: 62-81, mean: 70.8, females: 11) while performing the task described 

below (see Supplementary Table 1). Participants were recruited, gave informed consent, and 

compensated monetarily as per the UCSF Committee on Human Research (CHR) approval. 

All participants had normal or corrected-to-normal vision and were taking no psychotropic 

medications. Experimental conditions were held constant for both participant groups (i.e. 

same scanning parameters, stimuli-sets, instructions). Data from the healthy, younger adults 

have been presented elsewhere and serves as a basis for this study9,69. Acquisition 

parameters and experimental design were held constant between older and younger datasets. 

One younger (31 year old male) and one older participant (65 year old male) were excluded 
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from all analyses due to excessive motion artifacts (> 3 mm) within the scanner. 

Additionally, data from one older participant (70 year old male) was removed from analysis 

due to an inability to complete all behavioral blocks because of physical discomfort in the 

scanner (final total 22 younger and 18 older participants).

Neuropsychological Testing

Prior to the experiment, older adults were administered a battery of thirteen 

neuropsychological tests (see Supplementary Table 1). Participants were required to score 

within two standard deviations of age-matched control values on these tests to be included in 

the study. The neuropsychological evaluation consisted of tests designed to assess general 

cognitive function (Mini-Mental State Exam (MMSE))68, verbal learning (CVLT-II), 

geriatric depression (GDS)69, visual-spatial function (modified Rey-Osterrieth figure copy), 

visual-episodic memory (delayed memory for details of a modified Rey-Osterrieth Complex 

Figure (ROCF), visual-motor sequencing and set-shifting (trail making tests A and B), 

phonemic fluency (words beginning with the letter ‘D’), semantic fluency (animals), 

calculation ability (arithmetic), executive functioning, working memory and incidental recall 

backward digit span and digit symbol (WAIS-R).

Experimental Design

The experimental paradigm was comprised of five similar tasks in a delayed-recognition 

WM task design (Fig. 1), similar to previously published work9,10,20,21. Each task consisted 

of the same basic temporal sequence with only the instructions differing across tasks. All 

tasks involved viewing two images (Stim1, Stim2), each displayed for 800 ms (with a 400 

ms inter-stimulus interval [ISI]) followed by a 8 second period (Delay) in which the images 

were to be remembered and mentally rehearsed. After the delay, a third image appeared 

(Probe) for 1000 sec. Each participant was instructed to respond with a button press (as 

quickly as possible without sacrificing accuracy) whether or not the Probe image matched 

either of the previous two images (Stim1 or Stim2). This was followed by an inter-trial 

interval (ITI) lasting 9 seconds.

For three of the five tasks, the Stim1 and Stim2 images were comprised of both a scene and 

a face superimposed upon each other. Participants were instructed to focus their attention on 

and remember either the face or the scene, while ignoring the other. In the face memory-

overlap task (FM-O), the faces were remembered while the scenes were ignored, and vice 

versa in the scene memory-overlap task (SM-O). When the Probe image appeared, it was 

composed of an isolated face in the FM-O task, and an isolated scene in the SM-O task. For 

the passive view (PV-O) task, participants were instructed to view the overlapped images 

without trying to remember them, after which they responded to an arrow direction (in place 

of the Probe image) with a button press. In this way, the PV-O condition maintains the same 

visual characteristics as FM-O and SM-O, with only the cognitive goals being changed. For 

the other two tasks, the Stim1 and Stim2 images were composed of a single stimulus without 

any distracting/overlapping information: a face in the face memory task (FM) and a scene in 

the scene memory task (SM). The task was presented in blocks of 15-trials with the same 

condition presented for the entire block. Each condition was presented in two blocks (for a 

total of 30 trials per condition and 60 total Encode period images per condition), 
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counterbalanced in random order across all participants. Thus, 10 blocks were presented to 

each participant (2 blocks for each of the 5 conditions), and each block lasted 5 minutes.

Stimuli

All stimuli consisted of 225×300 pixel grayscale images, presented foveally, subtending a 

visual angle of 3° from a small cross at the center of the image. The face stimuli consisted of 

a variety of neutral-expression male and female faces across a large age range. Hair and ears 

were removed digitally, and a blur was applied along the contours of the face as to remove 

any potential non-face-specific cues. The gender of the face stimuli was held constant within 

each trial. Images of scenes were not digitally modified beyond resizing and grayscaling. 

For the tasks consisting of overlapped faces and scenes, one face and one scene were 

randomly paired, made transparent, and digitally overlapped using Adobe Photoshop CS2 

such that both were equally visible. Overlapped and isolated images were randomly assigned 

to the different tasks.

Localizer and Default Network

To identify the visual association cortical region maximally selective to scenes (i.e., the 

parahippocampal place area, PPA) a localizer task independent of the main experimental 

task was performed, which consisted of 14 interleaved, 12 sec blocks of 20 scenes or faces 

with a 8 sec delay between each block10. To ensure participant’s maintained vigilance, they 

were asked to press a button whenever they saw the exact same stimulus presented twice in 

a row (10% of stimuli presented). fMRI data were acquired and processed as described 

below. A contrast was created from the general linear model (GLM) ß-maps for scenes and 

faces and the most active 35 voxels (~0.390 cm3) were selected from the approximate 

anatomical location for the left PPA (lPPA)6,10,21,30. The results from this paper focused 

solely on the lPPA rather than either face-fusiform area (FFA) or the right PPA. The FFA 

does not exhibit significant suppression, even in younger adults10,16 thus previous 

experiments have utilized only the lPPA for aging studies6,16,26,30. Default network activity 

was functionally defined as regions where there was greater degree of activity during rest 

block compared to 1-back task9,16. Group-level contrasts for the default network were 

performed only on those voxels that showed task-induced deactivations. ROIs for the default 

network were defined using clusters of activity anatomically constrained to published 

coordinates of default network nodes6,16,26. It should be noted, that the default network was 

generated via univariate analysis, which technically does not reveal a “network”. However, 

the same set of default regions have also been shown via functional connectivity analysis 

during a period of a rest16.

fMRI Collection and Processing

All fMRI data were collected on a Siemens 3T MAGNETOM Treo 3T scanner with stimuli 

presented on an LCD monitor viewed in the prone position by participants using a mirror 

rigidly attached to the 12-channel head-coil. Echoplanar imaging (EPI) data were acquired 

(FA=90, TE = 25 ms, TR = 2 sec) with 33 interleaved axial slices (with a 0.5mm gap) for a 

final resolution of 1.79×1.79×3.5mm/voxel (FOV = 23 cm; 128×128 matrix). All data 

preprocessing was conducted in SPM5 (Wellcome Department of Imaging Neuroscience, 

London, England). Raw blood oxygen level dependent (BOLD) data were corrected offline 
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for slice-timing acquisition and motion-artifacts. To further ensure age-based differences did 

not arise from group differences in motion-artifacts, movement parameters (X, Y, Z,roll, 

pitch, yaw) were compared between groups for both mean offset and rate of drift (i.e., slope 

of movement parameters over time). No differences were observed between groups for any 

of the 12 comparisons (each comparison, p > 0.6, corrected). A 5mm isotropic Gaussian 

smoothing kernel was applied using SPM5 prior to modeling the data. In addition to the EPI 

data, high-resolution T1-MPRAGE images (1 × 1 × 1 mm voxel size; FOV = 160 × 240 × 

256 mm, TR = 2300 ms, TE = 3 ms, FA = 90) were acquired to aid in anatomical 

localizations of activity and to screen for any undiagnosed neurological trauma.

Region of interest (ROI) activities were calculated by modeling the encoding (including 

both stimuli and the ISI), delay periods, and probe periods in each condition using a boxcar 

function convolved with the canonical hemodynamic response function (HRF) for the 

duration of each epoch as a GLM within SPM5. It should be noted that using a canonical 

HRF for voxels in all brain regions (including those where the HRF may be a poor 

descriptor of the underlying data) in a multi-event, multi-trial design may result in brain 

activity being misattributed to activity in adjacent events38,39. However all participants from 

both age groups were modeled with the same approach, and so we do not feel this has 

impacted our conclusions. Native-space masks for each posterior ROI were created for each 

participant as described above and the estimated coefficients for encode-period activity were 

used as a measure of posterior visual associative cortical activations. Analyses focused on 

left PPA activity due to its robust measures of suppression, more so than right PPA 6,9,10,30,. 

Group-level univariate analysis was performed by normalizing each participant’s mean EPI 

image to the Montreal Neurological Institute (MNI; 2 × 2 × 2 mm voxel size) template 

image prior to Gaussian smoothing and modeling.

VBM Analysis

Gray-matter volume was modeled by normalizing participants’ T1-MPRAGE images into 

MNI-normalized space; segmented into gray-matter, white-matter, and cerebral spinal fluid 

maps, and smoothed using a 12mm isotropic Gaussian kernel in SPM5 as previously 

described23,38,39. All images were manually inspected after segmentation. Correlations were 

performed on modulated gray-matter images with sex, age, and total-intracranial volume as 

nuisance variables. Resulting images were thresholded at p<0.05 and corrected for multiple 

comparisons using the method described below.

DTI Analysis

64-diffusion tensors were acquired (in addition to one B0 image) at 2.2×2.2×2.2 mm voxel 

size, FOV: 220×220 mm, Tr=8 sec, and Te=109 ms. Images were processed using FSL 

(Analysis Group, FMRIB, Oxford, UK) specifically the FDT and TBSS software packages. 

TBSS was utilized to project all older participants’ FA data onto a mean group FA tract 

skeleton. After DTI preprocessing, analysis was performed using voxel-wise cross-subject 

statistics and adjusted for multiple comparisons using threshold-free cluster enhancement43.
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Network Analysis

Functional connectivity network maps were created for each participant as described 

previously using a beta-series correlation analysis approach23. The encode, delay and probe 

stage from each condition and every trial was modeled with its own distinct regressor within 

the GLM, although only the encode period activity was analyzed. The average value was 

extracted for each visual associative cortical ROI for each trial and these values were then 

correlated voxel-wise across the entire brain to find regions with highly revealed regions 

with co-varying activity across trials with the visual associative cortical ROI. The whole-

brain r value maps for each participant underwent a Fisher’s r to z transformation and the z-

values were then normalized to the MNI-template and post-normalization Gaussian 

smoothed (5 mm FWHM) for group level analysis. Group contrast maps were created by 

permuting across the condition grouping term (i.e. age or suppression) and averaging across 

the group using 10000 rounds of permutation70. Data was corrected for multiple 

comparisons by thresholding the p-values at 0.05 and permuting across the expected cluster 

distribution to find the expected cluster size for p < 0.05. Clusters smaller than this value 

were removed from the analysis. Only positive correlations were considered due to the 

overall positive-bias in the network analysis method23.

Whole-Brain Neural-Functional Connectivity Correlations

Correlations between each participant’s index of suppression (encode period values for the 

PPA such that FM-O > PV-O conditions) and the degree of functional connectivity between 

the PPA and every other voxel were performed on MNI-normalized images, thresholded at 

p<0.05 and corrected for multiple comparisons using the permutation method described in 

the Network Analysis section above. Similar analysis was also performed using measures of 

participants’ distractibility (WM performance on FM – FM-O).

Comparative Statistics

ANOVA’s were utilized throughout analysis using the CLEAVE (“C Language Exploratory 

Analysis of Variance with Enhancements”) software package (University of California, 

Davis) setup as mixed effects analysis (with subject as a random factor, condition as a fixed, 

within-group factor, and age as a fixed, between-group factor) and corrected using the 

Greenhouse-Geisser method. Post-hoc t-tests were corrected for multiple comparisons using 

Tukey-Kramer’s method and were two-tailed unless specified for checking an a priori 

analysis. For calculating statistical differences between groups for correlations (i.e. figures 5 

and 8), a linear regression was calculated for each group along with the standard error 

coefficients of the slope. If the two groups did not have overlapping 95% confidence 

intervals for their slopes, they were judged to be significantly different.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental Paradigm. Participants were instructed to remember both Stim1 & Stim2, then 

respond with a button press if the probe image matched either of the previous relevant 

stimuli. Participants were instructed to maintain fixation on the white crosshairs9.

Chadick et al. Page 20

Nat Commun. Author manuscript; available in PMC 2014 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Stimulus-selective visual association cortex activity. The encode period activity in the left 

parahippocampal place area (PPA) for, A) younger and B) older adults. C) Comparison of 

younger (black bars, n=22) and older (white bars, n=18) adult enhancement indices (SM-O – 

PV-O). D) Comparison of younger and older adult suppression indices (PV-O – FM-O), 

revealing a selective suppression deficit in older adults. Error bars are standard error, *p < 

0.05.
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Figure 3. 
Younger versus Older Suppression Network. A) Functional connectivity map for younger 

participants (n=22) using a PPA-seed, contrasting FM-O > PV-O (i.e., suppression network). 

B) Same as A, but for older participants (n=18). C) Contrast between younger and older 

suppression network maps. All images thresholded at p < 0.05 and corrected for multiple 

comparisons using cluster method described in Methods.
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Figure 4. 
Younger versus Older Default Network. A) Whole-brain analysis showing regions with 

significantly greater activity at rest during independent task (REST > TASK) for younger 

participants (n=22). B) Same as A, but for older participants (n=18). C) Contrast between 

younger and older participants’ default network maps. All images thresholded at p < 0.05 

and corrected for multiple comparisons using cluster method described in Methods.
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Figure 5. 
Neural behavioral correlation. Relationship Between WM Distractibility (accuracy in FM – 

FM-O) and Neural Suppression in older adults (n=18). *p<0.001

Chadick et al. Page 24

Nat Commun. Author manuscript; available in PMC 2014 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Gray Matter Volume. Relationship with A) WM distractibility and, B) Neural suppression in 

older participants (n=18). All images thresholded at p < 0.05, corrected for multiple 

comparisons.
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Figure 7. 
White Matter Integrity. Relationship with A) WM distractibility and, B) Neural suppression 

in older participants (n=18). All images are corrected for multiple comparisons and 

displayed at p<0.05.

Chadick et al. Page 26

Nat Commun. Author manuscript; available in PMC 2014 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Neural correlates. Relationship between mPFC activity suppression and A) WM 

distractibility, and B) neural suppression within the PPA for older participants (n=18). 

*p<0.03 and p<0.02, respectively.
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