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ABSTRACT
Introduction The infection fatality rate (IFR) of COVID- 19 
has been carefully measured and analysed in high- income 
countries, whereas there has been no systematic analysis of 
age- specific seroprevalence or IFR for developing countries.
Methods We systematically reviewed the literature to identify 
all COVID- 19 serology studies in developing countries that 
were conducted using representative samples collected by 
February 2021. For each of the antibody assays used in these 
serology studies, we identified data on assay characteristics, 
including the extent of seroreversion over time. We analysed 
the serology data using a Bayesian model that incorporates 
conventional sampling uncertainty as well as uncertainties 
about assay sensitivity and specificity. We then calculated 
IFRs using individual case reports or aggregated public health 
updates, including age- specific estimates whenever feasible.
Results In most locations in developing countries, 
seroprevalence among older adults was similar to that of 
younger age cohorts, underscoring the limited capacity 
that these nations have to protect older age groups.
Age- specific IFRs were roughly 2 times higher than in high- 
income countries. The median value of the population IFR 
was about 0.5%, similar to that of high- income countries, 
because disparities in healthcare access were roughly 
offset by differences in population age structure.
Conclusion The burden of COVID- 19 is far higher in 
developing countries than in high- income countries, reflecting 
a combination of elevated transmission to middle- aged and 
older adults as well as limited access to adequate healthcare. 
These results underscore the critical need to ensure medical 
equity to populations in developing countries through provision 
of vaccine doses and effective medications.

INTRODUCTION
An important unknown during the COVID- 19 
pandemic has been the relative severity of the 
disease in developing countries compared 
with higher- income nations. The incidence 
of fatalities in many developing countries 

appeared to be low in the early stages of 
the pandemic, suggesting that the relatively 
younger age structure of these countries 
might have protected them against the harms 
of the disease. More recently, however, it has 
become clear that the perceived differences 
in mortality may have been illusory, reflecting 
poor vital statistics systems leading to under- 
reporting of COVID- 19 deaths.1 2 Moreover, 
relatively low mortality outcomes in devel-
oping countries would be starkly different 
from the typical pattern observed for many 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Prior meta- analyses of data from high- income coun-
tries have shown that the COVID- 19 infection fatality 
rate (IFR) increases exponentially with age while 
seroprevalence (as measured by antibodies against 
SARS- CoV- 2) has been markedly lower for older 
adults relative to younger adults.

WHAT THIS STUDY ADDS
 ⇒ We analyse serology and mortality data from 62 
studies of 25 developing countries, and we find that 
age- stratified IFRs are about two times higher than 
the benchmark metaregression for high- income 
countries.

 ⇒ Indeed, population IFR in developing countries is 
similar to that of high- income countries, because 
differences in population age structure are roughly 
offset by disparities in healthcare access and elevat-
ed infection rates among older age cohorts.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ Our findings underscore the urgency of disseminat-
ing vaccines and effective medications throughout 
the developing world.
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other communicable diseases, reflecting the generally 
lower access to good- quality healthcare in these loca-
tions.3 4

As shown in table 1, mortality attributable to COVID- 19 
in many developing locations exceeds 2000 deaths per 
million. Of the 12 nations with the highest number of 
deaths attributed to COVID- 19, eight are developing 
countries. Furthermore, these statistics may understate 
the true death toll in a number of lower- income and 
middle- income countries. Numerous studies of excess 
mortality have underscored the limitations of vital regis-
tration and death reporting, particularly in developing 
countries.1 2 5–9 For example, recent studies of India have 
found that actual deaths from COVID- 19 were about 10 
times higher than those in official reports.2 5 Similarly, 
a study in Zambia found that only 1 in 10 of those who 
died with COVID- 19 symptoms and whose postmortem 
COVID- 19 test was positive were recorded as COVID- 19 
deaths in the national registry.10 Strikingly, the contin-
uation of that study has demonstrated the catastrophic 
impact of COVID- 19 in Zambia, raising the overall 
mortality by as much as 5–10 times relative to a normal 
year.11

There has, however, been a relative dearth of systematic 
research concerning the early experience of COVID- 19 
and the associated infection fatality rate (IFR) in devel-
oping countries. Previous evaluations have largely focused 
on assessing these patterns in high- income countries, 
where high- quality data on seroprevalence and fatalities 
has been readily available throughout the pandemic.12 13 
In particular, seroprevalence studies conducted in high- 
income countries in 2020 found low overall prevalence of 
antibodies to COVID- 19 (generally less than 10%),14 with 
much lower prevalence among older adults compared 
with younger cohorts. Analysis of these data has clearly 
underscored the extent to which the IFR of COVID- 19 
increases exponentially with age; that is, the disease is 

far more dangerous for middle- aged and older adults 
compared with children and young people.12 13 15 Two 
prior meta- analytical studies have considered variations 
in IFR by age but did not consider the possibility that IFR 
in developing locations might differ systematically from 
high- income countries due to healthcare quality, access 
and other socioeconomic factors.12 16

Objectives
1. Determine overall prevalence of COVID- 19 infection 

in locations in developing countries.
2. Assess age- specific patterns of seroprevalence in these 

locations.
3. Estimate age- specific IFRs and compare to benchmark 

values for high- income countries.
4. Investigate possible reasons for differences in popula-

tion IFR between locations.

METHODS
To perform this meta- analysis, we collected published 
papers, preprints and government reports of COVID- 19 
serology studies for which all specimens were collected 
before 1 March 2021 and that were publicly disseminated 
by 17 December 2021. The full search methodology is 
given in online supplemental appendix 1A. The study was 
registered on the Open Science Foundation: https://osf. 
io/edpwv/

We restricted the scope of our analysis to locations 
in developing countries using the classification system 
of the International Monetary Fund (IMF); that is, we 
excluded locations that the IMF classifies as ‘high- income 
countries’.17 In some contexts developing countries are 
also described as low- income to middle- income countries 
or as emerging and developing economies.

Inclusion/exclusion criteria
Our analysis only included studies that had a random 
selection of participants from a sample frame repre-
sentative of the general population.18 19 Consequently, 
studies of convenience samples—such as blood donors 
or residual sera from commercial laboratories—were 
excluded. Such samples are subject to intrinsic selec-
tion biases that may vary across different settings and 
hence would detract from systematic analysis of the data. 
Indeed, there is abundant evidence from the pandemic 
that convenience samples provide inaccurate estimates of 
seroprevalence, with assessments indicating that they are 
likely to overestimate the true proportion infected.20 21

A crucial part of our analysis entailed adjusting raw 
seroprevalence to reflect the sensitivity and specificity of 
the particular assay used in each serology study, and to 
construct credible intervals that reflect uncertainty about 
assay characteristics as well as conventional sampling 
uncertainty. Where a reported study did not include that 
information, we requested it from study authors. Other 
data needed and extracted for the analysis included start 
and end dates of specimen collection, the specific assay 
used and age- specific serology data.

Table 1 Confirmed COVID- 19 deaths as of 20 March 2022

Country
Cumulative 
deaths

Mortality rate 
per million

USA 971 162 2917.1

Brazil 657 495 3072.5

India 516 510 370.7

Russia 357 234 2448.3

Mexico 322 072 2472.5

Peru 211 865 6351.0

UK 163 658 2399.4

Italy 157 785 2613.7

Indonesia 153 738 556.3

France 141 002 2091.3

Iran 139 610 1641.9

Colombia 139 452 2720.2

Source: Our World In Data.56

https://dx.doi.org/10.1136/bmjgh-2022-008477
https://osf.io/edpwv/
https://osf.io/edpwv/
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See online supplemental appendix 1b for further 
details on inclusion and exclusion criteria.

Deaths
For locations with publicly available databases of all indi-
vidual cases, we tabulated the fatality data to match the 
age brackets of that serology study, using cumulative 
fatalities as of 14 days after the midpoint date of spec-
imen collection to reflect the time lags between infec-
tion, seropositivity and fatal outcomes. In the absence of 
individual case data, we searched for contemporaneous 
public health reports and tabulated cumulative deaths as 
of 28 days after the midpoint date of specimen collection 
to incorporate the additional time lags associated with 
real- time reporting of COVID- 19 fatalities (see online 
supplemental appendix 1d for discussion of death lags).

Matching prevalence estimates with subsequent fatal-
ities is not feasible if a serology study was conducted in 
the midst of an accelerating outbreak. Therefore, as in 
previous work,15 we estimated seroprevalence but did not 
analyse IFRs for locations where the cumulative death 
toll increased by three times or more over the 4- week 
period following the midpoint date of specimen collec-
tion. For details, see the online supplemental appendix 
1d. In instances where we were not able to match deaths 
to serology data, or there were accelerating outbreaks, we 
used this information to look at serology only.

Additionally, we extracted data on excess deaths for 
all countries that were included in our IFR analysis. 
We used two primary sources of estimates on excess 
mortality: the Institute for Health Metrics and Evaluation 
(IHME)22 and the World Mortality Dataset (WMD).1 The 
IHME produces national or regional estimates of excess 
mortality for every location included in this review, while 
the WMD has estimates for a subset of those locations. We 
then computed the ratio of excess mortality to reported 
fatalities for each location in order to assess the impact of 
potential death under- reporting, and calculated adjusted 
IFRs using excess mortality as the numerator, as well as 
the ratio between IFRs calculated using reported and 
excess deaths. We used excess mortality as it is likely to 
better represent the true burden of COVID- 19 accurately 
in developing nations.1

Adjustment for seroreversion
For those assays used in serology studies included in our 
analysis, we classified each assay’s risk of seroreversion 
(high, medium or low) based on longitudinal serology 
studies and serological analysis of prior RT- PCR posi-
tive cases. For each location for which the assay used in 
serology was classified as having high risk of serorever-
sion, we made adjustments to the data on assay sensitivity. 
See online supplemental appendix 2a for further details.

Statistical analysis
We use a Bayesian modelling framework to simulta-
neously estimate age- specific prevalence and IFRs for 
each location in our study. First, we model age- specific 

prevalence for each location at the resolution of the 
serology data reported. Then, we model the number of 
people that test positive in a given study location and age 
group as coming from a binomial distribution with a test 
positivity probability that is a function of the true preva-
lence, sensitivity and specificity, accounting for serocon-
version and seroreversion (see the online supplemental 
appendix 2B).

As in Carpenter and Gelman (2020),23 we consider 
sensitivity and specificity to be unknown and directly 
model the lab validation data (eg, true positives, true 
negatives, false positives, false negatives) for each test. 
Independent weakly informative priors are placed on 
the seroprevalence parameters, and independent, infor-
mative priors akin to those in Carpenter and Gelman23 
are placed on the sensitivity and specificity parameters. 
To avoid assumptions about the variability of prevalence 
across age within a serology age bin, we aggregate deaths 
for each location to match their respective serology age 
bins. Independent mildly informative priors are assumed 
on the age- group- specific IFR parameters.

Prevalence for a given age group and location is esti-
mated by the posterior mean and equal- tailed 95% cred-
ible interval. Uniform prevalence across age is deemed 
plausible for locations where the 95% credible intervals 
for the ratio of seroprevalence for age 60 years and older 
over the seroprevalence estimate for ages 20 years to 60 
years contains 1.

IFR calculation and comparison
We model the number of individuals at a given location 
and age group that are reported as dying of COVID- 19 
as Poisson distributed with rate equal to the product of 
the age group IFR, age group population and age group 
prevalence. For locations where deaths were reported 
separately for different age bins this model provides IFR 
estimates for specific age groups and for broader popula-
tion cohorts, including adults aged 18–65 years. For loca-
tions where death data were not disaggregated by age the 
model provides a population IFR. The model was imple-
mented in the programming language R, with posterior 
sampling computation implemented with the Stan soft-
ware package.24

To perform a meta- analysis of age- specific IFRs across 
locations, we conduct a metaregression with random 
effects. In the metaregression, the dependent variable is 
the estimated IFR for a specific age group in a specific 
geographical location, the explanatory variable is the 
median age of that particular age group, and the SD of 
each idiosyncratic error is taken from the Bayesian anal-
ysis described above. We used a random- effects proce-
dure to allow for residual heterogeneity between studies 
and across age groups by assuming that these divergences 
are drawn from a Gaussian distribution. We also allowed 
for fixed effects by location, to account for locations that 
deviate from the norm. Since the metaregression used 
IFR estimates based on reported deaths, we compared the 
location- specific fixed effects to two estimates of the ratio 

https://dx.doi.org/10.1136/bmjgh-2022-008477
https://dx.doi.org/10.1136/bmjgh-2022-008477
https://dx.doi.org/10.1136/bmjgh-2022-008477
https://dx.doi.org/10.1136/bmjgh-2022-008477
https://dx.doi.org/10.1136/bmjgh-2022-008477
https://dx.doi.org/10.1136/bmjgh-2022-008477
https://dx.doi.org/10.1136/bmjgh-2022-008477
https://dx.doi.org/10.1136/bmjgh-2022-008477
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of excess mortality to COVID- 19 deaths in each location. 
We also compared these metaregression results to a prior 
metaregression of age- specific IFR for high- income coun-
tries;15 further details are given in online supplemental 
appendix 2d and table A5. This was performed using 
the meta regression procedure in Stata V.17. Finally, we 
computed population IFRs adjusted for COVID- 19 death 
undercounting and compared these estimates to the 
proportion of well- certified deaths.

Covariates
We selected covariates that were judged likely to have an 
impact either on the IFR of COVID- 19 itself or on the accu-
racy of official data on COVID- related mortality based on 
prior research and expertise. Such covariates included 
GDP per capita and measures of healthcare capacity; 
the complete list is provided in online supplemental 
appendix 1f. Where possible, we extracted these covari-
ates at a state or regional level within a country; other-
wise, they were identified at a national level. In instances 
where a covariate was only available at the national level, 
we aggregated location- specific seroprevalence and IFRs 
by weighting each location using the square root of the 
number of serology specimens collected in that location.

RESULTS
We identified a total of 2384 study records, with 2281 
records identified from online databases and a further 
124 from Twitter, Google Scholar and a prior publica-
tion.25 After excluding 2062 records, we assessed 343 
records and determined that 97 studies satisfied the 
criteria for inclusion in the final analyses, of which 62 

studies (representing a total of 25 developing countries) 
could be used to produce IFR estimates; see online 
supplemental appendix 1c for details. The geographical 
distribution of these studies is shown in figure 1, while 
table 2 provides a list of the studies used in producing 
IFR estimates, including the specimen collection dates 
and the assay used in each study. Further details are 
provided in our GitHub repository https://covid-ifr. 
github.io/.

Seroprevalence
As shown in figure 2A and 2B, seroprevalence reached 
relatively high levels in numerous locations in developing 
countries during the time frame covered by our analysis. 
The upper panel shows estimates from studies where spec-
imens were collected between April and September 2020, 
while the lower panel shows corresponding estimates for 
the period from October 2020 to February 2021.

In most developing country locations, seroprevalence 
was roughly uniform across age strata. Figure 3 shows 
the heatmap of age- specific seroprevalence across all age 
cohorts. As shown in figure 4, the ratio of seroprevalence 
for older adults (ages 60+ years) compared with middle- 
aged adults (ages 40–59 years) is indistinguishable from 
unity in most of these locations. While many locations 
had a ratio below 1, the majority of the areas were very 
substantially above the ratio for higher- income areas 
(green shaded region), and the point estimates were 
not markedly below 1, indicating minimal difference 
in infection rates between older and younger adults in 
developing nations.

Figure 1 Map of study locations. IFR, infection fatality rate.

https://dx.doi.org/10.1136/bmjgh-2022-008477
https://dx.doi.org/10.1136/bmjgh-2022-008477
https://dx.doi.org/10.1136/bmjgh-2022-008477
https://dx.doi.org/10.1136/bmjgh-2022-008477
https://dx.doi.org/10.1136/bmjgh-2022-008477
https://dx.doi.org/10.1136/bmjgh-2022-008477
https://covid-ifr.github.io/
https://covid-ifr.github.io/
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Table 2 Included studies for infection fatality rate (IFR)

Location Date range Assay used Citation

Latin America

Argentina Buenos Aires City 10 September to 18 October 2020 COVIDAR IgG 68

  Municipality of Hurlingham 26 November to 10 December 2020 COVIDAR IgG 69

Bolivia Santa Cruz 22 August to 13 September 2020 Standard Q IgG/IgM 70

Brazil Cuiabá 16 September to 15 October 2020 DiaSorin Liaison IgG 71

  Distrito Federal 2–17 December 2020 CTK Biotech Onsite IgG/IgM 72

  Foz do Iguaçu 14 May to 9 June 2020 Proprietary 73

  Maranhao 27 July to 8 August 2020 Roche Elecsys IgG/IgM 74

  Mato Grosso 16 September to 15 October 2020 DiaSorin Liaison IgG 71

  Pitangueiras 24 August to 29 September 2020 ECO IgG/IgM 75

  Rio Grande do Sul 5–7 February 2021 University of Rio de Janeiro 76

  Sao Paulo City 1–10 October 2020 Roche Elecsys IgG/IgM 77

  Várzea Grande 16 September to 15 October 2020 DiaSorin Liaison IgG 71

Chile Santiago/ Coquimbo/Talca 26 September to 25 November 2020 Roche Elecsys IgG/IgM 78

Colombia Barranquilla 20–30 September 2020 Siemens Advia IgG/IgM 79

  Bogotá 10 October to 5 November 2020 Siemens Advia IgG/IgM 79

  Bucaramanga 27 September to 9 October 2020 Siemens Advia IgG/IgM 79

  Cali 18–28 November 2020 Siemens Advia IgG/IgM 79

  Córdoba (eight cities) 1 July to 29 October 2020 INgezim DR IgG/IgM/IgA 80

  Cucuta 5–15 October 2020 Siemens Advia IgG/IgM 79

  Ipiales 3–11 December 2020 Siemens Advia IgG/IgM 79

  Leticia 15–25 September 2020 Siemens Advia IgG/IgM 79

  Medellín 5 October to 20 December 2020 Siemens Advia IgG/IgM 79

  Villavicencio 20–30 October 2020 Siemens Advia IgG/IgM 79

Ecuador Cuenca 11 August to 1 November 2020 Standard Q IgG/IgM 81

Mexico Nationwide 18 August to 13 November 2020 Roche Elecsys IgG/IgM 82

Paraguay Asunción & Central Dept. 23 December to 16 February 2021 Beijing Kewei IgG/IgM 83

Peru Cusco Province 12–27 September 2020 Roche Elecsys IgG/IgM 84

  Iquitos, Loreto 13–18 July 2020 Orient Gene Biotech IgG/IgM 85

  Lambayeque 24 June to 10 July 2020 Coretest IgG/IgM 86

  Lima and Callao 28 June to 9 July 2020 Standard Q IgG/IgM 40

Africa

Ethiopia Addis Ababa 22 July to 10 August 2020 Core Technology IgG 87

  Dire Dawa 15 June to 30 July 2020 Abbott Architect IgG 88

Kenya Nairobi County 2–23 November 2020 Wantai IgG/IgM 89

Mozambique Maputo city 3–21 August 2020 Abbott PanBio IgG/IgM 90

Senegal Nationwide 24 October to 26 November 2020 Wantai IgG/IgM 91

South Africa Gauteng 4 November to 22 January 2021 Luminex S IgG 92

  Mitchells Plain 8 December to 31 January 2021 Wantai IgG/IgM 93

Zambia Lusaka & Ndola 4–27 July 2020 Euroimmun IgG 94

Middle East

Iran Nationwide 3 August to 31 October 2020 Pishtaz Teb IgG/IgM 95

Jordan Nationwide 27 December to 6 January 2021 Wantai IgG/IgM 96

Oman Nationwide 12–19 July 2020 DiaSorin Liaison IgG 97

Europe

Continued
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Infection fatality rates
Our statistical analysis produced age- specific IFRs and CIs 
for 28 locations, and population IFRs for those locations 
as well as an additional 27 places. The full results of this 
analysis are shown in the online supplemental appendix 
3. We obtain the following metaregression results:

 

log10(IFR) = −2.75 + 0.0478 ∗ age

(0.10)(0.0023)   
where IFR is expressed in percentage points, and the SE 
for each estimated coefficient is given in parentheses. 
These estimates are highly significant with t- statistics of 
−28.7 and 21.0, respectively, and p values below 0·0001. 
The residual heterogeneity is τ2=0.039 (p<0.0001) and 
I2=92.5, confirming that the random effects are essential 
for capturing unexplained variations across studies and 
age groups. The adjusted R2 is 91.1%. Location- specific 
fixed effects are only distinguishable from zero for three 
locations: Maranhão, Brazil (−0.50); Chennai, India 
(−0.68); and Karnataka, India (−1.29).

The metaregression results can be seen in figure 5. 
Nearly all of the observations fall within the 95% predic-
tion interval. The importance of the location- specific 
effects is readily apparent. Indeed, these effects imply 
that the age- specific IFRs for Maranhão are about 1/3 of 

the metaregression prediction, while those for Chennai 
and Karnataka are 1/5 and 1/20, respectively.

This metaregression analysis uses age- specific IFRs 
based on reported COVID- 19 deaths in each location. As 
a crosscheck, table 3 reports the ratio of excess mortality 
to reported deaths for each of these locations. For nearly 
all of these locations, the ratio is indistinguishable from 
unity; that is, reported COVID- 19 deaths are broadly 
consistent with the evidence from excess mortality assess-
ments. There were three exceptions (Chennai, Karna-
taka and Nairobi, Kenya), two of which had significant 
location- specific effects in the metaregression.

The precision of IFR estimates varied by age. At lower 
age groups, the number of deaths becomes very small, 
and thus the uncertainty is large regarding the IFR. 
Conversely, at older ages the number of infections and 
deaths can be very small in countries with extremely 
small populations of those aged over 65 years, and thus 
these estimates are also uncertain. The detailed analysis 
of age- specific IFR for each location is provided in online 
supplemental appendix figure A6.

Figure 6 shows that these age- specific IFRs are system-
atically higher than those of a prior metaregression esti-
mated using studies of high- income countries.15 That 

Location Date range Assay used Citation

Bosnia & 
Herzegovina

Republika Srpska 4 November to 16 December 2020 Wantai IgG/IgM 25

Hungary National Study 1–16 May 2020 Abbott Architect IgG 98

Poland Katowice region 1 October to 30 November 2020 Euroimmun IgG 99

Russia St. Petersburg 25 May to 28 June 2020 Genetico CoronaPass Total 21

South Asia

India Berhampur 6–6 August 2020 Roche Elecsys IgG/IgM 100

  Bhubaneswar 10–10 July 2020 Roche Elecsys IgG/IgM 100

  Chennai 17–28 July 2020 Abbott Architect IgG 101

  Delhi 1–7 August 2020 Zydus Kavach IgG 102

  Karnataka 15 June to 29 August 2020 THSTI IgG 103

  Malegaon 25 July to 20 August 2020 Karwa Kavach IgG 104

  Mumbai 29 June to 19 July 2020 Abbott Architect IgG 42

  Paschim Medinipur 27 July to 7 August 2020 ErbaLisa IgG 105

  Pimpri- Chinchwad 7–17 October 2020 Abbott Architect IgG 106

  Puducherry 10–16 September 2020 Roche Elecsys IgG/IgM 107

  Srinagar 17–20 October 2020 Abbott Architect IgG 108

  Tamil Nadu 19 October to 30 November 2020 iFlash IgG & Vitros IgG 109

Nepal Nationwide 9–22 October 2020 Wantai IgG/IgM 110

Pakistan Karachi 15–31 July 2020 Roche Elecsys IgG/IgM 111

  Lahore 15–31 July 2020 Roche Elecsys IgG/IgM 111

East Asia

China Hubei (excluding Wuhan) 10–18 April 2020 Bioscience IgG/IgM 112

China Wuhan 10–18 April 2020 Bioscience IgG/IgM 112

Table 2 Continued

https://dx.doi.org/10.1136/bmjgh-2022-008477
https://dx.doi.org/10.1136/bmjgh-2022-008477
https://dx.doi.org/10.1136/bmjgh-2022-008477
https://dx.doi.org/10.1136/bmjgh-2022-008477
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benchmark metaregression has a slope of 0.0524 (95% 
CI 0.0499 to 0.0549), and a Welch test strongly rejects the 
hypothesis of equality in the slope parameters for devel-
oping countries versus high- income countries with a value 
of p<0.0001. This figure also shows a variant of our metare-
gression, estimated using studies of developing country 
locations conducted over the same time frame as in the 
benchmark metaregression (April to September 2020) 
and excluding the three outlier locations (Maranhão, 

Chennai and Karnataka); the estimated intercept and 
slope coefficient of this variant (−2.68 and 0.0480, respec-
tively) are statistically indistinguishable from the baseline 
values shown above.

Figure 7 shows estimates of population IFR at ages 
18–65 years, adjusted for excess mortality using the ratios 
shown in table 3. To facilitate comparability across loca-
tions, these estimates use a standardised age structure 
to aggregate the age- specific prevalence and fatalities in 

Figure 2 Estimates of seroprevalence.
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each location. Corresponding estimates, using the actual 
population age structure of each location, are shown in 
online supplemental appendix figure A12.

Assessment of death reporting
For the full set of locations for which population IFR can 
be assessed, we found that the adequacy of death certifi-
cation was highly significant in explaining cross- country 
variations. As shown in figure 8, the median value of popu-
lation IFR was about 0.5% in countries where a majority 

of deaths were well certified (using Sustainable Develop-
ment Goal (SDG) assessments26 conducted prior to the 
pandemic), compared with only 0.05% in countries with 
lower proportions of well- certified deaths. In the latter 
set of countries, adjustments for excess mortality shift the 
population IFR upwards by an order of magnitude, to a 
median of 0.6%. Indeed, the population IFR for Zambia 
increases from 0.23% to 1.96%—the highest value for any 
country in our sample. In contrast, the excess mortality 

Figure 3 Age‐specific seroprevalence by location.

https://dx.doi.org/10.1136/bmjgh-2022-008477
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adjustments make relatively little difference for countries 
with a majority of well- certified deaths.

Finally, we considered the extent to which the adjusted 
measures of population IFR were robust to alternative 
estimates of the ratio of excess mortality to reported 
deaths. As shown in figure 9 the estimates from IHME 
and WMD were generally well aligned, with just a small 
number of exceptions.

The adjusted population IFRs had a median value of 
0.49% using the IHME estimates and 0.58% using the 
WMD estimates.

DISCUSSION
COVID- 19 has had a severe burden on developing coun-
tries. Prevalence in developing countries is roughly 
uniform across age groups, in contrast to the typical 
pattern in high- income countries where seroprevalence 
is markedly lower among middle- aged and older adults 
who are most vulnerable to this disease. Moreover, the IFR 
is substantially higher in developing countries compared 
with high- income countries.

At 20 years of age, the mean IFR in developing countries 
is 2.7 times higher than that in high- income countries 

Figure 4 Ratio of seroprevalence for older adults (60+ years) compared with adults (40–59 years).
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Figure 5 metaregression results. IFR, infection fatality rate.

Table 3 Ratio of excess mortality to reported COVID- 19 deaths

Country Location Ratio (95% CI)

Argentina Buenos Aires City 1.07 (1.0 to 1.5)

Argentina Municipality of Hurlingham 1.07 (1.0 to 1.5)

Brazil Maranhao 1.41 (1.0 to 2.4)

Brazil Sao Paulo City 1.02 (1.0 to 1.3)

Brazil Cuiaba, Mato Grosso 1.00 (1.0 to 1.0)

Brazil Varzea Grande, Mato Grosso 1.00 (1.0 to 1.0)

Chile Coquimbo- La Serena, Greater Santiago, Talca 1.00 (1.0 to 1.0)

China Wuhan 1.00 (1.0 to 1.0)

Colombia Leticia (Amazonas) 1.09 (1.0 to 1.6)

Colombia Barranquilla (Atlantico) 1.09 (1.0 to 1.6)

Colombia Medellin (Antioquia) 1.09 (1.0 to 1.6)

Colombia Bucaramanga (Santander) 1.09 (1.0 to 1.6)

Colombia Cucuta (Norte Santander) 1.09 (1.0 to 1.6)

Colombia Villavicencio (Meta) 1.09 (1.0 to 1.6)

Colombia Bogota 1.09 (1.0 to 1.6)

Colombia Cali (Valle del Cauca) 1.09 (1.0 to 1.6)

Colombia Ipiales (Narino) 1.09 (1.0 to 1.6)

Colombia Cordoba: 8 cities 1.09 (1.0 to 1.6)

Ecuador Cuenca (Azuay) 1.01 (1.0 to 1.1)

Hungary National Study 1.04 (1.0 to 1.4)

India Karnataka 4.89 (2.6 to 8.2)

India Chennai 4.80 (2.7 to 7.9)

Jordan National Study 1.57 (1.0 to 3.0)

Kenya Nairobi County 13.29 (7.1 to 23.1)

Paraguay Asuncion+Central Department 1.10 (1.0 to 1.6)

Peru Lambayeque 1.09 (1.0 to 1.6)

Peru Lima (Metropolitana)+Callao 1.09 (1.0 to 1.6)

Peru Iquitos, Loreto 1.09 (1.0 to 1.6)

Note: This table shows Institute for Health Metrics and Evaluation (IHME) estimates of the ratio of excess mortality to reported COVID- 19 deaths 
(constrained to be 1.0 or greater).22 The 95% CIs, enclosed in parentheses, are also taken directly from IHME, with a one- tailed interval for each 
location where the estimated undercount ratio is constrained by the lower bound of unity.

Figure 6 IFR in developing countries compared to high‐
income countries. IFR, infection fatality rate.
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and at age 60 years the risk is doubled. At the oldest 
ages, this discrepancy is reduced, with only a modestly 
increased risk at age 80 years. These relationships have 
also been found with socioeconomic status within 

specific places such as Santiago, Chile.7 This warrants 
further research to understand why access to healthcare 
and other socioeconomic issues appear to have a larger 
impact on survival at younger ages. This finding does not 

Figure 7 Population IFR for ages 18–65 years. IFR, infection fatality rate.

Figure 8 Population IFR and well‐certified death registrations. IFR, infection fatality rate.
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rely on any specific modelling assumptions such as log- 
linearity, which is shown by the readily apparent disparity 
in figure 7, showing the age- standardised IFR for each 
individual location compared with the benchmark of 
high- income countries.

The elevated IFR in developing nations only becomes 
apparent when stratifying by age and adjusting for death 
under- reporting. Indeed, the quality of the vital statistics 
system tends to be linked to the overall level of economic 
development, and hence some previous studies of unad-
justed data have incorrectly inferred that population IFRs 
are lower in developing countries than in high- income 
countries.27–30

Our results are important for addressing questions that 
have arisen about whether COVID- 19 was less dangerous 
for populations in sub- Saharan Africa compared with 
locations elsewhere.31–33 As shown in figure 7, the age- 
standardised population IFR of Nairobi County, Kenya 
is about five times higher than the high- income country 
benchmark. Likewise, figure 8 shows that the population 
IFR (adjusted for under- reporting of COVID- 19 fatalities) 
exceeds 0.5% for locations in Ethiopia, Mozambique and 
South Africa; the sole exception is Senegal, perhaps due 
to even more severe death undercounting than captured 
by the estimated ratio. These results underscore the 
importance of drawing inferences from representative 
samples rather than from convenience samples.34–36

These results are consistent with the pattern observed 
for most other communicable diseases.3 4 In locations 
with little ability to work from home, where quarantine is 
difficult or impossible, where opportunities for physical 
distancing and access to sanitation are poor, with lower 
healthcare resources, and where even basic resources 
such as supplemental oxygen are in short supply, people 
have fared substantially worse during the pandemic than 
in high- income settings. Indeed, in low- income settings 
where fewer hospital beds and healthcare workers are 
available, COVID- 19 has caused great devastation and an 
enormous death toll. With a much higher IFR, particu-
larly in younger people, the ultimate burden for devel-
oping nations from COVID- 19 is likely to be very high.

Another important facet of our results is that sero-
prevalence was both higher and consistent across age 
groups in developing countries—a striking contrast to 
the typical pattern in high- income countries, where 
prevalence among older adults was markedly lower than 
among younger adults.15 37 38 Evidently, it is very difficult 
to insulate elderly people from the virus in a slum or a 
rural village. This is likely also impacted by the higher 
proportion of multigenerational families in developing 
countries,39 a known risk- factor for COVID- 19 infection 
and death.40 41 For example, seroprevalence in slum 
neighbourhoods of Mumbai was about four times higher 
than in non- slum neighbourhoods.42 Our analysis indi-
cates that the relatively uniform prevalence of COVID- 19 
in developing countries has dramatically increased the 
number of fatalities in these locations.

Our findings reinforce the conclusions of previous 
studies that have assessed the IFR of COVID- 19.13 43 In 
particular, COVID- 19 is dangerous for middle- aged 
adults, not just the elderly and infirm.15 Our metaregres-
sion results are well aligned with IFR estimates produced 
for specific locations in developing countries (see supple-
mentary online supplemental appendix table A8).

Our analysis underscores that incomplete death 
reporting is a crucial source of apparent differences in 
COVID- 19 death rates. In particular, this is related to 
the proportion of deaths that are assigned to so- called 
‘garbage codes’.26 44 45 These deaths are, by definition, 
not included in national tallies of the population that has 
died from COVID- 19. As shown in figure 8, the IFR is 
on average 10 times higher in locations with reasonably 
adequate vital statistics compared with other locations 
where a majority of deaths are not well certified.

The divergence between population IFRs for loca-
tions is similar whether adjusted for death certification 
or excess mortality. Adjustment for estimates of excess 
mortality produced location population IFRs that were 
consistent with IFRs produced in the age- stratified anal-
ysis, aside from a few minor outliers. As shown in figure 8, 
the median of these population IFRs for developing 
nations, once adjusted for undercounting of COVID- 19 
deaths, was 0.58%, very similar to the median estimates 
of IFR for high- income countries.46

Excess mortality is a useful metric for adjusting IFR esti-
mates in areas where deaths are well registered but not well 
certified; that is: captured in national vital statistics but 
without a specific cause of death.1 Nonetheless, caution 
is warranted in applying national estimates of excess 
mortality to specific regions within a country, recognising 
that death reporting systems may vary markedly with the 
degree of urbanisation and other socioeconomic factors. 
In the case of Ecuador, for example, the national estimate 
for the ratio of excess mortality to reported COVID- 19 
deaths in 2020 was 2.6 (1, 22), whereas that ratio was only 
1.01 in the province of Azuay.47

Moreover, estimates of excess mortality may partly 
reflect indirect effects of the pandemic on other sources 
of mortality. On the one hand, non- pharmaceutical 

Figure 9 Excess mortality adjusted population IFRs. IFR, 
infection fatality rate.

https://dx.doi.org/10.1136/bmjgh-2022-008477
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interventions (such as business closures) may reduce 
mortality from causes such as vehicle accidents.1 48 
Conversely, mortality may be elevated by impaired access 
to healthcare for non- infectious diseases such as chronic 
cardiovascular disease or cancer,49 or by higher burdens 
of non- COVID infectious diseases such as malaria, tuber-
culosis or parasitic infections.50

Finally, the true burden of COVID- 19 may be practically 
impossible to assess in locations where many deaths are 
never entered into the national vital statistics system.51 
For example, total mortality in Kenya was lower in 2020 
than in 2019, but those statistics should certainly not 
be interpreted as suggesting that Kenya was unscathed 
by the pandemic.22 Indeed, assessments of Kenya’s vital 
statistics found that only two- thirds of actual deaths 
were recorded in the system.51 Such considerations may 
explain other outliers in our analysis, such as Senegal, 
which remains far below similar locations even when esti-
mates are adjusted for excess mortality.

A useful example in this case is Ethiopia. Despite 
national statistics not showing a large increase in deaths 
in Ethiopia during the pandemic, an epidemiological 
investigation of burial sites has revealed a huge increase 
in mortality during this period that is not part of the offi-
cial reporting of COVID- 19.52

In the absence of better death reporting, it is chal-
lenging to assess the extent to which differences in IFR 
across locations reflect systematic disparities in health-
care access, socioeconomic status and other indicators. 
Nonetheless, such effects have been clearly demonstrated 
by studies that have assessed distinct socioeconomic 
groups within specific regions such as Santiago, Chile.7 
Moreover, these considerations are almost certainly rele-
vant in interpreting our finding that age- stratified IFR is 
markedly higher in developing countries compared with 
high- income countries.53 Indeed, our results underscore 
the tragedy that a Zambian young adult with COVID- 19 
would be far more likely to die than a Swiss person of 
similar age.

Accounting for seroreversion and other assay charac-
teristics is crucial for assessing seroprevalence accurately. 
Our analysis makes a novel contribution in providing 
a systematic assessment of the implications of serorev-
ersion; that is, the proportion of people who develop 
antibodies but whose tests will fall below the limit of 
detection at a later date. Prior studies have either ignored 
this issue or have assumed that seroreversion occurs at a 
fixed geometric rate regardless of the assay used.12 13 In 
contrast, we have collated detailed information about the 
characteristics of all assays used in the serology studies 
included in our analysis, including data on seroreversion 
as well as test specificity and sensitivity; that information 
is fully described in online supplemental appendix 2a 
and b. Our analysis clearly indicates that the extent of 
seroreversion differs in magnitude depending on the 
assay used. Moreover, accounting for seroreversion had 
substantial implications for a number of locations in our 
analysis.

Our analysis makes a strong case for swifter action on 
vaccine and other medication equity. While countries 
have largely sought to protect their own populations, 
there is increasing commitment to ensuring that key 
populations in low- income and middle- income coun-
tries receive protection, at a minimum for their front- 
line health and other personnel. It is widely accepted 
that failing to control the pandemic across the globe 
will contribute to the emergence of additional strains 
of COVID- 19, potentially undermining the efficacy 
of available vaccines.54 Current medication distribu-
tion efforts are grossly inequitable.55 Recent estimates 
suggest that fewer than 10% of people in low- income 
countries have received an immunisation, while the 
majority of people in high- income countries have had 
at least one vaccination.56 Similarly, the availability of 
effective medications such as Paxlovid is grossly inequi-
table across the globe.57

As with all research, our study is subject to a number of 
limitations. First, while we made every effort to capture 
seroprevalence data, including corresponding with 
dozens of researchers and public health officials world-
wide, it is possible that some studies have been missed. 
However, it is unlikely that any small number of addi-
tional studies would make a material difference to our 
results.

Our analysis did not incorporate time series data on the 
evolution of COVID- 19 deaths. However, some studies of 
high- income countries have shown how such data can be 
useful in refining assessment of IFR to incorporate the 
stochastic timing of COVID- 19 deaths.13 58 Such analysis 
should be a priority for future research about IFR in 
developing countries.

While our analysis excluded convenience samples 
and focused exclusively on representative samples of 
the population, we recognise that such studies may also 
be susceptible to selection bias. Research conducted at 
various stages of the pandemic has found that individual 
preferences for testing can be associated with substantial 
bias in estimates of seroprevalence, with corresponding 
implications for estimates of population IFR.20 59 Such 
uncertainty can be incorporated into statistical models of 
prevalence and IFR.60 61 However, we did not follow such 
an approach here, because our statistical model already 
incorporates a number of other substantial sources of 
uncertainty.

Our work also did not consider non- mortality harms 
from COVID- 19. Recent work has shown that even at 
younger ages a substantial fraction of infected individuals 
will have severe, long- lasting adverse effects from COVID- 
19.62 Consequently, the impact on the healthcare system 
and society may be far greater than would be reflected 
in mortality rates alone. Focusing only on survival rates 
obscures the large number of deaths that occur when 
many people are infected,63 the relatively high fatality 
rate of COVID- 19 in comparison to other diseases and 
other causes of death,64 and non- mortality harms of 
COVID- 19, such as hospitalisation from serious disease.62 

https://dx.doi.org/10.1136/bmjgh-2022-008477
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Future work should address these non- mortality harms, 
including long COVID- 19.

Another potentially serious limitation of our anal-
ysis is cross- reactivity in serological tests due to malaria. 
An investigation in Nigeria found that the commonly 
used Abbott and Euroimmun serological assays had a 
false- positive rate of 6.1% against prepandemic samples 
due to cross- reactivity with malarial antibodies.65 This 
would substantially lower specificity of the assay in areas 
with a high prevalence of past malaria infection, which 
would have the practical result of producing an upward 
bias of seroprevalence estimates and downward bias of 
IFR estimates. Thus, it is plausible that in areas with a 
large burden of malaria, that the IFR we have calculated 
represents a substantial underestimate.

Finally, our analysis only includes serology studies 
where specimen collection was completed by the end of 
February 2021. Consequently, our results do not reflect 
any potential changes in IFR that may have resulted from 
more recent advances in COVID- 19 care, most notably, 
the development of novel antiviral medications and 
dissemination of vaccines. Of course, the IFR could also 
shift with the spread of new variants of SARS- CoV- 2.66 
However, given that the first major variant of COVID- 19 
was only identified in late 2020, and most vaccination 
campaigns in developing nations only began in early 
2021, our time frame limits the impact that these factors 
should have on the results.

CONCLUSION
The prevalence and IFR by age of COVID- 19 is far higher 
in developing countries than in high- income countries, 
reflecting a combination of elevated transmission to 
middle- aged and older adults, as well as limited access to 
adequate healthcare. These results underscore the crit-
ical need to accelerate the provision of vaccine boosters 
and newer effective medications to vulnerable popu-
lations in developing countries. Moreover, many devel-
oping countries require ongoing support to upgrade the 
quality of their vital statistics systems to facilitate public 
health decisions and actions, not only for the COVID- 19 
pandemic but for future global health concerns.

Code and data
All data and code are available publicly online.67
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