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ancient Reef traits, a database of 
trait information for reef-building 
organisms over the Phanerozoic
Nussaïbah B. Raja✉, Danijela Dimitrijević  , Mihaela Cristina Krause & Wolfgang Kiessling

trait-based approaches are increasingly relevant to understand ecological and evolutionary patterns. 
a comprehensive trait database for extant reef corals is already available and widely used to reveal 
vulnerabilities to environmental disturbances including climate change. However, the lack of similar 
trait compilations for extinct reef builders prevents the derivation of generalities from the fossil record 
and to address similar questions. Here we present the ancient Reef traits Database (aRtD), which aims 
to compile trait information of various reef-building organisms in one single repository. aRtD contains 
specimen-level data from both published and unpublished resources. In this first version, we release 
15 traits for 505 genera and 1129 species, comprising a dataset of 17,841 trait values of Triassic to 
mid-Holocene scleractinian corals, the dominant reef-builders in the modern ocean. Other trait data, 
including for other reef-building organisms, are currently being collated.

Background & Summary
Trait-based approaches are one way to correlate different characteristics, or traits, of organisms to environ-
mental changes with the ultimate goal to predict community and whole-ecosystem responses to such changes. 
Traits of reef corals have been explored to identify their life-history strategies1 and extinction risk2,3. Several 
palaeontological studies have examined trait-based extinction using the fossil record4–6. Changes in ancient 
reef ecosystems can provide valuable insights into drivers of reef proliferation and decline. Understanding why 
fossil reefs collapsed and how they recovered may help to inform conservation activities in modern coral reefs 
in light of anthropogenic climate change. Many reefs of the Phanerozoic eon (the last 540 million years) can 
be considered analogues of modern tropical coral reefs with regards to reef architecture and environmental 
controls7. Phanerozoic reef-building is not restricted to scleractinian corals but also a multitude of other sessile 
hypercalcifying animals (animals with a large skeletal to biomass ratio) such as extinct coral clades, calcifying 
sponges and rudist bivalves.

In the first release of this database, we focus on scleractinian corals, which have a rich fossil record from the 
Middle Triassic (~245 Ma) and became the dominant reef builders in the Late Triassic (~225 million years ago)8. 
Scleractinian corals have an extensive fossil record due to their calcified skeletons. Accordingly, morphological 
traits are well preserved and several of those traits have been shown to be linked to species extinction risk: exam-
ples are corallite integration, corallite diameter, growth rate (linked to morphology or measured directly from 
growth bands), and colony longevity (linked to size)3,9–12. Spatial and environmental traits are also important 
predictors of extinction risk: habitat breadth and maximum water depth are two key parameters linked to cli-
mate change vulnerability in corals9.

The traits of extant reef corals have been compiled in the openly accessible Coral Traits Database 
(CTD)13,14, which in addition to morphological traits, also contains data on physiology, biology and repro-
duction. However, there is no single, exhaustive resource for fossil reef building organisms including extinct 
scleractinian corals and the traits of extinct corals are currently scattered in online repositories and research 
publications. Some trait compilations that cover only one type of trait (i.e., corallite integration) and/or span 
one period (i.e., Triassic) have previously been published15 but are not openly available. The online resource 
Corallosphere (www.corallosphere.org) contains a description of genus-specific traits for both extinct and extant 
scleractinian corals, while the Paleobiology Database (PBDB; www.paleobiodb.org) contains information for a 
limited number of traits such as inferred symbiotic status or preferred environment. The database on Neogene 
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Marine Biota of Tropical America (NMITA) mostly contains trait information of Pleistocene to Holocene scle-
ractinian corals from the Caribbean region16,17. Therefore, there is a need for an updated, comprehensive and 
openly accessible compilation of fossil coral traits.

Here, we present the Ancient Reef Traits Database (ARTD) which fills this gap. ARTD is a unique, 
specimen-based compilation of reef builders’ traits. At the initial stage, the database contains 15 traits of scler-
actinian corals and covers the time period from the mid-Triassic until the mid-Holocene. The value of ARTD 
lies not just in its data coverage but in its interlinkage with other databases. ARTD is compatible with CTD and is 
also designed in a way that provides easy integration with the biggest resource of fossil occurrence data, namely 
the PBDB.

Methods
ARTD has a similar structure as the CTD and is designed to contain specimen-level traits for identified species 
and genera (Fig. 1). The basic unit of entry is that of the trait of a single specimen, e.g. a coral specimen, that 
is also accompanied by contextual characteristics such as the geological stage(s), the present-day geographic 
region and the present-day coordinates of the locality in decimal degrees, in which the specimen was found. 
Reconstructed palaeo-coordinates were computed from the present-day coordinates using the rotation file sup-
plied by C. Scotese in the ‘PALEOMAP PaleoAtlas for GPlates’ package18. These metadata are crucial for analyses 
of traits in a spatial, temporal and environmental context. For example, the corallite diameter or colony size of a 
species may vary due to genealogical trends or environmental factors19. A specimen can be linked to a number 
of observed traits as per the source of the data. In the case where there are multiple observations for a specimen 
or group of specimens (usually reported as such in the primary source), text-based information is entered and 
separated by “-“, e.g. trabecular-substyliform for columella structure. We also employ a hierarchical taxonomic 
structure where any inheritable trait (i.e. symbiotic status or corallite integration) of a taxon, is automatically 
applied to all the lower taxonomic levels and specimens of that particular taxon. For example, if a genus’ corallite 
integration is qualified as cerioid all its containing species and specimens are also assigned to a cerioid trait, 
unless exceptions are known. In the case of growth forms, heritability was assigned only to genera where one 
growth form has been assigned, e.g. Isastraea (massive) as growth forms tend to vary among some groups due 
to factors such as environment20.

The taxonomic and contextual information are stored separately and linked to the “observation” table where 
each entry is provided with a unique identification number (id; Fig. 1). This observation table contains the 
respective specimen-level traits which contains information of the trait(s) being entered, the value (numeric or 
character depending on the trait being entered), the value type (whether raw, aggregated, or based on the opin-
ion of experts), and the method used to obtain the measurements (e.g. observations made in the field or labora-
tory). This structure is used so that multiple specimens from one specific site and one taxon can be linked several 
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Fig. 1 Overview of the ARTD back-end structure. The observation table is highlighted in red. The remaining 
tables contain supplementary information that complement the observation records.
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times to the same traits. For example, published articles provide several measurements of corallite widths21. 
In the case when a range of values is provided for a measured trait, the mean value is entered, except for the 
traits “corallite width minimum” and “corallite width maximum” where the minimum and maximum values 
are entered, respectively. Traits are divided using the categories that are comparable to the CTD: morphological, 
reproductive, or physiological. However, it is clear that only morphological traits are directly accessible in fos-
sils, whereas the latter categories need to be inferred. Currently the only inferred trait in our database is that of 
symbiotic status (trait_name: “Zooxanthellate”) which relies on morphological criteria of extinct coral species as 
defined by Kiessling and Kocsis22. The original source of the entered data is also included in the database (called 
the primary source), and if available, the reference number for this primary source in the PBDB which can then 
be used to integrate both databases. The taxonomic information is automatically validated against the PBDB 
before each database release to ensure that the most up-to-date information is available.

Data Records
Here, we provide a release of 15 traits of 505 genera and 1129 species, comprising a dataset of 17,841 trait values 
obtained from localities around the world (Fig. 2). This first release has broad taxonomic and temporal coverage 
and comprises more than 70% of all coral genera in the PBDB in each geological stage since the mid-Triassic 
(Figs. 2, 3a). The availability of traits per specimen or taxon also varies (Fig. 3b) depending for example on the 
preservation of the specimen being reported in the primary source, with some traits such as corallite diameter 
or corallite integration more readily available than others such as colony size (Fig. 3c).

A static release of the database is available directly from the ART platform (https://art.nat.fau.de) as well as 
Zenodo23. The data release is in the form of a compressed folder containing two files:

 1. data.csv: A csv-formatted file containing the contextual information and measurement of specimens.
 2. references.csv: A csv-formatted file containing the bibliographic information of data sources24–114.

The details and descriptions of the available trait variables are available in Table 1. Up-to-date data are 
directly available from the database. However, as data entry and validation (see Technical Validation) is ongo-
ing, users are recommended to use the data made available through the static releases to maximise reproduc-
ibility of analyses and results. Both the static releases23 and direct downloads are accompanied by the primary 
sources24–114 which should be credited.

All data in the ARTD and included in this release are linked with published (e.g. peer-reviewed papers, tax-
onomic monographs, books) references24–114. The final dataset consists of one row per trait for each specimen 
entered. Each specimen is given a unique identification number (observation_id) which can be associated with 
various traits. The geographic data is available for each specimen, such as the country or region in which it was 
found (location_name), present-day coordinates (longitude, latitude), reconstructed palaeo-coordinates (pale-
olng, paleolat), and taxonomic information (identified_name: as entered in the database, accepted_name: 
based on updated taxonomic information, genus_name: genus of the specimen as per the updated taxonomic 
information, species_name: the species name as per the updated taxonomic information). The time period 
identified for the specimen (early_interval: the first interval in which the specimen was found, late_interval: 
the last interval in which it was found, min: the minimum identified age, max: the maximum identified age) is 
also provided. For each specimen, the available traits are entered. Each trait (trait_name) is assigned to a cate-
gory (trait_class), and a trait entry for a specimen contains the trait value and unit (standard_unit) if applica-
ble. Additional information (value_type) about any measurements such as whether the entered measurement is 
raw or an aggregated value (mean, minimum, maximum) based on expert opinion, model-derived, the unit for 
the measurements (standard_unit), and the methodology used to obtain the data (methodology_name) is also 

Geological Period
Triassic (252.17–201.3 Ma)

Jurassic (201.3–145 Ma)

Cretaceous (145–66 Ma)

Paleogene (66–23.03 Ma)

Neogene (23.03–2.588 Ma)

Quarternary (2.588–0 Ma)

Fig. 2 Map of localities, categorised by geological period, from which trait data of scleractinian corals were 
compiled in ARTD.
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provided if available. Each entry contains the identification number of the data source (reference_no), whose 
bibliographic details are provided in the reference.csv table, which can then be used for citations purposes.

technical Validation
The database is curated by the managerial board who undertake the tasks below. Curation and quality control 
of the data include:

inferred

m
easured

observed
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Corallite integration
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Fig. 3 Data coverage in ARTD: (a) Taxonomic coverage of ART-only data and ART data combined with CTD 
compared to taxonomic occurrences in the PBDB; (b) Number of trait values in ARTD for coral genera in the 
PBDB; and (c) Data completeness of traits as a percentage of specimens in ARTD.
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Trait class Trait name
Inherited 
trait? Description Categories Category descriptions

Number of 
observations

Morphological Coloniality yes Whether mature individuals of a 
species form colonies or are solitary

Colonial
Solitary

Mature individuals are colonial
Mature individuals are solitary

1861

Morphological Number of septa per 
corallite

no The mean number of septa observed 
in one corallite

N/A N/A 1747

Morphological Corallite integration 
(Colony form in CTD)

yes The general arrangement of corallites 
in a colony

Thamnasteroid

Plocoid
Subplocoid
Cerioid
Meandroid
Flabelloid
Phaceloid
Dendroid
Solitary

Corallites with confluent septa and lacking defined 
boundaries
Corallites separated by coenosteum
Corallites sometimes separated by coenosteum
Corallites juxtaposed
Corallites arranged in multiple series
Corallites arranged in single series
Corallites separated and subparallel
Corallites separated and irregularly branching
Corallum formed by only one individual

1390

Morphological Corallite width 
maximum

no Maximum diameter of the corallite N/A N/A 1378

Morphological Corallite width 
minimum

no Minimum diameter of the corallite N/A N/A 1358

Morphological Columella structure yes The overall form of the central axial 
structure within a corallite

Spongy
Trabecular

Papillose
Fascicular
Styliform
Lamellar
Absent

A fine porous mass
An irregular group of twisted elements, also referred 
to as parietal
A group of rods
A set of twisted lamellae
A simple rod
In the shape of a single lamella
No columella

1088

Morphological Wall structure yes The structure of skeleton enclosing 
a corallite

Epithecal
Parathecal
Septothecal
Septoparathecal

Synapticulothecal

Absent

Corallite wall is formed by the epitheca
Corallite wall formed by dissepiments
Corallite wall formed by thickening of septa
Corallite wall formed by thickening of septa and 
dissepiments
Corallite wall formed by rings of synapticulae 
(horizontal rods between septa)
No wall

972

Morphological Growth form yes The shape in which the coral 
specimen grows

Massive
Branching
Platy
Columnar

Discoid

Flabellate
Fungiform
Reptoid

Cylindrical

Turbinate

Patellate

Trochoid
Cupolate
Ceratoid

Cuneiform
Encrusting

Mound-shaped and hemispherical colony
Colony composed of elongate projections
Flattened colony with calices on only one side
Pillar or finger-like colonies that do not have the 
secondary branches
Nearly all in a single plane, horizontal wall and flat 
or slightly concave or convex oral surface; solitary
Fan-shaped: both solitary and colonial
Mushroom shaped; colonial
Corallites separated by void space Creeping over 
some substrate, encrusting; colonial
Nearly straight and of uniform diameter except in 
the apical region; solitary
Like trochoid but with wider apical angle, about 70 
degrees; solitary
With still wider apical angle, about 120 degrees; 
broadly flattened conical in form; solitary
The angle is about 40 degrees; solitary
Flat base and highly convex oral surface; solitary
Very slenderly conical, horn-shaped, the angle is 
only about 20 degrees; solitary
Wedge-shaped; solitary
Encrusting colony

916

Morphological Distance between 
centres of corallites

no The measured distance between the 
centres of two corallites

N/A N/A 909

Morphological Number of septal 
cycles

no Number of cycles or orders in the 
mature corallite

N/A N/A 647

Morphological Height no The overall height of the specimen, 
usually a solitary coral

N/A N/A 592

Morphological Colony size no The maximum diameter of a colony N/A N/A 559

Morphological Corallite width no Diameter of the corallite N/A N/A 428

Physiological Zooxanthellate yes Whether the species is zooxanthellate 
(i.e., contains photosymbiotic 
zooxanthellae) or not

Note: This is not directly observable 
and is inferred.

Zooxanthellate
Azooxanthellate
Apozooxanthellate

Contain zooxanthellae within their tissues
Don't contain zooxanthellae within their tissues
Sometimes contain zooxanthellae within their tissues

387

Reproductive Budding type yes The position of new buds relative to 
the parent corallite wall

Note: This is a morphological 
character that is directly observable

Intracalicular
Extracalicular

Both
None

Occurring within the tentacle ring of the parent polyp
Occurring outside the tentacle ring, with daughter 
corallites forming on the side of the parent corallite
Both intra- and extracalicular
No budding occurring

201

Table 1. Overview of traits available in ART v1.0, including descriptions and standard categories used.
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Updating taxonomic information. All taxonomic data are cross validated taxonomic names against the 
PBDB to ensure that reliable taxonomic data is available.

Dealing with duplicates. All duplicated records identified based on the combination of data source, taxo-
nomic information, location, time period, and measurement values are flagged and then removed.

applying inherited traits. Any newly entered traits that are identified as inherited traits are applied to all 
species of the genus that contains that particular trait.

Standardising text-based fields. Text-based fields such as corallite integration or growth form are stand-
ardised (Table 1) to facilitate analysis on these traits.

Contributor approval. Anyone wishing to contribute to the database should become a formal contributor 
and any observations entered by them will be associated with their user account.

The database is hosted on the server of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and 
will be maintained on the long-term by WK, MCK and other staff members of the FAU.

Usage Notes
ARTD offers many new opportunities for incorporating trait-based approaches in addressing macroevolution-
ary and macroecological questions using the fossil record of reef-building organisms. The correlation of cer-
tain traits with environmental conditions and their vulnerability or resilience to environmental change can be 
widely used to understand the evolution of these organisms and the reefs they build over time, their extinction 
risk in light of global warming and recovery after such an event. A trait-based framework allows the analysis 
of variation and evolution of traits within and across reef-building organisms over time and their responses to 
environmental change in the past. For example, the data from ARTD combined with the PBDB show that the 
diversity trajectories for colonial and solitary scleractinian corals were different (Spearman’s ρ = 0.241, p = 0.129 
of first differences), with colonial corals showing an increase in diversity during the late Jurassic and Cretaceous 
but declining again in the Late Cretaceous (Fig. 4). On the other hand, the diversity of solitary corals remained 
relatively low compared to colonial corals.

Trait-based frameworks are also widely used in modern ecology to study the climate impacts of organisms 
and their extinction risk1,14,115–118. Focusing on such frameworks would therefore allow the integration of palae-
ontological and neontological data using similar concepts and methods to address urgent questions on biodiver-
sity and extinction at multiple scales3,119,120. Such an integrated approach might contribute to the conservation of 
modern coral reefs, which are the most threatened ecosystems from climate change121.

Code availability
All the code used to generate the figures in this manuscript is available on the following GitHub repository: 
https://github.com/nussaibahrs/ARTD.
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