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Abstract: Tall fescue (Lolium arundinaceum (Schreb.) S.J. Darbyshire) often forms a symbiotic rela-
tionship with fungal endophytes (Epichloë coenophiala), which provides increased plant performance
and greater tolerance to environmental stress compared to endophyte-free tall fescue. Whether this
enhanced performance of tall fescue exclusively results from the grass–fungus symbiosis, or this
symbiosis additionally results in the recruitment of soil microbes in the rhizosphere that in turn
promote plant growth, remain a question. We investigated the soil bacterial and fungal commu-
nity composition in iron-rich soil in the southeastern USA, and possible community shifts in soil
microbial populations based on endophyte infection in tall fescue by analyzing the 16s rRNA gene
and ITS specific region. Our data revealed that plant-available phosphorus (P) was significantly
(p < 0.05) influenced by endophyte infection in tall fescue. While the prominent soil bacterial phyla
were similar, a clear fungal community shift was observed between endophyte-infected (E+) and
endophyte-free (E−) tall fescue soil at the phylum level. Moreover, compared to E− soil, E+ soil
showed a greater fungal diversity at the genus level. Our results, thus, indicate a possible three-way
interaction between tall fescue, fungal endophyte, and soil fungal communities resulting in improved
tall fescue performance.

Keywords: tall fescue; endophyte; soil; rhizosphere microbiome; plant-soil interaction

1. Introduction

Grasses cover almost 20% of the total land area on the planet [1] and are widely
distributed ecosystems [2]. They offer important ecosystem services, such as providing
forage for livestock [3], soil carbon sequestration [4], improved runoff quality [5], erosion
control, climate regulation [6], and resistance to invasive species [7]. Many grass species
are known to form symbiotic relationships with fungal endophytes [8] that led to even-
tual plant colonization of terrestrial environments [9]. Tall fescue (Lolium arundinaceum
(Schreb.) S.J. Darbyshire), a cool-season perennial grass [10], is cultivated on an estimated
14-million hectares in the United States [11]. Tall fescue often forms an interdependent
relationship with a shoot-specific fungal endophyte (Epichloë coenophiala) that produces
ergot alkaloids that are toxic to livestock, causing fescue toxicosis or fescue foot [12,13].
To avoid fescue toxicosis, novel endophytes were identified and introduced into different
tall fescue cultivars with non-toxic alkaloids such as lolines and peramines [14]. Although
detrimental to livestock, tall fescue infected with Epichloë coenophiala has been shown to be
persistent, exhibit better plant fitness, and offer improved ecosystem services over other
grass species in pastures [15,16]. Endophyte infected tall fescue is a unique model to inves-
tigate the potential relationships between above and below-ground microbial communities.
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This potential relationship between the tall fescue, the endophyte, and the soil microbial
communities might provide important insights to explore and clarify the plant’s resilience
against environmental stress and climate change, different soil biogeochemical processes
that influence soil health, and vital ecosystem services. It is well documented that soil
microbial communities impart significant benefits in soil nutrient cycling, soil fertility
status, and soil carbon sequestration that influences plant fitness and survival in varying
terrestrial ecosystems [17–19].

The soil microbiome composition is at the forefront of evolutionary ecology where
the primary focus is on the identification of the beneficial microbial communities and
comprehending the extent of influence on plant performance and soil health [20–22]. Soil
nutrient status plays a central role in impacting soil bacterial and fungal communities. This
is particularly true for phosphorus (P), the least mobile macronutrient, found in the soil of
the southeastern USA [23]. Due to its fixation with insoluble mineral-complex with iron
(Fe) and aluminum (Al) oxides in acidic soil and with calcium (Ca) in alkaline soil, P is often
limitedly released into the soil solution for root uptake [24,25]. Soil microbial communities,
especially the phosphorus solubilizing microbial communities can secrete hydrolyzing
enzymes, organic acids, protons, and phosphatases that can solubilize the organo-mineral
complexes and release P and the associated mineral, eventually leading to the acquisition
of unavailable P in soil by plants [26–30]. In return, the plant excreted rhizo-deposits and
root architecture contribute significantly in the rhizosphere microbial communities [31].
Endophyte infection in tall fescue may offer a competitive advantage to non-infected fescue
by influencing the soil microbial processes and soil microbial communities [32–34]. Addi-
tionally, the quantity and type of root exudates and rhizo-deposits change with different
stages of plant development [35–37], thus, creating a resource partitioning in the soil that
subsequently leads to niche partitioning [38–40]. In turn, given the rhizosphere origin of
endophytic microbial populations, soil bacterial and fungal community composition may
regulate the plant endophytic diversity and community composition [41]. In earlier studies
based on the endophyte infection in tall fescue, shifts in soil microbial (bacterial and fungal)
community structure and soil food webs have been reported [42,43]. These plant–fungal
associations, especially in grass species, define a significant two-faceted interaction: (i) the
collaboration gradient (above-ground) [44]; and (ii) root exudates mediated influence
(below-ground) [45]. The first interaction describes how the plant–fungal symbiosis im-
pacts nutrient foraging; promotes plant growth [46]; provides resilience against biotic stress,
such as plant pathogens [47]; and abiotic stress, such as drought and salt tolerance [48].
The second interaction highlights the fungal communities associated with the rhizosphere
communities, facilitates soil nutrient cycling and nutrient acquisition [49], organic matter
decomposition [50,51], synthesis of phytohormones for root utilization [52], resistance
against nematodes [53], and protection against pathogens [54]. Thus, determining the
endophyte-facilitated soil microbial processes and the subsequent soil microbial response
contributing to increased plant production and stress tolerance may carry significant eco-
nomic and ecological importance for sustainable agricultural practices [55]. Our objective
was to explore the diversity of the soil bacterial and fungal communities associated with
tall fescue rhizosphere and investigate whether the bacterial and fungal populations differ
based on the presence of endophyte in tall fescue.

2. Materials and Methods
2.1. Site Description

The study site was in the southeastern region of the USA at the J. Phil Campbell
(JPC) Research and Education Center (33◦52′ N, 83◦27′ W) and Iron Horse Farm (IHF)
(33◦72′ N, 83◦30′ W) in Watkinsville, Georgia. The soil at JPC is a fine kaolinitic, thermic
Typic Kanhapludults in the Cecil sandy loam series with a 2% to 6% slope. The soil at IHF
is Pacolet sandy clay loam, with a 6% to 10% slope [56]. The region has 123 cm average
annual rainfall and an average minimum and maximum temperature of 10.4 ◦C and 22.5 ◦C,
respectively. Soil sampling for this study was completed in October 2019, following a
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summer that according to the National Oceanic and Atmospheric Administration had the
hottest July on record, since the late 1800s. The research plots were established in the fall
of 2014 with 750 different tall fescue accessions. Each tall fescue accession was planted
in 1.5 m single row: 0.75 m space between plots within the range and 1.5 m between
ranges. Since its establishment, the plots were fertilized with inorganic fertilizers (N-P-K)
in October 2014 and regular clippings of the grass were performed every spring.

Table 1 shows the average atmospheric temperature, soil temperature, and average
rainfall between 2014 to 2019.

Table 1. Average maximum, minimum, and daily atmospheric temperature (◦C), average soil temperature (0–15 cm) (◦C),
and average rainfall (mm) during summer months (June, July, and August) from 2015 to 2019.

Season
Maximum

Atmospheric
Temperature (◦C)

Minimum
Atmospheric

Temperature (◦C)

Daily Atmospheric
Temperature (◦C)

Daily Soil
Temperature (◦C)

at 15 cm Depth

Average Rainfall
(mm)

Summer 2015 32 21 26 28 391
Summer 2016 33 21 27 30 295
Summer 2017 30 20 25 28 517
Summer 2018 31 20 25 28 392
Summer 2019 31 20 25 29 304

2.2. Soil Sampling and Tall Fescue Plants

We sampled soil from 48 different tall fescue accessions’ rhizospheres with a hand
soil probe (2.5 cm diameter) to a depth of 0–15 cm. All soil samples were kept refrigerated
at 4 ◦C. The soils were then air-dried, ground, and passed through a 2 mm sieve for soil
nutrient analysis. Out of 48 tall fescue ranges, 43 ranges were planted at JPC and five
were planted at the IHF site. We selected nine tall fescue cultivars with no endophytes
(E−) and 35 cultivars with endophyte infection (E+), among which 21 were infected with
novel-endophytes and 14 with wild-type, toxic endophytes. At the time of soil sampling,
for the purpose of microbial analysis, soil samples were immediately separated and kept at
−20 ◦C until the soil genomic DNA was extracted (see below Section 2.3).

2.3. DNA Extraction, PCR Amplification, and 16S rRNA Gene and ITS Gene Sequencing

DNA Extraction, PCR Amplification, and 16S rRNA Gene and ITS Gene Sequenc-
ing from homogenized and frozen soil (0.25 g), soil DNA was extracted using QIA-
GEN DNeasy PowerSoil Kit (DNeasy PowerSoil Kit Handbook, May 2017, Qiagen, Va-
lencia, CA, USA). Soil DNA quality and concentration were assessed by a NanoDrop
2000 spectrophotometer (Thermo Scientific, Waltham, MA, USA). Extracts were stored
at −20 ◦C until further analysis. A bacterial sequencing library targeting the bacte-
rial 16S rRNA genes was prepared using primer sets from PacBio 16S protocol (V1-V9
regions) [57]; 27F27F (AGRGTTYGATYMTGGCTCAG)/14292R (RGYTACCTTGTTAC-
GACTT). For the fungal sequencing library, we targeted the ITS region and used ITS1-F
Forward (CTTGGTCATTTAGAGGAAGTAA)/ITS2-R Reverse (GCTGCGTTCTTCATC-
GATGC) to amplify the ITS region. The sequencing workflow was as follows: (i) Multiplex-
ing with PacBio Barcoded Universal Primers; (ii) AMPure PB bead purification; (iii) Pooling
Barcoded Amplicons; (iv) SMRTbell Library Construction; (v) Purification of SMRTbell
Templates; (vi) Anneal and Bind SMRTbell Templates; and (vii) Sequencing on PacBio
Sequel II System. The first-round amplification PCR conditions were 95 ◦C for 180 s, fol-
lowed by 20 cycles of 95 ◦C for 30 s, 57 ◦C for 30 s, and 72 ◦C for 60 s with universal
primer-tailed 16S primers and ITS1 primers. The second-round amplification PCR con-
ditions were 95 ◦C for 30 s, 57 ◦C for 30 s, and 72 ◦C for 60 s for 20 cycles with PacBio
Barcoded Universal Primers. SMRTbell libraries were prepared by using PacBio Barcoded
Universal Primers for Multiplex SMRT Sequencing. Then, PacBio’s single-molecule circular
consensus sequencing (CCS) reads were generated for full-length 16S rRNA genes and ITS
gene (accuracy of 99%). The CCS reads were de-multiplexed using the software “lima” in
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SMRT Analysis software version 2.3.0. To generate bam files followed by a conversion to
Fastq files via bam2fastq.

2.4. Data Analysis

The CCS reads were processed with DADA2 software packages (16S rRNA gene
and ITS specific workflow) (version 1.8) [58], and analyzed with phyloseq for alpha and
beta diversity (version 1.25.2) [59]. For 16s rRNA gene CCS data, the DADA2 workflow
follows primer trimming, quality filtering, and de-replication. Amplicon sequence variants
(ASVs) were inferred after learning the error rates. Afterward, the “removeBimeraDenovo”
command was used to remove chimeras. Finally, we used the SILVA nr v132 train set to
assign taxonomy. For the fungal data analysis, we followed the ITS-specific variation of the
DADA2 package. In the fungal DADA2 workflow, after orienting the primers, we used a
specialized primer/adapter removal tool “cutadapt” [60]. After primer removal, the next
steps consist of quality filtering, de-replication, inferring ASVs after error learning, and
finally removing chimeras. We used UNITE ITS database for taxonomic assignments [61].
The ASV tables from DADA2 pipelines were imported into phyloseq to make phyloseq
objects and to calculate alpha and beta diversity. Sigma Plot 11 was used to generate figures
depicting percentage of bacterial and fungal populations in soil.

2.5. Statistical Analysis

Analysis of variance with JMP PRO 15 software (JMP®, Version 15. SAS Institute Inc.,
Cary, NC, USA, 1989–2019) was used to determine differences in soil pH, inorganic ni-
trogen, nitrate content, calcium, potassium, magnesium, phosphorus, and zinc, between
endophyte-free fescue soil, non-toxic endophyte-infected fescue soil, and toxic endophyte-
infected fescue soil samples (p < 0.05). Comparisons between multiple means of different
soil nutrient content were completed with Tukey’s HSD (p < 0.05).

3. Results
3.1. Soil Chemical Properties

There were no significant differences in soil pH and soil nutrient content between
E− and E+ tall fescue soil, except for plant-available phosphorus in soil (Table 2). The
E+ tall fescue soil had higher plant-available P compared to the E− tall fescue soil. Be-
tween endophyte-free, non-toxic, and toxic endophyte-infected tall fescue soil, non-toxic
endophyte-infected soil had significantly greater plant-available P compared to the rest
(Table 2). Although, Zn content in soil was not statistically significant between the E− and
E+ tall fescue soil, three endophyte-infected tall fescue soil samples, accession 1062, 1064,
and Bar Optima had higher soil Zn content.

Table 2. Mean soil nitrogen (N), calcium (Ca), potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), and zinc
(Zn) (mg/kg) content.

pH NH4
+- N NO3− N Ca K Mg Mn P Zn

Endophyte-Free Soil 6.53 a 3 a 244 a 801 a 40 a 105 a 17 a 26 b 1.0 a

Endophyte-Infected Soil (Toxic) 6.59 a 2 a 270 a 681 a 43 a 93 a 17 a 38 a 1.17 a

Endophyte-Infected Soil
(Non-toxic) 6.59 a 3 a 245 a 731 a 45 a 99 a 16 a 33 ab 1.07 a

Different lower-case letters indicate a significant difference between endophyte-free soil, toxic endophyte-infected soil, and non-toxic
endophyte-infected soil (p < 0.05).

3.2. Soil Bacterial Abundance, Diversity, and Community Composition

We identified 1212 and 3411 bacterial amplicon sequence variants (ASVs) in the E−
and E+ tall fescue soil collected from the tall fescue plots, respectively. We identified
18 phyla, 29 classes, 72 orders, 111 families, and 151 bacterial genera in E+ tall fescue
soil. In E− tall fescue soil, we identified 14 phyla, 29 classes, 45 orders, 88 families, and
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97 bacterial genera. The Shannon diversity index (SDI) highlights the species’ richness and
evenness among the entire community; the higher number indicates higher diversity. The
mean bacterial Shannon diversity index was lower overall and not statistically significant
between the E− (mean H′ = 4.5) and E+ (mean H′ = 4.0) soil. Additionally, bacterial
beta-diversity presented with principal coordinate analysis (PCoA) based on Bray–Curtis
dissimilarities showed no significant differences between soil microbial communities based
on the presence of endophyte in tall fescue. The prominent bacterial phylum in both E− and
E+ tall fescue soil was Planctomycetes (Figure 1a,b). In E+ tall fescue soil, the abundance
of phyla from greatest to lowest was as follows: Planctomycetes (28%) > Proteobacteria
(20%) > Acidobacteria (12%) > Bacteroidetes (9%) > Firmicutes (6%) > Verrucomicrobia,
Chloroflexi and Actinobacteria (5%) > Gemmatimonadetes and Nitrospira (2%) (Figure 1a).
For E− tall fescue soil, from greatest to lowest abundance of the prominent bacterial
phyla was as follows: Planctomycetes (30%) > Proteobacteria (18%) > Acidobacteria (7%) >
Bacteroidetes (10%) > Firmicutes, Verrucomicrobia, Chloroflexi (6%) > Actinobacteria (4%)
> Gemmatimonadetes and Nitrospira (2%) (Figure 1b).
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Prominent bacterial families between E− and E+ soil was Planctomycetaceae, Balsto-
catellaceae_(subgroup_4), Chitinophagaceae, and Bacillaceae (Figure 2). Moreover, we found
several characteristics including: nitrogen-utilizing, phosphorus solubilizing, bio-controller,
chitin degrading, nitrate reducers, drought and salt tolerant, and other nutrient solubiliz-
ing bacterial families, for instance, Planctomycetaceae, Xanthobacteraceae, Flavobacteriaceae,
Bradyrhizobiaceae, Acidobacteriaceae_(Subgroup_1), DA101_soil_group, Anaerolineaceae, Nitro-
somonadaceae, Tepidisphaeraceae, Gemmatimonadaceae, Cytophagaceae, Burkholderiaceae, and
Comamonadaceae (Figure 2 and Supplemental Material S1). Endophyte-free tall fescue
soil had higher Planctomycetaceae (31% of Planctomycetes) and Chitinophagaceae (10% of
Bacteroidetes) compared to the E+ soil, where the Balstocatellaceae_(subgroup_4) (7% of
Acidobacteria) and Bacillaceae (5% of Firmicutes) were higher (Figure 2).
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3.3. Soil Fungal Abundance, Diversity, and Community Composition

We identified 71 and 652 fungal ASVs in the E− and E+ tall fescue soil collected from
the tall fescue plots, respectively. In E+ tall fescue soil, we identified 6 phyla, 24 classes,
43 orders, 76 families, and 112 bacterial genera. We identified 3 phyla, 6 classes, 10 orders,
18 families, and only 19 bacterial genera in E− tall fescue soil. In both E− and E+ tall fescue
soil, the dominant fungal phyla consisted of Basidiomycota and Ascomycota, respectively
(Figure 3a,b). The mean fungal Shannon diversity index was lower overall and was not
statistically significant between the E− (mean H′ = 1.21) and E+ (mean H′ = 1.27) soil.
Fungal beta diversity presented with principal coordinate analysis (PCoA) based on Bray–
Curtis dissimilarities also showed no significant differences. Interestingly, however, we did
observe a fungal community shift between E− and E+ tall fescue soil. While Basidiomycota
(70%) dominated E− soil, E+ soil had Ascomycota as the prominent phylum (Figure 3a,b).
Based on the toxicity status of the endophyte presence in the tall fescue, E+ soil showed
a similar percent abundance at phyla level where both toxic and non-toxic infected tall
fescue soil had Ascomycota as the prominent phylum (Figure 4). Arbuscular mycorrhizal
fungi (AMF) belonging to Glomeromycota phylum (1% of the total fungal abundance)
were identified in only E+ fescue soil (Figure 3a). In the case of fungal genera, while E+
soil had no such genus that exceeded more than 5% of the total abundance, the most
prominent genus in E− soil belonged to Cortinarius (59% of Basidiomycota) (Figure 5).
Interestingly, we measured greater diversity at the genus level in E+ soil (111 genera)
compared to E− soil (19 genera). These different fungal genera have been shown to
contribute to: plant growth promotion, plant-pathogen suppression, lignin degradation,
nitrogen utilization, phosphorus solubilization, biodegradation, phytohormone production,
and provides resistance against abiotic stresses such as drought, salt intrusion, and cold
tolerance, etc. (Figure 5 and Supplemental Material S2).



Microorganisms 2021, 9, 1843 7 of 15

Microorganisms 2021, 9, x FOR PEER REVIEW 7 of 15 
 

 

contribute to: plant growth promotion, plant-pathogen suppression, lignin degradation, 
nitrogen utilization, phosphorus solubilization, biodegradation, phytohormone produc-
tion, and provides resistance against abiotic stresses such as drought, salt intrusion, and 
cold tolerance, etc. (Figure 5 and Supplemental Material S2).  

 
Figure 3. (a,b) Distribution of major fungal phyla in soil based on endophyte presence in tall fescue. 

Toxic Endophyte Non-toxic Endophyte

R
el

at
iv

e 
pe

rc
en

t a
bu

nd
an

ce
 o

f 
m

aj
or

 fu
ng

al
 p

hy
la

 in
 s

oi
l

0

20

40

60

80

100
Ascomycota 
Basidiomycota 
Rozellomycota 
Mortierellomycota 
Chytridiomycota 
Glomeromycota 
Kickxellomycota 

 
Figure 4. Prominent fungal phyla in soil based on endophyte toxicity in tall fescue. 

Figure 3. (a,b) Distribution of major fungal phyla in soil based on endophyte presence in tall fescue.

Microorganisms 2021, 9, x FOR PEER REVIEW 7 of 15 
 

 

contribute to: plant growth promotion, plant-pathogen suppression, lignin degradation, 
nitrogen utilization, phosphorus solubilization, biodegradation, phytohormone produc-
tion, and provides resistance against abiotic stresses such as drought, salt intrusion, and 
cold tolerance, etc. (Figure 5 and Supplemental Material S2).  

 
Figure 3. (a,b) Distribution of major fungal phyla in soil based on endophyte presence in tall fescue. 

Toxic Endophyte Non-toxic Endophyte

R
el

at
iv

e 
pe

rc
en

t a
bu

nd
an

ce
 o

f 
m

aj
or

 fu
ng

al
 p

hy
la

 in
 s

oi
l

0

20

40

60

80

100
Ascomycota 
Basidiomycota 
Rozellomycota 
Mortierellomycota 
Chytridiomycota 
Glomeromycota 
Kickxellomycota 

 
Figure 4. Prominent fungal phyla in soil based on endophyte toxicity in tall fescue. Figure 4. Prominent fungal phyla in soil based on endophyte toxicity in tall fescue.



Microorganisms 2021, 9, 1843 8 of 15
Microorganisms 2021, 9, x FOR PEER REVIEW 8 of 15 
 

 

Endophyte Status
Endophyte Infected Endophyte Free

R
el

at
iv

e 
pe

rc
en

t a
bu

nd
an

ce
 o

f m
aj

or
 fu

ng
al

 g
en

er
a

0

20

40

60

80

100

Discosia 
Fusarium 
Cladosporium 
Penicillium 
Aspergillus 
Mortierella 
Bannoa 
Curvularia 
Cortinarius 
Exophiala 
Trechispora 
Neoascochyta 
Acremonium 
Humicola 
Pyrenochaetopsis 
Alternaria  
Pseudophaeomoniella 
Pseudopithomyces 
Ramicandelaber 
Trichoderma 
Cyathus 
Cyphellophora 
Gibberella 
Knufia 
Monocillium 
Roussoella 
Scytalidium 
Lecythophora 
Oxyporus 
Disciseda 
Chlorophyllum 
Periconia 
Westerdykella 
Wojnowiciella 
Exophiala 
Ramicandelaber 
Epicoccum 
Rhizophlyctis 
Sarocladium 
Talaromyces 
Oehlia 
Paraglomus  
Rhizopus 
Ustilago 
Coprinellus 
Malassezia 
Myceliophthora  
Neofitzroyomyces 
Metarhizium 
Niagosphora 
Phialophora 
Poaceascoma 
Solicoccozyma 
Thermomyces 
Other 

 
Figure 5. Relative percent abundance of fungal genres in tall fescue soil. 

4. Discussion 
Despite the intricate nature of soil microbial populations, we found common patterns 

in bacterial community responses in the soil to the endophyte presence in tall fescue and 
our results from soil bacterial analysis indicate that the endophyte presence in tall fescue 
might have had a subtle effect on the bacterial community composition. Contrasting re-
sults, however, have been reported on the impact of the endophyte presence in grass spe-
cies on soil microbial community composition and microbial functions [62]. For instance, 
soil microbial communities may alter microbial functions due to above-ground endophyte 
infection of grass species, such as microbial carbon and nitrogen mineralization [32,63–
65]. Furthermore, endophyte infection of above-ground plant material stimulated below-
ground microbial functions primarily due to endophyte-induced rhizodeposition [66]. In 

Figure 5. Relative percent abundance of fungal genres in tall fescue soil.

4. Discussion

Despite the intricate nature of soil microbial populations, we found common patterns
in bacterial community responses in the soil to the endophyte presence in tall fescue and our
results from soil bacterial analysis indicate that the endophyte presence in tall fescue might
have had a subtle effect on the bacterial community composition. Contrasting results, how-
ever, have been reported on the impact of the endophyte presence in grass species on soil
microbial community composition and microbial functions [62]. For instance, soil microbial
communities may alter microbial functions due to above-ground endophyte infection
of grass species, such as microbial carbon and nitrogen mineralization [32,63–65]. Fur-
thermore, endophyte infection of above-ground plant material stimulated below-ground
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microbial functions primarily due to endophyte-induced rhizodeposition [66]. In our study,
the lack of bacterial diversity in community composition perhaps can be speculated to the
soil micro-niche effect [67]. Due to the size of bacteria, they are expected to be in direct
contact with their immediate surroundings, but often these micro-niches have a different
composition from the soil matrix [68]; thus, plant roots may never come into direct contact
with the bacterial communities living in these niches and perhaps never influence the
community composition of the bacteria living in soils [69].

In our study, Planctomycetes were the dominant oligotrophic phylum (r-strategists)
found in both E+ and E− tall fescue rhizosphere soils and they are well suited for nutrient-
poor soil indicated by lower soil carbon and phosphorus [70–73]. They are thought to be
crucial in soil organic carbon and complex carbon turnover, nitrogen cycling, and sub-
sequently for soil nutrient availability [74–76]. The second dominant bacterial phylum
for both E+ and E− tall fescue soil was a versatile group of copiotroph, known as Pro-
teobacteria, that responds to readily available carbon in soil [75,77]. Additionally, these
Proteobacteria follow a fast growth pattern in the soil, which consequently may act as a
plant growth promoter by releasing soil macro and micro-nutrients from organo-mineral
complexes [78,79], especially under copiotroph environments [80]. It is well documented
that by producing metabolites of fungal-origin, E+ tall fescue has a competitive advantage
over E− grasses, particularly against climatic and edaphic stress, protection against herbi-
vores, enhanced nutrient acquisition, for instance soluble P in nutrient-poor soils [81–83].
In our study, another oligotroph microbial taxa, Acidobacter, was found in greater rel-
ative percent abundance in E+ tall fescue rhizosphere soil, like Planctomycetes, offers
efficient carbon and nitrogen cycling from soil organic matter that can consequently be
used as a readily available nutrient source for the E+ plants [75,84]. The Proteobacteria to
Acidobacteria (P/A) ratio may serve as a general indicator of soil nutrient status; a low
P/A ratio indicates oligotrophic soil environment and a high P/A ratio suggests nutrient
richness [85]. In our study, the percent abundance ratio of Proteobacteria/Acidobacteria
(P/A) was lower in E+ tall fescue rhizosphere soil (1.66) compared to E− tall fescue rhizo-
sphere soil (2.57). In general, E− tall fescue performs poorer in overall plant fitness and
persistence [86], despite the higher soil nutrient status (indicated by high P/A), compared
to E+ infected fescue, possibly due to the lower percent abundance of the Acidobacter
phylum. Additionally, known copiotrophs, such as Bacteroidetes and Verrucomicrobia,
were also present in relatively lower abundance, possibly, due to the overall lower nutrient
concentration of the study site [87,88].

In the case of fungal community composition in soil, endophyte presence in tall fescue
showed a clear shift in fungal phyla in the rhizosphere. In agroecosystems, strong evidence
of multilateral interactions between plant population, soil fungi, and soil solution com-
position has been discovered [69,89–91]. The complex fungal community structure and
greater diversity enable enhanced organic matter decomposition, thereby promoting higher
nutrient absorption by plants and accelerated soil nutrient cycling [92–94]. The plants act
as the energy source for the soil fungal population by releasing photosynthetic carbon
and secondary metabolites in soil [95–99], thus creating a feedback loop. Thus, soil fungal
diversity has a remarkable influence on the fitness of the plant population, soil nutrient
composition, and is vastly influenced by the presence of endophytes in plants [100–102].
The three prominent fungal phyla in soil are the Ascomycota, Zygomycota, and Basid-
iomycota [89], and our study site was dominated by either Ascomycota or Basidiomycota
depending on the presence of endophytes in tall fescue (not the type of endophytes; toxic
or non-toxic). The lower SDI measured for the fungal population in the soil, both E+ and
E−, may have been due to the overall higher soil pH of the study site; fungi generally
grow better in acidic conditions [103], whereas, our study site had an average soil pH of
6.5. The greater relative abundance of Ascomycota and Basidiomycota in E+ and E− tall
fescue rhizosphere soil, respectively, suggests that the presence of endophyte in tall fescue
affects the rhizosphere fungal community structure, possibly through a combination of:
(i) alkaloids such as loline or peramine excretion in the host grass [104,105]; (ii) production
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of VOCs and other biochemical induced by the tall fescue [106,107]; and finally, (iii) higher
rhizodeposition [108], all of which finally contribute to increased resource availability for
soil fungi. This, therefore, is an indication of a three-way relationship between the plant
(tall fescue), fescue-dwelling fungal endophytes, and the soil fungal communities [109].
Furthermore, significantly greater plant-available P in E+ soil compared to E− soil (Table 2),
particularly in non-toxic E+ soil, suggests the unique contribution of a less studied novel
endophyte-host associations to plant nutrition under limited soil plant-available P [110].
This plant-available P in conjunction with the combined presence of Ascomycota, Basid-
iomycota, and Glomeromycota in E+ tall fescue soil in the rhizosphere is likely to contribute
to plant and soil microbial communities’ growth [111]. A highly diverse soil microbial
community can withstand the changing environment, show greater resilience, and may
bring stability in ecosystem functioning [112–115]. The observed higher diversity of fungal
genera in E+ tall fescue soil is particularly important under a stressed environment because
of their impact on plant growth and higher stress amelioration [20,116]. Often, carbon
acquisition can be strictly limited under abiotic stress, such as drought, and the plant-
associated microbial communities lacks the necessary resources to sustain [117]. However,
soil fungal communities may indirectly stimulate photosynthesis in plants by providing
necessary nutrients [118]. Thus, the presence of a complex fungal assemblage at genus level
in E+ tall fescue soil suggests (Figure 5) that root excreted rhizo-deposits from E+ tall fescue
into the soil may have enhanced the mobilization or recruitment of beneficial rhizosphere
fungal communities, and in turn, these different soil fungal communities possibly could
provide greater fitness and resilience to the plant [119–121]. In addition, a greater number
of fungal genera in the soil is also important in offering higher functional redundancy for
both “basic” and “rare” soil functions [121], particularly under disturbed environments,
hence, the greater distribution of different functional groups is a clear indicator of greater
functional redundancy [78] in E+ soil compared to E− soil.

5. Conclusions

Our study suggests that a three-way mutualistic relationship exists between tall fescue,
fungal endophyte, and the soil rhizosphere communities, particularly the soil fungal
community. This study reveals that while there was a subtle change in the soil bacterial
population based on endophyte presence in above-ground tall fescue, prominent changes
were observed in the fungal community at the genus level compared to the endophyte-free
soil. These results point to the possibility that the different soil nutrient acquisition and
environmental stress tolerance imparted by endophytes on tall fescue is probably the result
of mobilization or recruiting of beneficial rhizosphere microorganisms; however, further
field trials of different endophytes in common plant genetic backgrounds are needed to
confirm this.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9091843/s1, Supplemental Material S1: Prominent bacterial families (%)
present in endophyte infected and endophyte free tall fescue soil, Supplemental Material S2: Promi-
nent fungal genres (%) present in endophyte infected and endophyte free tall fescue soil.
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