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Abstract 

Background:  Glioblastoma (GBM) has a high incidence rate, invasive growth, and easy recurrence, and the current 
therapeutic effect is less than satisfying. Pyroptosis plays an important role in morbidity and progress of GBM. Mean‑
while, the tumor microenvironment (TME) is involved in the progress and treatment tolerance of GBM. In the present 
study, we analyzed prognosis model, immunocyte infiltration characterization, and competing endogenous RNA 
(ceRNA) network of GBM on the basis of pyroptosis-related genes (PRGs).

Methods:  The transcriptome and clinical data of 155 patients with GBM and 120 normal subjects were obtained 
from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). Lasso (Least absolute shrinkage and 
selection operator) Cox expression analysis was used in predicting prognostic markers, and its predictive ability was 
tested using a nomogram. A prognostic risk score formula was constructed, and CIBERSORT, ssGSEA algorithm, Tumor 
IMmune Estimation Resource (TIMER), and TISIDB database were used in evaluating the immunocyte infiltration 
characterization and tumor immune response of differential risk samples. A ceRNA network was constructed with 
Starbase, mirtarbase, and lncbase, and the mechanism of this regulatory axis was explored using Gene Set Enrichment 
Analysis (GSEA).

Results:  Five PRGs (CASP3, NLRP2, TP63, GZMB, and CASP9) were identified as the independent prognostic biomark‑
ers of GBM. Prognostic risk score formula analysis showed that the low-risk group had obvious survival advantage 
compared with the high-risk group, and significant differences in immunocyte infiltration and immune related func‑
tion score were found. In addition, a ceRNA network of messenger RNA (CASP3, TP63)–microRNA (hsa-miR-519c-5p)–
long noncoding RNA (GABPB1-AS1) was established. GSEA analysis showed that the regulatory axis played a consider‑
able role in the extracellular matrix (ECM) and immune inflammatory response.
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Background
Glioblastoma (GBM) is the most common malignant 
tumor of the central nervous system [1]. It is character-
ized by invasive growth and easy recurrence [2]. Recently, 
despite continuous developments in treatment meth-
ods, such as surgery, radiotherapy, and chemotherapy 
have been reported, the median survival time of patients 
remains 12–15 months, and no substantial improvement 
has been achieved yet [3]. Some reasons are related to the 
potential molecular and cell heterogeneity of GBM [4]. 
Therefore, exploring the potential molecular mechanism 
of GBM and determining the key therapy targets are of 
important significance.

Pyroptosis is an inflammatory form of programmed 
cell death, and its characteristic lies in membrane per-
foration, cell swelling, plasma membrane rupture, and 
intracellular content release [5]. Pyroptosis is mainly 
mediated by the gasdermin family, which includes 
GSDMA, GSDMB, GSDMC, GSDMD, GSDME/DFNA5, 
and DFNB59. Except DFNB59, the other members of the 
gasdermin family are activated by cleaving the C-termi-
nal and N-terminal domains. Specifically, the N-termi-
nal segments form holes in the plasma membrane, thus 
resulting in the swelling and rupture of cells [6]. Pyropto-
sis cells release proinflammatory molecules to the extra-
cellular environment, thus triggering inflammation and 
immunoreaction [7]. Pyroptosis induced by the combi-
nation of anti-tumor drugs and autophagy inhibitors can 
inhibit GBM growth and increase survival rate [8]. Ren 
et al. [9] reported that activating NF-κB/NLRP3/GSDMD 
pathway can trigger pyroptosis of GBM and thereby 
inhibit GBM growth. Pyroptosis plays a crucial role in the 
pathogenesis and progress of various malignant tumors, 
including GBM [10].

The Tumor microenvironment (TME) is the site of 
tumor cell growth and development. It is composed of 
stromal cells, signaling molecules, immune cells and 
extracellular matrix (ECM) [11]. TME plays an important 
role in the progression and treatment resistance of GBM 
[12]. The GBM microenvironment contains a large num-
ber of innate immune cells (monocytes, macrophages, 
mast cells, microglia, and neutrophils), T cells, vascular 

cells, astrocytes, and oligodendrocytes [13]. It has com-
plex and dynamic communication modes with tumor 
cells, which is essential for tumor proliferation, migra-
tion and immunosuppression [14]. Interactions between 
tumor cells and infiltrating immunocytes are gener-
ally regulated by competing endogenous RNA (ceRNA) 
networks, which are composed of messenger RNAs 
(mRNAs), long noncoding RNAs (lncRNAs), and micro-
RNAs (miRNAs). These networks can regulate the post-
transcription of oncogenes and tumor suppressor genes 
and the interactions between protein and genes, thus 
regulating the biological behavior of tumors, particularly 
invasion and metastasis [15]. Therefore, comprehensive 
understanding of TME cell infiltration characteristics 
related to multiple PRGs and ceRNA networks might 
provide a new perspective for the study of the potential 
mechanisms of the occurrence and development of GBM 
and prediction of its responses to immunotherapeutic 
approaches.

In the present study, potential independent prognosis 
pyroptosis-related genes (prognosis PRGs) of GBM were 
screened comprehensively, and a prognostic model was 
constructed. Independent PRGs and the immunoreac-
tions of tumors are associated. Subsequently, a prognosis 
risk evaluation formula was established on the basis of 
independent prognosis PRGs, and the TME cell infiltra-
tion characterization of differential risk scoring of GBM 
was assessed. The results demonstrated that independent 
prognosis PRGs played a considerable role in the forma-
tion of the TME characterization features of GBM. These 
genes might be attributed to the potential immuno-
therapeutic targets and biomarkers of GBM. The ceRNA 
network of mRNA (CASP3, TP63)–microRNA (hsa-miR-
519c-5p)–lncRNA (GABPB1-AS1) was constructed for 
the first time on the basis of a pyroptosis-related prog-
nostic model with bioinformatics tools for the reverse 
prediction of target genes. The possible action mecha-
nisms of this regulation axis in the growth, invasion, 
and metastasis of GBM were identified using Gene Set 
Enrichment Analysis (GSEA) for the interpretation of the 
prognosis value of PRGs in GBM and relevant molecular 
mechanisms. The workflow is shown in Fig. 1.

Conclusions:  Pyroptosis and TME-related independent prognostic markers were screened in this study, and a prog‑
nosis risk score formula was established for the first time according to the prognosis PRGs. TME immunocyte infiltra‑
tion characterization and immune response were assessed using ssGSEA, CIBERSORT algorithm, TIMER, and TISIDB 
database. Besides a ceRNA network was built up. This study not only laid foundations for further exploring pyroptosis 
and TME in improving prognosis of GBM, but also provided a new idea for more effective guidance on clinical immu‑
notherapy to patients and developing new immunotherapeutic drugs.

Keywords:  Glioblastoma, Pyroptosis, Tumor microenvironment, Immunocyte infiltration, Competing endogenous 
RNA network
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Materials and methods
Datasets and preprocessing
The RNA-sequencing (RNA seq) data of 155 GBM and 
five normal subjects and relevant clinical data were col-
lected from The Cancer Genome Atlas (TCGA) database 
[16] (https://​portal.​gdc.​cancer.​gov/). The RNA seq data 
of the brain tissues of 115 normal subjects were obtained 
from the Genotype-Tissue Expression (GTEx) project 
[17] (https://​www.​gtexp​ortal.​org/). Single-nucleotide pol-
ymorphism (SNP) data were downloaded from TCGA. 
The unit of RNA seq data was normalized as FPKM.

Identification of differentially expressed PRGs
A total of 49 PRGs were extracted from GSEA-MSigDB 
(http://​www.​gsea-​msigdb.​org/​gsea/​login.​jsp), Reactome 

(https://​react​ome.​org/), Harmonizome (https://​maaya​nlab.​
cloud/​Harmo​nizome/), and Pubmed (https://​pubmed.​
ncbi.​nlm.​nih.​gov/). By using R software (version 4.1.1) and 
“ggpubr” R package, 42 PRGs were screened according to 
P < 0.05. The protein–protein interaction (PPI) networks 
of the PRGs were presented using the Search Tool for the 
Retrieval of Interacting Genes (STRING; version 11.5, 
https://​string-​db.​org/) and Cytoscape software (version 
3.8.2). The “igraph” and “reshape2” R packages were used in 
building a differential gene co-expression network.

Analysis of the somatic mutation characteristics of PRGs
The somatic mutation frequency of the 49 PRGs was 
analyzed and visualized with the “maftools” R pack-
age. A mutation abstract plot and oncoplot were then 
generated.

Fig. 1  Workflow diagram. The specific workflow graph of this work

https://portal.gdc.cancer.gov/
https://www.gtexportal.org/
http://www.gsea-msigdb.org/gsea/login.jsp
https://reactome.org/
https://maayanlab.cloud/Harmonizome/
https://maayanlab.cloud/Harmonizome/
https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
https://string-db.org/
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Functional enrichment analysis
We performed Gene Ontology (GO) [18] (http://​geneo​
ntolo​gy.​org/) enrichment and Kyoto Encyclopedia of 
Gene and Genomes (KEGG) [19] (www.​kegg.​jp/​kegg/​
kegg1.​html) pathway analyses with the “clusterProfiler” 
R package. The biological processes, cell components, 
molecular functions, and KEGG pathways of PRGs were 
visualized using the “ggplot2” and “GOplot” R packages.

Establishment and validation of the pyroptosis‑related 
gene prognostic model
Cox regression analysis was used in evaluating the 
prognosis value of the PRGs. Forest map was used to 
display the hazard ratio (HR), 95% confidence inter-
val (CI), and P values of each variable. HR was used 
in determining the protective genes (HR < 1) and risk 
genes (HR > 1). Based on these PRGs related with prog-
nosis, a Lasso (Least absolute shrinkage and selec-
tion operator) Cox regression model was constructed 
with the “glmnet” R package to screen optimal prog-
nosis PRGs. The optimal value of penalty parameter 
(λ) was selected according to 1000 cross-validation 
runs. The weighted regression coefficient and expres-
sion levels of the prognosis PRGs were extracted, 
and the risk score was calculated using the following 
formula as the index for measuring the survival risk 
of each patient: 

∑
5

i
βi × Xi (β: coeffificients, X: gene 

expression level). According to the median risk score, 
patients with GBM in the TCGA were divided into 
low-risk (risk score < median risk value) and high-risk 
(risk score > median risk value) groups. The data visu-
alization algorithms of principal component analysis 
(PCA) and t-distributed stochastic neighbor embed-
ding (t-SNE) were performed using the “Rtsne” and 
“ggplot2” R packages. The survival times of the two 
groups were compared through Kaplan-Meier analysis. 
Receiver operating characteristic (ROC) analysis was 
carried out with the “survival,” “survminer,” and “tim-
eROC” R packages for the evaluation of the prediction 
accuracy of different genes and risk scores.

Independent prognostic analysis and clinical value 
of the risk model
To determine whether the risk score from the gene 
characteristic model can be used as an independent 
prognosis factor for patients with GBM, we conducted 
a univariate and multivariate Cox regression analysis to 
the five prognosis PRGs. A clinical feature heatmap was 
built by extracting the clinical information (age and gen-
der) of patients in the TCGA group and combining with 
risk score in the regression model. A nomogram can be 
used in predicting the prognosis of cancer. In this study, 

a prognostic nomogram was built by including the prog-
nosis PRGs and used in analyzing the probability of 1-, 
2-, and 3-year survival times of patients with GBM. This 
model was implemented using the “rms” R package. The 
calibration curve of the nomogram was plotted for the 
evaluation of its prediction accuracy.

Immunocyte infiltration analysis
The correlation between prognosis PRGs and immuno-
cyte levels (e.g., B cell, CD8+ T cell, CD4+ T cell, mac-
rophage, neutrophil, and dendritic cell) was detected with 
Tumor IMmune Estimation Resource (TIMER) database 
(http://​timer.​cistr​ome.​org/). The correlation between 
the expression of prognosis PRGs and immunoregula-
tors (including immunoinhibitor, immunostimulator and 
MHC molecule) was analyzed using the TISIDB database 
(http://​cis.​hku.​hk/​TISIDB/).

To quantify the relative proportions of immunocytes in 
the high-risk and low-risk groups, we calculated immu-
nocyte infiltration with the CIBERSORT algorithm. Sam-
ples were screened according to the standard (P < 0.05), 
and the percentage of each immunocyte type in the sam-
ples was calculated, which were exhibited in a bar dia-
gram. Correlation heatmap analysis was carried out with 
the “corrplot” R package, which disclosed the correlations 
among 22 types of immunocytes. Additionally, the scores 
of 16 immunocytes and 13 immune-related functions 
were calculated with the ssGSEA algorithm for the anal-
ysis of the differential expression levels in the high-risk 
and low-risk groups.

CeRNA network construction
To elaborate the potential functions of prognosis PRGs 
in GBM, a ceRNA network was built. Starbase (ver-
sion 2.0, http://​starb​ase.​sysu.​edu.​cn/) and MirTarbase 
(version 9.0 beta, http://​mirta​rbase.​cuhk.​edu.​cn/) were 
used in predicting the target miRNA of the progno-
sis PRGs. The top 10 highly connected miRNAs were 
screened by calculating the degree among various 
nodes with the CytoHubba plug-in of Cytoscape soft-
ware (version 3.8.2), and the prognosis values of the 
screened miRNAs were analyzed using the Oncolnc 
database (http://​www.​oncol​nc.​org/). Based on above 
miRNA, Lncbase (version v.2, https://​carol​ina.​imis.​
athena-​innov​ation.​gr/​diana_​tools/​web/​index.​php?r=​
lncba​sev2/) and Starbase were used in predicting the 
lncRNA targets that interacted with miRNAs, and the 
intersection of the lncRNA targets were screened with 
a Venn diagram (https://​bioin​fogp.​cnb.​csic.​es/​tools/​
venny/). The expression and prognosis conditions 
of the lncRNA targets were analyzed with GEPIA2 
(http://​gepia2.​cancer-​pku.​cn/).

http://geneontology.org/
http://geneontology.org/
http://www.kegg.jp/kegg/kegg1.html
http://www.kegg.jp/kegg/kegg1.html
http://timer.cistrome.org/
http://cis.hku.hk/TISIDB/
http://starbase.sysu.edu.cn/
http://mirtarbase.cuhk.edu.cn/php/index.php
http://www.oncolnc.org/
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=site%2Findex)
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=site%2Findex)
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=site%2Findex)
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
http://gepia2.cancer-pku.cn/
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Gene set enrichment analysis
To explore the influences of gene expression on this path-
way, GSEA was carried out. The first 50% of PRG expres-
sion was set as the high-expression group, and the rest 
was set as the low-expression group. GSEA was carried 
out with GSEA software (version 4.1.0).

Results
Defining the expression of PRGs in GBM
A total of 42 differential expressed PRGs in GBM were 
recognized through the comparison of the differential 
expressions of 49 PRGs in 120 normal subjects and 155 
GBM from the TCGA and GTEx database (P < 0.05). 
The expression levels of 13 genes (NLRP2, NLRP7, 
TNF, IL1B, IL6, NLRP1, IL1A, PRKACA, GSDMB, 
CHMP3, CHMP4B, CHMP2B, and CHMP7) in GBM 
were downregulated relative to those in the brain tis-
sues of normal subjects, whereas the expression lev-
els of 29 genes (PLCG1, CASP9, CHMP6, SCAF11, 
CHMP4A, CHMP2A, HMGB1, IRF2, NLRC4, GZMB, 
NOD1, TP63, BAK1, CASP8, BAX, IRF1, CASP3, 

PYCARD, IL18, GSDMD, AIM2, GSDMA, NOD2, 
GZMA, CASP5, CASP6, TP53, CASP1, and CASP4) 
were upregulated (Fig.  2A). To further explore the 
interactions of these differentially expressed PRGs, 
we carried out PPI analysis. As shown in Fig.  2B, the 
minimum required interaction score was set at 0.4, and 
the degree of each node in the network was expressed 
and arranged according to color. The top 10 genes 
in the term of degree were TNF, IL1B, IL18, CASP8, 
IL6, PYCARD, AIM2, NLRC4, AIM2, and NLRC4. 
The correlation network results of the differentially 
expressed PRGs are shown in Fig.  2C. Most differen-
tially expressed PRGs were positively related, whereas 
negative correlations between GZMA and CHMP2A, 
between IL6 and PLCG1, and between GSDMB and 
CHMP4A were found.

Analysis of the somatic mutation characteristics of PRGs
Somatic mutation frequency of 49 PRGs in GBM was 
analyzed. The results demonstrated that missense muta-
tion was the most common mutation classification, and 

Fig. 2  Expression and interactions of the PRGs. A The expression of 49 PRGs in GBM and normal brain tissues. The upper and lower ends of 
the boxes represented the interquartile range of values. The lines in the boxes represented the median value. B The PPI network showing the 
interactions of differentially expressed PRGs (minimum required interaction score = 0.4). The color depth of the node represented the degree. C The 
correlation network of differentially expressed PRGs (red line: positive correlation, blue line: negative correlation. The depth of color reflected the 
intensity of correlation)
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SNP was the most common variant type. Single-nucle-
otide variation mainly occurred in the form of C > T 
(Fig.  3A). In the GBM samples, the top 10 mutation 
genes related to pyroptosis were NLRP3, NLRP7, NLRP2, 
NOD1, CASP1, NLRP1, PLCG1, GZMB, NOD2, and 
CHMP4C (Fig. 3B).

Functional enrichment analysis of the PRGs
GO and KEGG databases were used in analyzing the 
related pathways of differentially expressed PRGs and 
clarifying their functions. As shown in Fig.  4A, the dif-
ferentially expressed PRGs were mainly enriched in the 
positive regulation of cytokine production, regulation of 
interleukin-1 production, positive regulation of cysteine-
type endopeptidase activity, and pyroptosis biological 
processes. In addition, the genes were mainly related to 
multiple cell components, such as inflammasome com-
plex, ESCRT complex, multivesicular body, late endosome 
membrane, pore complex, and immunological synapse. 
Moreover, molecular function analysis verified that the 
PRGs were correlated to endopeptidase activity, cytokine 
receptor binding, protease binding, cysteine-type pepti-
dase activity, peptidase activator activity, and CARD 
domain binding. KEGG pathway enrichment analysis 
demonstrated that the PRGs were closely related to NOD-
like receptor signaling pathway, necroptosis, Salmonella 
infection, legionellosis, lipid and atherosclerosis, and 
pathogenic Escherichia coli infection (Fig. 4B and C).

Construction of the prognostic PRG model
According to the survival-related genes screened through 
univariate Cox regression analysis, 34 differentially 

expressed PRGs (CHMP4A, GSDMA, CHMP3, 
AIM2, CHMP2B, CASP5, NLRC4, BAX, IL18, IRF1, 
IL1B, CASP8, NLRP1, IL6, IL1A, CASP1, CHMP6, 
TP63, PRKACA, NLRP2, PYCARD, GZMA, CHMP7, 
CHMP2A, CHMP4B, CASP6, GSDMD, CASP3, NOD2, 
NOD1, IRF2, CASP4, GZMB, and NLRP7) had HRs 
of > 1, indicating that they were related to increased 
risk. The other genes (CASP9, BAK1, BAK1, HMGB1, 
GSDMB, PLCG1, SCAF11, and TNF) had HRs of < 1 and 
were protective factors (Fig. 5A).

To evaluate the prognosis value of these differen-
tially expressed PRGs, a Lasso-Cox regression model 
was built with “glmnet” R package and used in further 
screening. According to the minimum penalty param-
eter (λ), five of the 42 differentially expressed PRGs were 
retained, namely, CASP3, NLRP2, TP63, GZMB, and 
CASP9 (Fig.  5B and C). A prognosis risk score formula 
was established according to weighted regression coef-
ficient and expression levels based on multivariate Cox 
regression analysis: Risk score = 0.0046 × (expression 
value of CASP3) + 0.0060 × (expression value of 
NLRP2) + (0.0227) × (expression value of TP63) +  
0.1804 × (expression value of GZMB) - (0.0481) × (expres-
sion value of CASP9). According to the median score calcu-
lated in the prognosis risk score formula, 152 patients with 
GBM were divided into low- and high-risk groups. PCA 
and t-SNE analysis demonstrated that patients with differ-
ent risks can be divided into two types (Fig. 5D and E). The 
risk score distribution and survival states of the patients are 
shown in Fig. 5F and G. As risk score increased, the risk of 
death in the patients increased, whereas survival time was 
shortened. According to the Kaplan–Meier survival curve, 

Fig. 3  Somatic mutations and mutational signatures of PRGs in GBM. A The summary plot of somatic mutations of PRGs in GBM. B The oncoplot of 
mutation frequency of PRGs in GBM
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the low-risk group had more obvious survival advantages 
(P = 0.009, Fig. 5H). The area under curve values of the 1-, 
3-, and 5-year ROC curves were 0.675, 0.669, and 0.723, 

respectively (Fig.  5I), indicating that the pyroptosis model 
can predict the 1-, 3-, and 5-year survival rates of patients 
with GBM.

Fig. 4  Functional enrichment analysis of PRGs in GBM. A GO enrichment analyses of PRGs. B KEGG pathway enrichment analyses of PRGs. C Cluster 
plot describing the top 10 results of the KEGG enrichment analysis. Cluster plot displaying a circular dendrogram of the clustering of the expression 
profiles. The inner ring shows the color-coded logFC, the outer ring the assigned functional terms
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Independent prognostic analysis and nomogram 
construction based on risk model
Whether risk score from the gene characteristic model 
can be used as an independent prognosis biomarker of 
GBM was determined using univariate and multivariate 
Cox regression analysis. Univariate and multivariate Cox 
regression analyses demonstrated that the risk score was 
an independent factor that influenced the prognosis of 
patients with GBM (HR = 6.917, 95% CI: 2.760–17.330 and 
HR = 6.168, 95% CI: 2.467–15.420; Fig. 6A and B). In addi-
tion, the clinical feature heatmap in Fig.  6C showed that 
the gender and age of patients showed no significant differ-
ences between the low- and high-risk groups (P > 0.05).

To discuss the importance of these five prognosis PRGs 
to the prognosis prediction of patients with GBM, we 
constructed a nomogram to visualize the Cox regres-
sion model as the survival probability of patients. The 
performance of the model was evaluated using a calibra-
tion curve. Compared with the ideal model, the predicted 
total 3-year survival rate of patients with GBM based on 
prognosis PRGs was slightly different from the practical 
value. All the five prognosis PRGs had good prognosis 
prediction ability for GBM (Fig. 6D and E).

The risk score was closely related to the expression lev-
els of the five prognosis PRGs. It was an important factor 
for predicting the prognosis results of patients with GBM 
and had good prediction ability. The five prognosis PRGs 
might participate in the progress of GBM.

Correlation between the expression of prognostic PRGs 
and immunocyte levels and immunoregulators in GBM
Using the TIMER database, we detected the correla-
tion of five prognosis PRGs with the levels of immu-
nocyte infiltration in GBM (Table S1). As shown in 
Fig. 7A, CASP3 was significantly associated with CD8+ 
T cell (r = 0.109; P = 2.65e-02), macrophage (r = 0.084; 
P = 8.72e-02), neutrophil (r = 0.155; P = 1.50e-03), and 
dendritic cell (r = 0.193; P = 6.89e-05). NLRP2 was sig-
nificantly associated with CD8+ T cell (r = − 0.197; 
P = 4.96e-05). TP63 was significantly associated with 
CD4+ T cell (r = − 0.143; P = 3.34e-03), macrophage 
(r = − 0.167; P = 5.93e-04), and neutrophil (r = − 0.196; 
P = 5.65e-05). GZMB was significantly associated with 
CD8+ T cell (r = − 0.203; P = 3.00e05) and CD4+ T cell 
(r = − 0.174; P = 350e-04). CASP9 was significantly asso-
ciated with CD4+ T cell (r = 0.199; P = 4.22e-05) and 
macrophage (r = 0.174; P = 3.48e-04). The above results 

showed a significant correlation between prognosis PRGs 
and tumor immunocyte infiltration.

To further address the influences of prognostic PRGs 
on tumor immune response, the correlation between the 
expression of prognostic PRGs and immunoregulators 
was calculated according to the TISIDB database. CASP3 
and CASP9 were negatively correlated with immunoin-
hibitor, immunostimulator and MHC molecule in GBM, 
whereas NLRP2, TP63, and GZMB were positively 
related to them (Fig.  7B). Hence, the expression levels 
of the prognosis PRGs were closely related to the abun-
dance of immunocyte infiltration and immunoregulators.

Immunocyte infiltration between the high‑risk and low‑risk 
groups
We used the CIBERSORT algorithm to analyze the abun-
dance of immunocyte infiltration between the high-risk 
and low-risk groups in patients with GBM. The high-risk 
group presented higher distribution levels of monocytes, 
activated dendritic cells, activated mast cells, and eosino-
phils and lower distribution levels of resting NK cells and 
resting mast cells (Fig. 8A). According to the correlations 
among 22 types of immunocytes, activated dendritic cells 
were positively related with naive CD4 T cells (r = 0.47), 
whereas M0 macrophages were negatively related with 
regulatory T cells (r = 0.42). The resting NK cells were 
negatively correlated with activated NK cells (r = − 0.69), 
monocytes, and M2 macrophages were negatively corre-
lated with M0 macrophages (r = − 0.67; r = − 0.6; Fig. 8B).

The differential expression of immunocyte infiltra-
tion and immune-related function score between the 
high- and low-risk groups was analyzed by ssGSEA 
algorithm. Significant differences in B cells, CD8+ T 
cells, dendritic cells, macrophages, neutrophils, NK 
cells, T helper cells, tumor-infiltrating lymphocytes, 
and regulatory T cells were observed between the 
groups (Fig. 8C). Moreover, significant differences in 
the scores of APC co-inhibition, APC co-stimulation, 
CCR, check point, cytolytic activity, HLA, inflamma-
tion-promoting process, parainflammation, T-cell co 
inhibition, T-cell co stimulation, type I FN response, 
and type II FN response were found between the 
groups (Fig. 8D).

Significant difference in immunocyte infiltration was 
found between the groups. Therefore, monocytes, den-
dritic cells, eosinophils, NK cells, and mast cells might 

(See figure on next page.)
Fig. 5  Construction of the prognostic PRG model. A Univariate Cox regression analysis of GBM for each prognostic PRG. B Distribution of Lasso 
coefficient for prognostic PRGs. C Partial likelihood deviance of the Lasso coefficient distribution. D PCA plot of GBM patients based on the risk 
score. E t-SNE plot of GBM patients based on the risk score. F Distribution of GBM patients based on the risk score. G Distribution of GBM patients 
based on survival status. H Overall survival curves for GBM patients in high−/low-risk group. I ROC curves of measuring the predictive value
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Fig. 5  (See legend on previous page.)
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be potential immunocytes that play important roles 
and participated in the progress of GBM.

Construction of the network of mRNA–miRNA–lncRNA
To elaborate the potential molecular mechanism of 
the five pyroptosis-related mRNAs (CASP3, NLRP2, 
TP63, GZMB, and CASP9) which had prognosis values 
in GBM, an mRNA–miRNA–lncRNA co-expression 
network was built. miRNA targets that combined with 
these five prognostic PRGs were predicted reversely by 
using mirTarBase and Starbase. A total of 514 miRNA 
targets of CASP3, NLRP2, TP63, and CASP9 were 
obtained (Fig. 9A). The degree values among miRNAs 
nodes were calculated using the CytoHubba plug-in of 
Cytoscape software, and the top 10 highly connected 
miRNAs were determined (hsa-miR-342-3p, hsa-miR-
582-5p, hsa-miR-3163, hsa-miR-320a, hsa-miR-320c, 
hsa-miR-320d, hsa-miR-320b, hsa-miR-526a, hsa-miR-
519b-5p, and hsa-miR-519c-5p; Fig. 9B). The OncoLnc 
database determined a miRNA, hsa-miR-519c-5p, and 
GBM patients with high expression levels of hsa-miR-
519c-5p. These patients had relatively high total sur-
vival rates (P = 0.0337; Fig.  9C). Based on the above 
miRNA, the upstream lncRNA targets were explored 
for the construction of a miRNA–lncRNA axis. As 
shown in Fig.  9D, for the intersection lncRNAs of 
Lncbase and Starbase, KCNQ1OT1, GABPB1-AS1, 
ENTPD1-AS1, XIST, LINC01018, and LINC00662 
were determined as targets. According to survival 
analysis and differential expression of the lncRNA tar-
gets, only GABPB1-AS1 significantly decreased the 
survival probability of patients with GBM (P = 0.05; 
Fig.  9E) and it was upregulated significantly in the 
GBM samples (|log2FC| < 1; P < 0.01; Fig.  9F). These 
results indicated that the regulatory axis of lncRNA 
GABPB1-AS1/hsa-miR-519c-5p/CASP3/TP63 plays 
an important role in GBM. We further applied ROC 
curves to analyze the predictive ability of CASP3 and 
TP63 genes for disease. The results showed that the 
AUC values of CASP3 gene were 0.539, 0.654, and 
0.832 at 1-, 3-, and 5-year (Fig. 9G), respectively. The 
AUC values for the TP63 gene at 1-, 3-, and 5-year 
were 0.555, 0.540, and 0.999 (Fig.  9H), respectively. 
This demonstrated that the HUB genes CASP3 and 
TP63 can predict the 1-, 3-, and 5-year survival rates of 
GBM patients.

GSEA enrichment
The GSEA results showed that CASP3 and TP63 
were enriched on ECM-related signaling pathways 
(e.g. ECM receptor interaction, adherens junction, 
and TGFβ signaling pathways) and immune-related 
signaling pathways (e.g. Toll-like receptor and NOD-
like receptor signaling pathways; Fig.  10). This result 
showed that the two pyroptosis-related mRNAs are 
closely related to the growth, metastasis, and diffusion 
of GBM, and they play important roles in the immu-
noregulation of GBM TME.

Discussion
Pyroptosis is closely related to malignant tumor [10], and 
TME plays an important role in the progress, metastasis, 
and treatment resistance of GBM [12]. Most studies only 
focused on a single PRG or TME cell type, and antitumor 
effect develops through interactions among tumor sup-
pressor factors and system coordination [20]. Therefore, 
the effects of several PRGs on immunocyte infiltration 
characterization in TME were discussed by combining 
the ceRNA network, which is useful in elucidating the 
potential mechanism of initiation and development of 
GBM and prediction of the responses of immunothera-
peutic approaches. Hence it can guide immunotherapy 
more effectively in clinics.

This study elaborated the differential expression of 49 
PRGs in GBM samples and normal tissues and disclosed 
potential signaling pathways. The expression levels of 
NLRP2, NLRP7, TNF, IL1B, IL6, and NLRP1 in GBM 
were downregulated relative to those in normal tis-
sues, whereas the expression levels of PLCG1, CASP9, 
CHMP6, SCAF11, and CHMP4A were upregulated. 
According to GSEA results, the differential genes mainly 
participated in pyroptosis, cytokine production, NOD-
like receptor signaling pathway, necroptosis, and other 
signaling pathways.

Subsequently, a prediction gene model based on five 
prognosis PRGs (CASP3, NLRP2, TP63, GZMB, and 
CASP9) was constructed by using Lasso-Cox regression 
analysis. The results demonstrated that the five prog-
nosis PRGs had good prognosis prediction ability for 
GBM. According to the TIMER and TISIDB database, 
the correlations between prognosis PRGs and abun-
dance of immunocyte infiltration in GBM were evalu-
ated. The expression levels of the five prognosis PRGs 

Fig. 6  Construction of univariate and multivariate Cox regression analysis of risk score and nomogram of prognostic PRGs. A The P value and 
hazard ratio of the components involved in univariate Cox regression related to clinical parameters and risk score of GBM. B The P value and hazard 
ratio of the components involved in multivariate Cox regression related to clinical parameters and risk score of GBM. C Heatmap for the connections 
between clinical characteristics and high−/low-risk groups. D The nomogram for predicting 1-, 2-, and 3-year overall survival rate in GBM patients. E 
Calibration curve of the overall survival nomogram model

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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Fig. 7  Association between five prognostic PRGs and tumor immune infiltration as well as immunoregulators in GBM. A The association between 
the abundance of immune cells and the expression of CASP3, NLRP2, TP63, GZMB and CASP9 in GBM. B The correlations between the expression of 
CASP3, NLRP2, TP63, GZMB, and CASP9 and immunoinhibitors, immunostimulators and MHC molecules were calculated using the TISIDB database
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Fig. 8  Landscape of immunocyte infiltration. A The relative percentage of 22 types of immune cells. B Correlation matrices for all 22 immune 
cell subtype components. Both horizontal and vertical axes showed immune cell subtypes. The higher, lower, and the same correlation levels of 
immune cell subtype components were shown in red, blue, and white, respectively. C Boxplots of the score differences of 16 immune cells between 
high-risk and low-risk groups. D Boxplots of the score differences of 13 immune-related functions between high-risk and low-risk groups

(See figure on next page.)
Fig. 9  Construction of the ceRNA network. A The result of miRNA targets of prognosis PRGs were predicted by mirTarBase and Starbase databases. 
Red nodes represented highly expressed mRNA, green node represented mRNA with low expression, and blue nodes represented miRNA targets. 
B The relationship between mRNAs and their corresponding highly connected miRNAs. C The survival analysis results of miRNA hsa-miR-519c-5p 
in GBM. D The results of lncRNA targets predicted by Lncbase and Starbase databases. E The survival analysis of lncRNA GABPB1-AS1 in GBM. F The 
differential expression of lncRNA GABPB1-AS1 in GBM and normal samples. G ROC of HUB gene CASP3 in the ceRNA network. H ROC of HUB gene 
TP63 in the ceRNA network
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were closely related to CD8+ T cells, neutrophils, mac-
rophages, dendritic cells, and CD4+ T cells, as well as 
immunoregulators. In addition, a prognosis risk score 
formula was established using the pyroptosis-related 

prognostic model. Patients with GBM were divided into 
low-risk and high-risk groups. The Kaplan-Meier sur-
vival curve showed that the low-risk group had obvious 
survival advantages. Notably, the high-risk and low-risk 

Fig. 10  Single-gene GSEA enrichment results of two mRNAs. A The results of using mRNA in the stepwise reverse prediction of miRNA and LncRNA 
and construction of a ceRNA network. B Single gene enrichment analysis of CASP3. C Single gene enrichment analysis of TP63
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groups showed significant differences in immunocyte 
infiltration. These differences in immunocyte infiltra-
tion between the high-risk and low-risk groups has been 
found to exist in a variety of tumors [21–24]. Our results 
showed that the high-risk group presented relatively high 
distribution levels of monocytes, activated dendritic cells, 
activated mast cells, and eosinophils but relatively low 
distribution levels of resting NK cells and resting mast 
cells. Most of the non-neoplastic population of GBM 
was composed of infiltrating immune cells, whereas local 
inflammatory TME promoted tumor aggressiveness and 
the drug resistance of GBM [25]. For example, some study 
demonstrated that the frequency of M2 macrophages or 
microglia in the TME of recurrent GBM increased [26], 
and dendritic cells presented tumor cell peptides in the 
GBM, leading to cytotoxic T cells response and secre-
tion of proinflammatory cytokines [25]. NK cells are 
activated by IL-12 and can kill GBM cells [27]. Moreover, 
the effectiveness of NK cells in inhibiting systemic metas-
tasis of GBM in xenograft mouse models was reported 
[28]. Hence, TME immunocyte infiltration under differ-
ent risk scores had different features and different tumor 
immune-reactions. The infiltrating immunocytes were 
closely related with the growth, invasion, and metastasis 
of GBM.

To elaborate the potential molecular mechanisms 
of five prognosis PRGs, a ceRNA network was built 
by searching the database and overlapping prediction 
results, which was used in recognizing the lncRNA 
GABPB1-AS1/hsa-miR-519c-5p/CASP3/TP63 regula-
tory axis. LncRNA is a type of noncoding RNAs with 
a length of more than 200 nucleotides [29]. Changes 
in lncRNA expression and its mutation can promote 
the occurrence and metastasis of tumors [30]. lncRNA 
plays a key role in TME intracellular signal transduc-
tion [31]. GABPB1-AS1 is an lncRNA in the cytoplasm. 
Recently, many studies have pointed out that lncRNA 
is a poor prognosis marker of glioma [32], cervical 
cancer [33], breast cancer [34], and prostate cancer 
[35]. According to this study, significant differences in 
GABPB1-AS1 expression was found between tumor 
and normal tissues. Similarly, Li et  al. [36] found high 
expression of GABPB1-AS1 in the glioma tissues, and 
in vitro and in vivo experiments have demonstrated that 
GABPB1-AS1 knockdown reduced the proliferation and 
invasiveness of glioma cells. According to our results, 
Hsa-miR-519c-5p can be regulated by GABPB1-AS1 
specifically, thus regulating the transcriptional levels 
of CASP3 and TP63. On this basis, Hsa-miR-519c-5p 
can control ECM-related signaling pathways (e.g., ECM 
receptor interaction, adherens junction, and TGFβ sign-
aling pathways) and immune-related signaling pathways 
(e.g., Toll-like receptor and NOD-like receptor signaling 

pathways). This demonstrated that ECM and immune 
inflammation reactions played the key role in occur-
rence, invasion and metastasis of GBM. The TGF-β in 
the tumor tissues can inhibit immune cells, decrease 
local inflammation, and promote the reconstruction 
of ECM [37]. ECM components and high expression 
levels on the corresponding cell surface receptors are 
closely related with the progression of GBM [38]. Toll-
like receptors (TLRs) can recognize non-self-molecules 
and activate the inflammation process. TLR expression 
had been observed in various samples, such as GBM 
cases and GBM cell lines, indicating that TLR plays 
an important role in tumor invasion and metastasis 
[39]. Therefore, we speculated that the mechanism by 
which GABPB1-AS1 regulates the transcriptional lev-
els of CASP3 and TP63 and relevant signaling pathways 
through Hsa-miR-519c-5p might play a crucial role in 
the occurrence and development of GBM.

Conclusions
In conclusion, pyroptosis and TME-related independ-
ent prognostic markers were screened, and a prognosis 
risk score formula was established for the first time on 
the basis of prognosis PRGs. TME immunocyte infil-
tration characterization and immune response were 
assessed with ssGSEA, CIBERSORT algorithm, TIMER, 
and TISIDB database. A ceRNA network was then con-
structed. This study not only laid the foundation for 
the further exploration of pyroptosis and TME for the 
improvement of GBM prognosis but also provided novel 
insights for clinical immunotherapy and development of 
novel immunotherapeutic drugs. Deep experimental and 
clinical studies are still needed to elucidate the molecular 
mechanism of GBM and clinical applications of biomark-
ers and immunotherapy.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12885-​022-​09706-x.

Additional file 1: Table S1. Correlation analysis of prognostic PRGs 
expression with immunocyte levels in TIMER database.

Acknowledgements
Not applicable.

Authors’ contributions
HMA and BH designed the study, coordinated technical support and funding. 
BH revised the manuscript. MRD performed the study and drafted the manu‑
script. YJQ, XP, JFC, MXZ and TZ participated the study. All authors read and 
approved the final manuscript.

Funding
This study was supported by Medical Innovation Research Program of Shang‑
hai Municipality (grant number 21Y11920900), and Scientific and Technologi‑
cal Innovation Projects of Longhua Hospital (grant number CX202052).

https://doi.org/10.1186/s12885-022-09706-x
https://doi.org/10.1186/s12885-022-09706-x


Page 17 of 18Ding et al. BMC Cancer          (2022) 22:611 	

Availability of data and materials
The datasets generated and/or analysed during the current study are 
available in the TCGA (https://​portal.​gdc.​cancer.​gov/), GTEx (https://​www.​
gtexp​ortal.​org/), GSEA-MSigDB (http://​www.​gsea-​msigdb.​org/​gsea/​login.​
jsp)​, React​ome (https://​react​ome.​org/), Harmonizome (https://​maaya​nlab.​
cloud/​Harmo​nizome/), R software (version 4.1.1, https://​www.r-​proje​ct.​org), 
STRING (version 11.5, https://​string-​db.​org/)​, Cytos​cape softw​are (versi​on 
3.8.2, https://​cytos​cape.​org), Gene Ontology (GO) http://​geneo​ntolo​gy.​org/), 
KEGG (https://​www.​kegg.​jp/​kegg/​kegg1.​html), TIMER (http://​timer.​cistr​ome.​
org/), TISIDB (http://​cis.​hku.​hk/​TISIDB), Starbase (http://​starb​ase.​sysu.​edu.​cn/), 
MirTarbase (http://​mirta​rbase.​cuhk.​edu.​cn/), Oncolnc (http://​www.​oncol​nc.​
org/), Lncbase (https://​carol​ina.​imis.​athena-​innov​ation.​gr/​diana_​tools/​web/​
index.​php?r=​lncba​sev2/) and GEPIA2 (http://​gepia2.​cancer-​pku.​cn/).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no conflict of interest.

Author details
1 Department of Neurology, Longhua Hospital, Shanghai University of Tra‑
ditional Chinese Medicine, Shanghai 200032, China. 2 Institute of Traditional 
Chinese Medicine in Oncology, Department of Oncology, Longhua Hospital, 
Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China. 
3 Department of Science & Technology, Longhua Hospital, Shanghai University 
of Traditional Chinese Medicine, Shanghai 200032, China. 

Received: 29 November 2021   Accepted: 27 May 2022

References
	1.	 Ohgaki H, Kleihues P. The definition of primary and secondary glioblas‑

toma. Clin Cancer Res. 2013;19(4):764–72.
	2.	 Lucki NC, Villa GR, Vergani N, Bollong MJ, Beyer BA, Lee JW, et al. A cell 

type-selective apoptosis-inducing small molecule for the treatment of 
brain cancer. Proc Natl Acad Sci U S A. 2019;116(13):6435–40.

	3.	 Hu J, Xiao Q, Dong M, Guo D, Wu X, Wang B. Glioblastoma immuno‑
therapy targeting the innate immune checkpoint CD47-SIRPα Axis. Front 
Immunol. 2020;11:593219.

	4.	 Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. 
Single-cell RNA-seq highlights intratumoral heterogeneity in primary 
glioblastoma. Science. 2014;344(6190):1396–401.

	5.	 Fang Y, Tian S, Pan Y, Li W, Wang Q, Tang Y, et al. Pyroptosis: a new frontier 
in cancer. Biomed Pharmacother. 2020;121:109595.

	6.	 Wang L, Qin X, Liang J, Ge P. Induction of Pyroptosis: a promising strategy 
for Cancer treatment. Front Oncol. 2021;11:635774.

	7.	 Tsuchiya K. Switching from apoptosis to Pyroptosis: Gasdermin-elicited 
inflammation and antitumor immunity. Int J Mol Sci. 2021;22(1):426.

	8.	 Kong Y, Feng Z, Chen A, Qi Q, Han M, Wang S, et al. The natural flavonoid 
Galangin elicits apoptosis, Pyroptosis, and autophagy in glioblastoma. 
Front Oncol. 2019;9:942.

	9.	 Ren LW, Li W, Zheng XJ, Liu JY, Yang YH, Li S, et al. Benzimidazoles induce 
concurrent apoptosis and pyroptosis of human glioblastoma cells via 
arresting cell cycle. Acta Pharmacol Sin. 2021. https://​doi.​org/​10.​1038/​
s41401-​021-​00752-y.

	10.	 Jiang M, Qi L, Li L, Li Y. The caspase-3/GSDME signal pathway as a switch 
between apoptosis and pyroptosis in cancer. Cell Death Discov. 2020;6:112.

	11.	 Dapash M, Hou D, Castro B, Lee-Chang C, Lesniak MS. The interplay 
between glioblastoma and its microenvironment. Cells. 2021;10(9):2257.

	12.	 Da Ros M, De Gregorio V, Iorio AL, Giunti L, Guidi M, de Martino M, et al. 
Glioblastoma Chemoresistance: the double play by microenvironment 
and blood-brain barrier. Int J Mol Sci. 2018;19(10):2879.

	13.	 Chen Z, Hambardzumyan D. Immune microenvironment in glioblastoma 
subtypes. Front Immunol. 2018;9:1004.

	14.	 Broekman ML, Maas SLN, Abels ER, Mempel TR, Krichevsky AM, Breake‑
field XO. Multidimensional communication in the microenvirons of 
glioblastoma. Nat Rev Neurol. 2018;14(8):482–95.

	15.	 Huang R, Meng T, Chen R, Yan P, Zhang J, Hu P, et al. The construction and 
analysis of tumor-infiltrating immune cell and ceRNA networks in recur‑
rent soft tissue sarcoma. Aging (Albany NY). 2019;11(22):10116–43.

	16.	 Cancer Genome Atlas Research Network. Comprehensive genomic 
characterization defines human glioblastoma genes and core pathways. 
Nature. 2008;455(7216):1061–8.

	17.	 GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat 
Genet. 2013;45(6):580–5.

	18.	 Gene Ontology Consortium. The gene ontology (GO) project in 2006. 
Nucleic Acids Res. 2006;34(Database issue):D322–6.

	19.	 Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res. 2000;28(1):27–30.

	20.	 Zhang B, Wu Q, Li B, Wang D, Wang L, Zhou YL. m6A regulator-mediated 
methylation modification patterns and tumor microenvironment infiltra‑
tion characterization in gastric cancer. Mol Cancer. 2020;19(1):53.

	21.	 Xie J, Li H, Chen L, Cao Y, Hu Y, Zhu Z, et al. A novel Pyroptosis-related 
lncRNA signature for predicting the prognosis of skin cutaneous mela‑
noma. Int J Gen Med. 2021;14:6517–27.

	22.	 Ping L, Zhang K, Ou X, Qiu X, Xiao X. A novel Pyroptosis-associated long 
non-coding RNA signature predicts prognosis and tumor immune 
microenvironment of patients with breast cancer. Front Cell Dev Biol. 
2021;9:727183.

	23.	 Cao Y, Xie J, Chen L, Hu Y, Zhai L, Yuan J, et al. Construction and validation 
of a novel Pyroptosis-related gene signature to predict the prognosis of 
uveal melanoma. Front Cell Dev Biol. 2021;9:761350.

	24.	 Xie J, Chen L, Tang Q, Wei W, Cao Y, Wu C, et al. A necroptosis-related 
prognostic model of uveal melanoma was constructed by single-cell 
sequencing analysis and weighted co-expression network analysis based 
on public databases. Front Immunol. 2022;13:847624.

	25.	 DeCordova S, Shastri A, Tsolaki AG, Yasmin H, Klein L, Singh SK, et al. 
Molecular heterogeneity and immunosuppressive microenvironment in 
glioblastoma. Front Immunol. 2020;11:1402.

	26.	 Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, et al. Tumor evolution 
of glioma-intrinsic gene expression subtypes associates with immunologi‑
cal changes in the microenvironment. Cancer Cell. 2017;32(1):42–56.e6.

	27.	 Castriconi R, Daga A, Dondero A, Zona G, Poliani PL, Melotti A, et al. NK 
cells recognize and kill human glioblastoma cells with stem cell-like 
properties. J Immunol. 2009;182(6):3530–9.

	28.	 Lee SJ, Kang WY, Yoon Y, Jin JY, Song HJ, Her JH, et al. Natural killer (NK) 
cells inhibit systemic metastasis of glioblastoma cells and have therapeu‑
tic effects against glioblastomas in the brain. BMC Cancer. 2015;15:1011.

	29.	 Wang J, Su Z, Lu S, Fu W, Liu Z, Jiang X, et al. LncRNA HOXA-AS2 
and its molecular mechanisms in human cancer. Clin Chim Acta. 
2018;485:229–33.

	30.	 Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and Cancer: a 
new paradigm. Cancer Res. 2017;77(15):3965–81.

	31.	 Botti G, Scognamiglio G, Aquino G, Liguori G, Cantile M. LncRNA HOTAIR 
in tumor microenvironment: what role? Int J Mol Sci. 2019;20(9):2279.

	32.	 Luan F, Chen W, Chen M, Yan J, Chen H, Yu H, et al. An autophagy-
related long non-coding RNA signature for glioma. FEBS Open Bio. 
2019;9(4):653–67.

	33.	 Ou R, Lv M, Liu X, Lv J, Zhao J, Zhao Y, et al. HPV16 E6 oncoprotein-
induced upregulation of lncRNA GABPB1-AS1 facilitates cervical 
cancer progression by regulating miR-519e-5p/Notch2 axis. FASEB J. 
2020;34(10):13211–23.

	34.	 Suvanto M, Beesley J, Blomqvist C, Chenevix-Trench G, Khan S, Nevan‑
linna H. SNPs in lncRNA regions and breast Cancer risk. Front Genet. 
2020;11:550.

	35.	 Alkhateeb A, Rezaeian I, Singireddy S, Cavallo-Medved D, Porter LA, 
Rueda L. Transcriptomics signature from next-generation sequencing 
data reveals new transcriptomic biomarkers related to prostate cancer. 
Cancer Inform. 2019;18:1176935119835522.

	36.	 Li X, Wang H. Long non-coding RNA GABPB1-AS1 augments malig‑
nancy of glioma cells by sequestering MicroRNA-330 and reinforcing 
the ZNF367/cell cycle signaling pathway. Neuropsychiatr Dis Treat. 
2021;17:2073–87.

https://portal.gdc.cancer.gov/
https://www.gtexportal.org/
https://www.gtexportal.org/
http://www.gsea-msigdb.org/gsea/login.jsp)%E3%80%81Reactome
http://www.gsea-msigdb.org/gsea/login.jsp)%E3%80%81Reactome
https://reactome.org/
https://maayanlab.cloud/Harmonizome/
https://maayanlab.cloud/Harmonizome/
https://www.r-project.org/
https://string-db.org/)%20and%20Cytoscape(version
https://cytoscape.org/
http://geneontology.org/
https://www.kegg.jp/kegg/kegg1.html
http://timer.cistrome.org/
http://timer.cistrome.org/
http://cis.hku.hk/TISIDB
http://starbase.sysu.edu.cn/
http://mirtarbase.cuhk.edu.cn/php/index.php
http://www.oncolnc.org/
http://www.oncolnc.org/
https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2/
https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2/
http://gepia2.cancer-pku.cn/
https://doi.org/10.1038/s41401-021-00752-y
https://doi.org/10.1038/s41401-021-00752-y


Page 18 of 18Ding et al. BMC Cancer          (2022) 22:611 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	37.	 Bryukhovetskiy I, Shevchenko V, Arnotskaya N, Kushnir T, Pak O, Victor Z, 
et al. Transforming growth factor-β mimics the key proteome properties 
of CD133- differentiated and CD133+ cancer stem cells in glioblastoma. 
Int Rev Neurobiol. 2020;151:219–42.

	38.	 Xiao W, Wang S, Zhang R, Sohrabi A, Yu Q, Liu S, et al. Bioengineered 
scaffolds for 3D culture demonstrate extracellular matrix-mediated 
mechanisms of chemotherapy resistance in glioblastoma. Matrix Biol. 
2020;85-86:128–46.

	39.	 Moretti IF, Franco DG, de Almeida Galatro TF, Oba-Shinjo SM, Marie SKN. 
Plasmatic membrane toll-like receptor expressions in human astrocyto‑
mas. PLoS One. 2018;13(6):e0199211.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Pyroptosis-related prognosis model, immunocyte infiltration characterization, and competing endogenous RNA network of glioblastoma
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Materials and methods
	Datasets and preprocessing
	Identification of differentially expressed PRGs
	Analysis of the somatic mutation characteristics of PRGs
	Functional enrichment analysis
	Establishment and validation of the pyroptosis-related gene prognostic model
	Independent prognostic analysis and clinical value of the risk model
	Immunocyte infiltration analysis
	CeRNA network construction
	Gene set enrichment analysis

	Results
	Defining the expression of PRGs in GBM
	Analysis of the somatic mutation characteristics of PRGs
	Functional enrichment analysis of the PRGs
	Construction of the prognostic PRG model
	Independent prognostic analysis and nomogram construction based on risk model
	Correlation between the expression of prognostic PRGs and immunocyte levels and immunoregulators in GBM
	Immunocyte infiltration between the high-risk and low-risk groups
	Construction of the network of mRNA–miRNA–lncRNA
	GSEA enrichment

	Discussion
	Conclusions
	Acknowledgements
	References


