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Abstract
Stay-green, a key trait of wheat, can not only increase the yield of wheat but also its resis-

tance to heat stress during active photosynthesis. Cytokinins are the most potent general

coordinator between the stay-green trait and senescence. The objectives of the present

study were to identify and assess the effects of cytokinins on the photosynthetic organ and

heat resistance in wheat. Two winter wheat cultivars, Wennong 6 (a stay-green cultivar)

and Jimai 20 (a control cultivar), were subjected to heat stress treatment from 1 to 5 days

after anthesis (DAA). The two cultivars were sprayed daily with 10 mg L-1 of 6-benzylamino-

purine (6-BA) between 1 and 3 DAA under ambient and elevated temperature conditions.

We found that the heat stress significantly decreased the number of kernels per spike and

the grain yield (P < 0.05). Heat stress also decreased the zeatin riboside (ZR) content, but

increased the gibberellin (GA3), indole-3-acetic acid (IAA), and abscisic acid (ABA) contents

at 3 to 15 DAA. Application of 6-BA significantly (P < 0.05) increased the grain-filling rate,

endosperm cell division rate, endosperm cell number, and 1,000-grain weight under heated

condition. 6-BA application increased ZR and IAA contents at 3 to 28 DAA, but decreased

GA3 and ABA contents. The contents of ZR, ABA, and IAA in kernels were positively and

significantly correlated with the grain-filling rate (P < 0.05), whereas GA3 was counter-pro-

ductive at 3 to 15 DAA. These results suggest that the decrease in grain yield under heat

stress was due to a lower ZR content and a higher GA3 content compared to that at elevated

temperature during the early development of the kernels, which resulted in less kernel num-

ber and lower grain-filling rate. The results also provide essential information for further utili-

zation of the cytokinin substances in the cultivation of heat-resistant wheat.

Introduction
Global increase in ambient temperature is a critical factor affecting plant growth [1]. High tem-
perature stress is one of the primary abiotic constraints to wheat (Triticum aestivum L.)
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production in many countries [2, 3], especially in the Huang-Huai-Hai plain of China, during
the period from late May to early June, at around the time of anthesis and grain-filling [1, 4–6].
Heat stress causes many biochemical and physiological changes at the cellular and whole plant
level that affect crop yield [7, 8]. The photosynthetic apparatus in leaves are impaired by heat
stress due to damages to the ultra-structure of organelles and reduction in RuBisco activity [9–
11]; grain filling in wheat is, therefore, affected by heat stress due to the declined activity and
duration of leaf photosynthesis [12–14]. In addition, high temperature during the grain-filling
period also markedly affects the carbon (C) metabolism, like the synthesis of starch [15]. The
decreased activities of key enzymes for starch synthesis were observed to be largely responsible
for the reduction in starch accumulation in wheat grains under heat stress [16].

Plant hormones, such as cytokinins, play a key role in the stimulation of cell division,
nucleic acid metabolism, and root-shoot interactions, particularly under stress [17–20]. Appli-
cation of cytokinin could retard leaf senescence and improve creeping bent grass tolerance to
heat stress by increasing the antioxidant activities and decreasing the lipid peroxidation [21].
Treatment of broccoli florets with 6-benzylaminopurine (6-BA) reduced the chlorophyllase
levels and inhibited chlorophyll degradation [22]. It was concluded that higher zeatin (Z) and
zeatin riboside (ZR) levels in the grains increased grain filling percentage during the early and
middle grain-filling stages [23, 24]. In addition, cytokinins in grains could mediate cell division
in rice endosperm at early grain filling stages, and therefore regulate the sink size of the grain
[25].

It is also documented that cytokinins could retain the levels of chlorophyll in the photosyn-
thetic apparatus in barley, wheat and maize [26–28]. In addition, some mutants, such as stay-
green mutants of wheat, are characterized by longer green leaf duration and delayed senescence
[29]. This can be the result of alterations in hormone metabolism and signaling, particularly
affecting networks involving cytokinins and ethylene [30]. However, our understanding of dif-
ferences between stay-green and non-stay-green varieties in yield-forming mechanisms under
heat stress, including for example differences in endosperm cell division and hormonal alter-
ations, is very limited. Moreover, knowledge of the effects of cytokinin application on grain fill-
ing in different stay-green cultivars under heat stress is scant. In the present study, we
conducted two experiments, with two different stay-green trait wheat cultivars, by spraying
exogenous 6-BA (or adding ZR) under ambient and elevated temperature conditions. We
attempted to (i) identify the effect of heat stress on endosperm cell division, grain filling, and
endogenous hormonal alterations; (ii) elucidate the effect of exogenous cytokinins on endo-
sperm cell division and grain filling in stay-green wheat under heat stress; and (iii) improve
our understanding on the regulating mechanism of cytokinins during yield formation in stay-
green winter wheat under heat stress.

Materials and Methods

Plant Materials and Growth Condition
Experiments were carried out during the growing seasons of 2011–2013 (the field experiments
were conducted in 2011–2012 and the indoor experiments in 2012–2013) at Shandong Agricul-
tural University Farm, Tai’an, Shandong province, China (36°090N, 117°090E, 128 m above sea
level). Plants of two winter wheat (Triticum aestivum L.) cultivars, Wennong 6 (a stay-green
cultivar) and Jimai 20 (a non-stay-green cultivar), were grown in experimental plots. Plot size
was 7.5 m2 (3 m × 2.5 m) with 10 rows (0.25 m between rows). The soil contained 12.3 g kg–1

organic matter, 0.91 g kg–1 total N, 0.0872 g mg kg–1 available N, 0.0086 g kg–1 Olsen-P, and
0.0575 g kg–1 Olsen-K. Fertilizer, at the rate of 120 kg ha-1 N, 100 kg ha-1 P2O5, and 100 kg ha

-1

K2O, was applied as basal fertilizer before planting, with another 120 kg ha-1 N applied as

Cytokinins and Grain Yield in Heat-StressedWheat

PLOS ONE | DOI:10.1371/journal.pone.0155437 May 20, 2016 2 / 19

Competing Interests: The authors have declared
that no competing interests exist.



topdressing at stage 31 in the scale of Zadoks et al. [31]. Seeds were sown on October 10, 2011
and October 10, 2012 at a density of 225 plants m–2. Pests, diseases, and weeds were controlled
by appropriate chemical applications during the growing period. Other cultural practices fol-
lowed the precision high-yielding cultivation system of Yu [32].

Treatments and Experimental Design
Field experiments. The field experiment was a 2 × 2 × 2 [two cultivars (Wennong 6 and

Jimai 20), two levels of air temperature (ambient and elevated temperature), and two exoge-
nous regulators treatment (water and 6-BA)] factorial design with 8 treatments. CC and 6-BA
treatments represent spraying with water and 6-BA under ambient temperature condition,
respectively. HC and H6-BA treatment represent spraying with water and 6-BA under elevated
temperature condition, respectively. Each of the treatments had three plots as repetitions in a
completely randomized block design. The elevated temperature treatment was conducted on 6
May 2012 for 5 days, from 1 to 5 days after anthesis (DAA). The method for providing heat
stress was modified from that described by Xu et al. [33]. Transparent plastic sheds (3 m × 3
m × 1.5 m, light transmittance of 92%) were set in the treatment plots of the two varieties from
08:00 to 18:00 hours. The sheds were left in place at night. The sheds had open air shafts (0.2
m × 0.2 m) on all sides to keep them ventilated and make the same concentrations of carbon
dioxide and air humidity on the inside and out. No shading was set in the ambient temperature
condition. Temperatures inside and outside the sheds were measured by a self-recording
instrument, ZDR-20 (Hangzhou Zeda Instruments Co., Ltd). Fig 1 shows hourly average values
of temperatures inside and outside the sheds. Plants were sprayed with 0.01 g L-1 6-BA at a rate
of 100 L ha-1 starting 1 to 3 DAA at 5:00 P.M. Water was sprayed in the control treatment. All
the solutions contained Tween-20, as a surfactant, at a final concentration of 0.5% (v/v). Each
treatment was administered in an area of 7.5 m2 with three replications.

Indoor experiments. The experiments had 3 factors, each with two levels: factor 1: ZR;
factor 2: high temperature for 2 days; factor 3: cultivar. Uniform spikes flowering on the same
day (7 May 2013) were tagged for each cultivar. One day after anthesis, 120 tagged spikes with
flag leaves, from each cultivar were cut at the penultimate stem for use in vitro culture. The dif-
ferent cultures were divided into the following four treatment groups: (1) spikes cultured

Fig 1. Diurnal changes of mean temperature inside and outside the sheds. T and t represent the
elevated temperature and ambient temperature conditions, respectively. Hourly value was averaged over 5
days’measurements.

doi:10.1371/journal.pone.0155437.g001
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without ZR at 25/20°C (day/night) for 10 days (NZR); (2) spikes cultured with ZR at 25/20°C
for 10 days (ZR); (3) spikes cultured without ZR at 35/20°C for 2 days and then for 8 days at
25/20°C (HNZR); (4) spikes cultured with ZR at 35/20°C for 2 days and then for 8 days at 25/
20°C (HZR). The concentrations of sucrose and L-glutamine (nitrogen source) in the culture
medium were 120 and 30 mM, respectively. Other nutrients concentrations in the culture
medium were as described by Xie et al. [34]. The culture medium without ZR was considered
as control. ZR was dissolved in nutrient solution at a concentration of 0.1 mM. Ten detached
ears were sterilized with sodium hypochlorite solution (1% available chlorine) and then cut to
10 cm below the flag leaf node under sterile distilled water, inserted into a sterile conical flask
(150 mL) containing 90 mL of sterile liquid culture medium for each treatment; each treatment
was carried out in triplicates. The spikes were incubated in a growth cabinet (Intelligent Light
Incubator GXZ-500D, Ningbo, China) under a day/night temperature cycle of 25/20°C (35/
20°C for heat stress), 16-h photoperiod (8 h darkness), and a photosynthetic active radiation of
400 μmol m-2 s-1. The culture medium and conical flasks were replaced daily during the culture
period. After 10 days of culture, the grains were separated and used for counting kernel number
per spike and kernel weight.

Sampling. From 3 DAA, thirty spikes from each plot in the field experiments were sam-
pled at 3-days intervals until 35 DAA. Spikes were divided into two parts, one stored at -40°C
for endogenous hormone measurement and the other dehulled for endosperm cell number
measurement. The middle spikelets (from sixth to sixteenth) of two cultivars were detached for
the assay in this study. The first and second basal kernels on each spikelet were detached and
considered as the superior kernels. The third and fourth distal kernels were the inferior kernels.
Another thirty spikes were sampled at 3-days intervals according to the experiment, dried at
70°C to constant weight, dehulled, and weighed. These data were used to simulate the grain-
filling process. Both the grain filling process and endosperm cell division process were fitted by
the Richards’s growth equation, as described by Yang et al. [35]:

WðMÞ ¼ A

ð1þ Be�ktÞ1
N

ð1Þ

where, W was the grain weight (g), M was the endosperm cell number, A was the final grain
weight (g) or the maximum endosperm cell number, t was the time after anthesis (d), and B, k,
and N were the coefficients determined by regression. The active grain-filling (or the active
period of endosperm cell division) period (D) was defined as the period during which W (or
M) constituted from 5% (t1) to 95% (t2) of A.

Grain filling rate (G) or endosperm division rate (R) was calculated as the derivative of Eq
(1):

GðRÞ ¼ AKBe�kt

Nð1þ Be�ktÞNþ1
N

ð2Þ

Integration of the Eq (2) gave the mean grain-filling rate [the mean endosperm cell division
rate (Rmean)]: GmeanðRmeanÞ ¼ Ak

2ðNþ2Þ, and the maximum grain-filling rate [the maximum endo-

sperm cell division rate (Rmax)]: GmaxðRmaxÞ ¼ Akð1þ NÞ�ðNþ1Þ
N .

At maturity, the plants in an area (no heads were sampled from this area) of 1 m2 were har-
vested to determine the yield, number of kernels per spike, and 1,000-grain weight; each mea-
surement was performed on plants from three different plots.

Assays for endosperm cell number. The method for isolation, counting, and calculation
of the endosperm cell number per endosperm was according to Yang et al. [35]. Ten superior
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or inferior kernels were fixed in FAA solution (formalin:acetic acid:ethyl alcohol (70%), 1:1:8,
v/v) for 48 h. Embryos were removed from these kernels, and were stained with hematoxylin
solution for 24 h, washed several times with distilled water, and then hydrolyzed in 0.4% (w/v)
cellulose at 40°C for 8 h and oscillated. Isolated endosperm cells were diluted to 10 mL. One
milliliter solution was filtered through 0.45 μm hydrophobic membrane, and a sample was
placed on a glass slide with a drop of glycerol. Using a light microscope, the endosperm cell
number was counted in ten fields of view for each membrane.

Determination of endogenous hormones. The method for extraction and purification of
ZR, gibberellin (GA3), indole-3-acetic acid (IAA), and abscisic acid (ABA) was modified from
that described by Zhao et al. [36]. A sample of 1 g of kernels from each treatment was ground
to a powder in liquid nitrogen and 4 mL acetonitrile extraction medium with 30 mg sodium
diethyldithiocarbamate added as an antioxidant. The extract was incubated at 4°C for 12 h and
centrifuged at 5,000 × g for 15 min. The residue was further extracted twice with the same sol-
vent. The supernatant was concentrated to a residue under low pressure at 37°C by rotary evap-
oration and redissolved in 8 mL 0.4 mol L–1 Na-phosphate buffer (pH 8.0), followed by
addition of 6 mL chloroform and oscillation to remove the pigment. Insoluble polyvinylpyrro-
lidone (0.15 g) was added to the aqueous phase, and the mixture was centrifuged at 10,000 × g
for 10 min, followed by removal of 5 mL supernatant, which was adjusted to pH 3.0 with pure
formic acid. The aqueous phase was extracted twice with 3 mL ethyl acetate. The ethyl acetate
phase was concentrated by rotary evaporation under low pressure and redissolved in 1 mL
mobile phase (acetonitrile: methanol: 0.6% acetic acid, 5:50:45, v/v). Finally, the hormone
extract was filtered through 0.2 μm hydrophobic membranes, and 10-μL samples were injected
into a Waters Symmetry C18 column (4.6 mm × 150.0 mm, 5 μm) using the mobile phase. The
flow rate was held at 0.6 mL min–1 and the peaks were detected with a photodiode array detec-
tor (Waters 2998 Separation Module, USA) by determining the absorbance at 254 nm.

Statistical analysis. Data in all the experiments were analyzed by PASW software version
18.0 (IBM Corp., Chicago, IL, USA). Multi-factor repeated measure analysis of variance was
used to test significant differences at P< 0.05 among individual genotypes, heat stress treat-
ments, and hormone treatments.

Results

Grain Yield and Grain-Filling Process
Analysis of kernel weight, kernel number, active grain filling period and yield made it possible
to identify the effect of application of 6-BA and the 6-BA × heat stress interaction (Tables 1
and 2). Compared with the ambient temperature treatment, all the yield composition elements
including kernel weight, grain yield, and kernel number, in both the cultivars, significantly
declined at the elevated temperature (Table 1). Kernel weight and grain yield in Wennong 6
were significantly (P< 0.05) decreased by 0.9 g and 19.65%, respectively. In contrast, these val-
ues in Jimai 20 were decreased by 0.9 g and 26.22%, respectively. Superior and inferior kernels
number per spike in Wennong 6 were decreased by 3.7 and 8.2 kernels�spike-1, respectively. In
contrast, these values in Jimai 20 were decreased by 1.3 and 4.4 kernels�spike-1, respectively. In
spite of the fact that the decrease in kernels number of Wennong 6 was more than that of Jimai
20, Wennong 6 had the higher grain yield at the elevated temperature. This is because both ker-
nel number and kernel weight of Wennong 6 were higher than those of Jimai 20 at the elevated
temperature. (Table 1). Application of 6-BA could significantly (P< 0.05) increase both the
kernel weight and yield in the two cultivars. Exogenous 6-BA significantly (P< 0.05) increased
the inferior kernel number in Wennong 6 (0.7 kernels spike-1), and significantly (P< 0.05)
increased superior and inferior kernel number in Jimai 20 (1.4 and 2.1 kernels spike-1) in the
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elevated temperature treatment. The weight of superior kernels was markedly (P< 0.05)
greater than that of inferior kernels in the two cultivars under both the ambient and elevated
temperature conditions. Moreover, analyzing kernel weight, kernel number and yield in both
cultivars at the elevated temperature with exogenous 6-BA application, the results suggested
that the effects of exogenous cytokinin on yield components in Jimai 20 at the elevated temper-
ature were more effective than that in Wennong 6 (Table 1).

Nevertheless, elevated temperature prolonged the active grain-filling period only for supe-
rior kernels; the mean grain-filling rate was significantly decreased for both the cultivars, irre-
spective of the superior or inferior kernels (Table 2). Spraying 6-BA increased the mean grain-
filling rate of superior and inferior kernels in two cultivars. These results indicate that the
improved kernels weight of 6-BA-treated Wennong 6 and Jimai 20 were due to increase of
grain-filling duration and the increase of grain-filling rate, respectively. As expected, the grain-
filling rate in all the treatments showed a parabolic change (Fig 2). Application of 6-BA
increased the grain weight and grain-filling rate at all the grain filling stages under both ambi-
ent and elevated temperature conditions.

In the indoor experiments, highly significant temperature × cultivar and
temperature × 6-BA interactions (P< 0.01) were observed for kernel weight. Kernel weight
and inferior kernels number per spike in the two cultivars were significantly (P< 0.05)
decreased when the spikes were cultured under 35/20°C condition (Fig 3). Kernel weight was
significantly increased with the addition of ZR in culture medium under both 25/20°C and 35/
20°C conditions (Fig 4). Exogenous ZR increased the inferior kernel number per spike in the
two cultivars under 35/20°C condition. These results show that manipulating ZR supply can
affect kernel number and weight under heat stress.

Table 1. Effect of exogenous 6-BA on factors of wheat yield under ambient (AT) and elevated temperature (ET) conditions.

Cultivar Treatment Kernel number per spike Kernel weight (g 1000 kernels-1) Grain yield (g m-2)

Total mount Superior Inferior

Wennong 6 AT CC 45.8 a 31.6 a 14.2 a 39.7 b 724.8 b

6-BA 45.4 a 31.1 a 14.3 a 40.8 a 773.9 a

ET HC 33.9 b 27.9 b 6.0 c 38.8 c 582.4 f

H6-BA 34.8 b 28.1 b 6.7 b 39.4 b 638.1 e

Jimai 20 AT CC 34.1 b 26.8 c 7.3 bc 32.4 e 652.2 d

6-BA 34.9 b 27.0 c 7.9 b 33.4 d 667.2 c

ET HC 28.4 d 25.5 d 2.9 d 31.5 f 481.2 g

H6-BA 31.9 c 26.9 c 5.0 c 33.5 d 559.8 f

P-value P(H) 0.0001 0.0001 0.0001 0.0001 0.0001

P (G) 0.0001 0.0001 0.0001 0.0001 0.0001

P (R) 0.0231 0.0413 0.0001 0.0001 0.0001

P (H×G) 0.0001 0.0001 0.0001 0.0027 0.9978

P (H×R) 0.0342 0.0036 0.0123 0.2529 0.0002

P (G×R) 0.2646 0.3362 0.3402 0.0374 0.7998

P (H×G×R) 0.0919 0.4645 0.4928 0.0005 0.2217

P values (P) for the effects of temperature (H), cultivars (G), 6-BA (R) and their interactions (H × G, H × R, G × R, H × G × R) are shown. Values followed

by different letters within the columns are significantly different at the 0.05 probability level.

doi:10.1371/journal.pone.0155437.t001
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Endosperm Cell Number and Endosperm Cell Division Parameters
Mean endosperm cell division rate and max endosperm cell number of superior and inferior
kernels was also reduced (Table 3). As expected, the endosperm cell division rates in all the
treatments showed a parabolic change. Both endosperm cell number and endosperm cell divi-
sion rate were significantly (P< 0.05) influenced by heat stress and 6-BA at all the endosperm
cell division stages, where heat stress inhibited the endosperm cell division and reduced the cell
division rates in both the cultivars from 3 to 18 DAA (Fig 5). There were highly significant
temperature × cultivar interactions (P< 0.01) for the mean endosperm cell division rate of
superior grains. When spraying with exogenous 6-BA, endosperm cell number and endosperm
cell division rates in the two cultivars were significantly (P< 0.05) increased under both the
ambient and elevated temperature conditions.

Endogenous Hormone Levels in Kernels
Fig 6 shows that ZR levels in superior and inferior kernels in both the cultivars increased dur-
ing 3 to 18 DAA, reached their highest level at 18 DAA, and then decreased sharply with grain
filling. Compared with CC treatment, HC treatment significantly (P< 0.05) decreased the ZR
levels in superior and inferior kernels in both the cultivars at all grain filling stages. Both 6-BA
and H6-BA treatments markedly increased the ZR content in the kernels of both the cultivars
from 3 to 28 DAA, compared with CC and HC treatment, respectively.

GA3 content in both the kernels were high initially at the early grain filling stage (Fig 7) and
declined up to 28 DAA. Compared with CC treatment, HC treatment decreased GA3 content
from 3 to 6 DAA in the superior kernels in both the cultivars, but increased GA3 content from
9 to 28 DAA in the superior kernels of Jimai 20. In contrast, from 6 to 28 DAA, the GA3

Table 2. Effect of exogenous 6-BA on active grain filling period andmean grain filling rate of superior and inferior kernels under ambient (AT) and
elevated temperature (ET) conditions.

Cultivar Treatment Active grain filling period (d) Mean grain filling rate (mg per
kernel d-1)

Superior Inferior Superior Inferior

Wennong 6 AT CC 30.59 cd 28.55 a 1.50 a 1.33 b

6-BA 34.28 ab 28.53 a 1.47 b 1.41 a

ET HC 32.54 bc 26.70 b 1.36 cd 1.29 c

H6-BA 35.56 a 28.96 a 1.37 c 1.30 c

Jimai 20 AT CC 27.80 e 23.81 c 1.26 f 1.08 e

6-BA 27.46 e 24.63 c 1.34 d 1.17 d

ET HC 28.70 de 22.92 d 1.17 g 1.05 f

H6-BA 29.54 de 22.74 d 1.30 e 1.10 e

P-value P(H) 0.0075 0.0001 0.0001 0.0001

P (G) 0.0001 0.0001 0.0001 0.0001

P (R) 0.0026 0.0021 0.0001 0.0001

P (H×G) 0.9035 0.1026 0.0003 0.0497

P (H×R) 0.8047 0.1227 0.0015 0.0003

P (G×R) 0.0075 0.0585 0.0001 0.0497

P (H×G×R) 0.3754 0.0007 0.6768 0.2209

P values (P) for the effects of temperature (H), cultivars (G), 6-BA (R) and their interactions (H × G, H × R, G × R, H × G × R) are shown. Values followed

by different letters within the columns are significantly different at the 0.05 probability level.

doi:10.1371/journal.pone.0155437.t002
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content in the inferior kernels of the two cultivars was significantly (P< 0.05) increased by
heat stress. Under control temperature condition, 6-BA application decreased GA3 content
from 3 to 12 DAA in superior and 6 to 18 DAA in the inferior kernels of Jimai 20. However,
6-BA application increased the GA3 content from 15 to 28 DAA in superior and 21 to 28 DAA

Fig 2. Grain weight and grain-filling rate for superior (A, B) and inferior kernels (C, D).CC and 6-BA represent treatments with water
and 6-BA under non-heated condition, respectively. HC and H6-BA represent treatment with water and 6-BA under heated condition,
respectively. Solid line and dotted line represent endosperm grain weight and grain-filling rate, respectively. Vertical bars
represent ± standard error of the mean (n = 3) where they exceed the size of the symbol.

doi:10.1371/journal.pone.0155437.g002

Fig 3. Effects of high temperature and exogenous ZR on the kernel number at 10 days after anthesis. NZR and ZR
represent detached spike culture without and with ZR under 25/20°C condition, respectively. HNZR and HZR represent
detached spike culture without and with ZR under 35/20°C condition, respectively. Vertical bars represent ± standard error of
the mean (n = 9) where they exceed the size of the symbol. *, ** denote significant differences at P < 0.05, P < 0.01,
respectively.

doi:10.1371/journal.pone.0155437.g003
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in inferior kernels of Jimai 20. Compared with HC treatment, H6-BA treatment decreased the
GA3 content from 3 to 12 DAA in superior and 9 to 28 DAA in inferior kernels of the two
cultivars.

IAA content first increased and then decreased, reaching maximum values at 18 DAA for
superior and inferior kernels (Fig 8). Under all the treatments, the peak values in IAA

Fig 4. Effects of high temperature and exogenous ZR on kernels weight at 10 days after anthesis. NZR and ZR
represent detached spike culture without and with ZR under 25/20°C condition, respectively. HNZR and HZR represent
detached spike culture without and with ZR under 35/20°C condition, respectively. Vertical bars represent ± standard error of
the mean (n = 9) where they exceed the size of the symbol. *, ** denote significant difference at P < 0.05, P < 0.01,
respectively.

doi:10.1371/journal.pone.0155437.g004

Table 3. Effect of exogenous 6-BA on the mean endosperm cell division rate andmax endosperm cell number of superior and inferior kernels
under ambient (AT) and elevated temperature (ET) conditions.

Cultivar Treatment Max endosperm cell number (×
103 cells per endosperm)

Mean endosperm cell division
rate (× 103 cells per
endosperm d-1)

Superior Inferior Superior Inferior

Wennong 6 AT CC 194.00 c 72.85 bc 14.22 b 3.09 d

6-BA 208.54 a 79.54 a 13.33 c 4.17 b

ET HC 187.10 d 59.40 e 12.87 c 2.94 d

H6-BA 201.92 b 69.35 cd 13.33 c 4.07 b

Jimai 20 AT CC 166.51 f 67.88 d 14.42 b 4.04 b

6-BA 180.69 e 74.18 b 16.63 a 4.62 a

ET HC 138.24 h 58.37 e 10.87 d 3.16 cd

H6-BA 152.11 g 65.06 d 10.96 d 3.53 c

P-value P(H) 0.0001 0.0030 0.0001 0.0001

P (G) 0.0001 0.0001 0.1114 0.01

P (R) 0.0001 0.0001 0.0023 0.0001

P (H×G) 0.0001 0.2797 0.0001 0.0003

P (H×R) 0.9947 0.4269 0.1554 0.6709

P (G×R) 0.8278 0.4269 0.0001 0.0036

P (H×G×R) 0.9212 0.5306 0.0001 0.4920

P values (P) for the effects of temperature (H), cultivars (G), 6-BA (R) and their interactions (H × G, H × R, G × R, H × G × R) are shown. Values followed

by different letters within columns are significantly different at the 0.05 probability level.

doi:10.1371/journal.pone.0155437.t003
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concentration occurred at 21 and 18 DAA for superior and inferior kernels in Wennong 6.
Application of 6-BA markedly increased the IAA content of two cultivars at all the grain filling
stages. HC treatment decreased the IAA content from 9 to 15 DAA in the superior kernels, but
increased it from 6 to 24 DAA in the inferior kernels of Jimai 20. Compared with the HC treat-
ment, the H6-BA treatment increased the IAA content from 3 to 18 DAA in the superior and 6
to 28 DAA in the inferior kernels of Wennong 6.

Fig 9 displays the ABA content in the two cultivars. ABA content in the kernels sharply
increased during the early grain filling stage, reached a maximum at 18 DAA for superior and
at 12 DAA for inferior kernels of Jimai 20, and dropped very quickly, thereafter. Application of
6-BA decreased the endogenous ABA contents in the two types of kernels in the two cultivars
under both control temperature and heat stress conditions.

Fig 5. Endosperm cell number and endosperm cell division rate for superior (A, B) and inferior kernels (C, D). CC and 6-BA
represent treatment with water and 6-BA under non-heated condition, respectively. HC and H6-BA represent treatment with water and 6-BA
under heated condition, respectively. Solid line and dotted line represent endosperm cell number and endosperm cell division rate,
respectively. Vertical bars represent ± standard error of the mean (n = 9) where they exceed the size of the symbol.

doi:10.1371/journal.pone.0155437.g005
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Relationships between Hormone Contents in Kernels and Grain-Filling
Rate
Significant correlation was observed between the hormone content and grain-filling rate (Fig
10). The ZR content of kernels positively and significantly (r = 0.72 ��, 0.71 ��, P< 0.01) corre-
lated with the grain-filling rate at 3 to 15 DAA and at 18 to 28 DAA, respectively. However, GA3

content in the kernels negatively and significantly (r = − 0.38 ��, P< 0.01) correlated with the
grain-filling rate at 3 to 15 DAA, whereas it significantly and positively (r = 0.56 ��, P< 0.01)
correlated with the grain-filling rate at 18 to 28 DAA. IAA contents in kernels significantly and
positively (r = 0.35 ��, 0.54��, respectively.) correlated with the grain-filling rate. Furthermore,
ABA concentration significantly and positively correlated with the grain-filling rate (r = 0.48 ��,
0.50 ��, P< 0.01).

Relationships between Hormone Contents in Kernels and Endosperm
Cell Division Rate
ZR content in the kernels positively and significantly (r = 0.54� and 0.51��) correlated with the
endosperm cell division rate at 3 to 12 DAA and at 15 to 24 DAA, respectively (Fig 11A). The
GA3 content in kernels negatively (r = − 0.35 ��, P< 0.01) correlated with the endosperm cell
division rate at 3 to 12 DAA, but this relationship was significantly positive at 15 to 24 DAA

Fig 6. ZR content for superior (A, B) and inferior kernels (C, D).CC and 6-BA represent treatment with water and 6-BA
under non-heated condition, respectively. HC and H6-BA represent treatment with water and 6-BA under heated condition,
respectively. Vertical bars represent ± standard error of the mean (n = 3) where they exceed the size of the symbol.

doi:10.1371/journal.pone.0155437.g006
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(Fig 11B). IAA content in the kernels positively correlated with the rate of endosperm cell divi-
sion at all the stages (Fig 11C). No significant response of ABA content in the kernels to the
rate of endosperm cell division at all the stages were detected (Fig 11D).

Discussion
Wheat is very sensitive to high temperature and needs an optimum temperature for pollination
and grain production [6, 37]. Short period (3 to 5 days) of high temperature (>35°C) stress
post-anthesis could reduce the grain yield by decreasing the starch content and dry matter
accumulation in grain [38–41]. The effect of short periods of exposure to high temperatures
(>31°C) on wheat grain yields are thought to be equivalent to a 2–3°C increase in the seasonal
mean temperature [14]. In the present work, we set the maximum and mean temperature of
heat stress treatment, which reached 37°C and 33°C, respectively (Fig 1). The results showed
that grain yield of the two cultivars were significantly (P< 0.05) decreased by elevated temper-
ature treatments (Table 1). The heat stress treatment reduced the number of kernels per spike
and the kernel weight. We also found that the number of endosperm cells in the superior and
inferior kernels of the two cultivars was significantly (P< 0.05) reduced by the heat stress,
whereas the inferior kernels proved to be a bigger disadvantage in the response to the adverse
environment. Although the active grain-filling period was a little prolonged under heat stress,
especially for the superior kernels, it was just the wheat adaptation that had to be compensated

Fig 7. GA3 content in superior (A, B) and inferior kernels (C, D). CC and 6-BA represent treatment with water and 6-BA
under non-heated condition, respectively. HC and H6-BA represent treatment with water and 6-BA under heated condition,
respectively. Vertical bars represent ± standard error of the mean (n = 3) where they exceed the size of the symbol.

doi:10.1371/journal.pone.0155437.g007
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by the decreased sink capacity stress. The grain yield of Wennong 6 was higher than that in
Jimai 20 under both heated and non-heated conditions. The grain yield of Wennong 6 was
reduced by 19.65%. In contrast, the values in Jimai 20 was reduced by 26.22%. The results indi-
cate that non-staygreen cultivar is susceptible to heat stress. Analyzes its reason, it mainly is
that endosperm cell number of Wennong 6 is insusceptible to heat stress. The grain-filling rate
and endosperm cell division rate of Wennong 6 generally remain high under elevated tempera-
ture treatment, compared to the ambient temperature treatment. Stay-green cultivar could
matain the supply of assimilated carbon to grain during the grain-filling period at the elevated
temperature, which was in accordance with the conclusion that heat tolerance can be improved
by selecting and developing wheat genotypes [42]. It is possible that endogenous hormones are
involved in regulating kernels development.

Plant endogenous hormones play important roles in determining sink strength and seed
weight during development of the caryopsis and are involved in the plant’s response to stresses
[25, 43]. Hays et al. [3] stated that 10 days after pollination, heat stress induced abortion of ker-
nels owing to a rapid increase in ethylene production in the developing kernels. Zeatin could
promote endosperm cell division and increased the sink capacity, resulting in more assimilate
accumulation [44]. In this experiment, the data analysis demonstrated that the effect of exoge-
nous 6-BA on yield composition in Jimai 20 at the elevated temperature was greater than that
in stay-green cultivar Wennong 6. Conversely, exogenous 6-BA enhanced active superior grain

Fig 8. IAA content in superior (A, B) and inferior kernels (C, D). CC and 6-BA represent treatment with water and 6-BA
under non-heated condition, respectively. HC and H6-BA represent treatment with water and 6-BA under heated condition,
respectively. Vertical bars represent ± standard error of the mean (n = 3) where they exceed the size of the symbol.

doi:10.1371/journal.pone.0155437.g008
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filling period, mean inferior endosperm cell division rate and max endosperm cell number of
Wennong 6 much more than that of Jimai 20 at the elevated temperature (Tables 1–3). It was
obvious that great difference was existed between Wennong 6 and Jimai 20 in response to
6-BA under the elevated temperature treatment. This may be due to stay-green cultivar and
non-stay-green cultivar had different cytokinin metabolism, which was consistent with recent
findings [45]. Banowetz et al. [19] found that high temperature reduced the endogenous cyto-
kinin content resulting in the reduction of kernel weight, and the number of kernels, whereas it
could be reversed by supplementing with exogenous cytokinin or IAA [46]. In this study, heat
stress decreased endogenous ZR content, but increased GA3 content at 3 to 15 DAA. Exoge-
nous 6-BA resulted in a decrease in the endogenous GA3 content at early grain filling stages
and maintained a higher endogenous ZR content from 3 to 28 DAA under heat stress in both
the cultivars. The results indicated that ZR, IAA, and ABA content showed significant and pos-
itive correlation with the grain-filling rate and endosperm cell division rate. However, GA3

content negatively correlated with the grain-filling rate and endosperm cell division rate at the
early grain filling stages, whereas the correlation was positive at the late grain filling stages,
partly consistent with the observations of Xu et al. [47]. Exogenous 6-BA significantly pro-
longed active grain filling period in both cultivars (Table 2) and enhanced ZR content (Fig 6)
under heat stress. This indicated that exogenous cytokinins could change cytokinin metabolism
[45], sustain longer active photosynthetic period during the grain filling stage, transfer more

Fig 9. ABA content in superior (A, B) and inferior kernels (C, D). CC and 6-BA represent treatment with water and 6-BA
under non-heated condition, respectively. HC and H6-BA represent treatment with water and 6-BA under heated condition,
respectively. Vertical bars represent ± standard error of the mean (n = 3) where they exceed the size of the symbol.

doi:10.1371/journal.pone.0155437.g009
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assimilates to the grain [48], improve the resistance to abiotic stresses post anthesis [29], and
finally increase yield under heat stress [30]. The above traits were referred to as the stay green
trait in crops by other researchers.

Conclusion
Based on our results and those reported in previous studies, we can summarize the mechanism
of grain yield reduction under heat stress as follows: heat stress (i) decreased the grain sink
strength by reducing the rate of endosperm cell division and the number of endosperm cells
owing to the decrease in ZR content and the increase in GA3 content at the early endosperm
cell division stages and (ii) affected the grain carbohydrate accumulation by decreasing the
grain-filling rate. In our study, the decline in the endosperm cell division rate and grain-filling
rate were mitigated by exogenous cytokinins, especially under heat stress treatment. Therefore,
alleviation of heat stress in wheat grain yield by exogenous cytokinins could be related to
expanding grain sink strength by increasing the endosperm cell number and accelerating grain

Fig 10. Relationship between grain-filling rate and the hormone concentrations in kernels.Closed circles and open triangles
represent hormone concentrations at 3 to 15 days after anthesis (DAA) and at 18 to 28 DAA, respectively. The solid and short dotted line
represent the regression line between grain-filling rate and hormone concentrations at 3 to 15 DAA (n = 72) and at 18 to 28 DAA (n = 64),
respectively. Correlation coefficients (r) are calculated and asterisks (**) represent significance at the 0.01 probability level.

doi:10.1371/journal.pone.0155437.g010
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carbohydrate accumulation by accelerating the grain filling. All the processes were performed
keeping the ZR and IAA content at high levels during the grain-filling period.

Supporting Information
S1 Dataset. Dataset of Figs. Diurnal changes of mean temperature inside and outside the
sheds, grain weight, endosperm cell number, endogenous ZR, GA3, IAA, ABA content for
superior and inferior kernels under ambient (AT) and elevated temperature (ET) conditions,
and relationship between grain-filling rate, endosperm cell division rate and the hormone con-
centrations in kernels. Figs 1–11 were plotted based on this excel file.
(XLS)

S2 Dataset. Dataset of Tables. Yield components, grain filling period, grain filling rate, the
mean endosperm cell division rate and max endosperm cell number of superior and inferior
kernels under ambient (AT) and elevated temperature (ET) conditions. Tables 1–3 were cre-
ated based on this excel file.
(XLS)

S1 Fig. The phenotype of Jimai 20 and Wennong 6 at 30 days after anthesis.
(TIF)

Fig 11. Relationship between endosperm cell division rate and hormone concentrations in the kernels.Closed circles and open
triangles represent hormone concentration at 3 to 12 days after anthesis (DAA) and at 15 to 24 DAA, respectively. The solid and short
dotted line represent the regression line between endosperm cell division rate and hormone concentration at 3 to 15 DAA (n = 56) and at 18
to 28 DAA (n = 64), respectively. Correlation coefficients (r) are calculated and asterisks (**) represent significance at the 0.01 probability
level and asterisks (*) represent significance at the 0.05 probability level.
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