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ABSTRACT
Dendritic cells (DCs) are critical players at the intersection of innate and adaptive immunity, making them 
ideal candidates for anticancer vaccine development. DC-based immunotherapies typically involve iso-
lating patient-derived DCs, pulsing them with tumor-associated antigens (TAAs) or tumor-specific anti-
gens (TSAs), and utilizing maturation cocktails to ensure their effective activation. These matured DCs are 
then reinfused to elicit tumor-specific T-cell responses. While this approach has demonstrated the ability 
to generate potent immune responses, its clinical efficacy has been limited due to the immunosuppres-
sive tumor microenvironment. Recent efforts have focused on enhancing the immunogenicity of DC- 
based vaccines, particularly through combination therapies with T cell-targeting immunotherapies. This 
Trial Watch summarizes recent advances in DC-based cancer treatments, including the development of 
new preclinical and clinical strategies, and discusses the future potential of DC-based vaccines in the 
evolving landscape of immuno-oncology.
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Introduction

Dendritic cells (DCs) are pivotal at the interface of innate and 
adaptive immunity, positioning them as prime targets for anticancer 
vaccine research.1,2 In 1973, Ralph Steinman first identified DCs3 

and was awarded the Nobel Prize in 2011 for this groundbreaking 
discovery.4 Steinman’s pioneering research significantly advanced 
our understanding of the innate immune system.5,6 These cells, 
which were named after the Greek term “dendron” because of 
their ‘tree-like’ shape, are now recognized as professional antigen- 
presenting cells (APCs).3,5,7–11 Indeed, DCs are highly specialized in 
antigen presentation,12,13 a process that is vital for initiating and 
regulating immune responses.14 They are capable of presenting 
extracellular antigens on major histocompatibility complex 
(MHC) class II molecules to CD4+ T helper (TH)15 cells and 
intracellular antigens on MHC class I molecules to CD8+ cytotoxic 
T lymphocytes (CTLs). In addition, DCs have the ability to present 
extracellular antigens on major histocompatibility complex (MHC) 
class I, through a process known as cross-presentation.12,13,16–18 

This ability to cross-present is particularly crucial for eliciting effi-
cacious antitumor immune responses, highlighting the importance 
of DCs in cancer immunotherapy.19–21

The field of DC research has expanded significantly since 
Steinman’s discovery, with extensive studies focusing on the 
functionality and interactions of DCs with CD4+ and CD8+ 

T cells,22–25 This research has been propelled by advances in 
high-dimensional flow cytometry, single-cell transcriptomics, 
in vivo imaging, and sophisticated in vivo transgenics. These 
technologies have significantly refined the classification of 
dendritic cells (DCs) into distinct biological subsets, defined 
by their phenotype, ontogeny, and function.22,26–30 These sub-
sets include two types of ‘classical’ or ‘conventional’ DCs: type 
1 cDC (cDC1)31,32 and type 2 cDC (cDC2), as well as plasma-
cytoid DCs (pDCs)33–38 Nowadays it is well known that cDCs 
and pDCs are completely distinct from monocyte-derived DCs 
(moDCs) in terms of lineage, whereas for a long time, it was 
traditionally believed that DCs originated from 
monocytes.2,34,39,40 While cDC1 and cDC2 share a common 
DC progenitor, the developmental origins of pDCs41 remain 
a subject of debate.29,42–45

Each subset of DCs exhibits unique functional specializa-
tions, contributing to their distinct roles in immune responses 
during health and disease. The pDCs are renowned for their 
robust type I interferon (IFN) responses, in particular the 
production of IFN-α,42-44,46–49 However, their presence in 
tumors is often associated with poor prognosis due to impaired 
type I IFN production in the tumor microenvironment (TME), 
leading to immunosuppression.49,50 The cDC1s are particularly 
proficient in activating CD8+ T cells through cross- 
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presentation and are essential for antitumor immunity, being 
the only canonical DCs capable of effectively prime tumor- 
specific CD8+ T cells.29,51–56 They also produce interferon-λ, 
thereby manipulating T cell responses toward a helper T cell 
phenotype.57 Their abundance in the TME frequently corre-
lates with prolonged patient survival.58,59 Conversely, cDC2s 
are primarily involved in presenting exogenous antigens to 
various CD4+ T helper cell subsets60,61 and can secrete high 
levels of interleukin-12 (IL-12),62,63 which is critical for the 
expansion and survival of T and natural killer (NK) cells.64,65

In homeostatic conditions, both tissue-resident (found in 
the tissues where they are seeded) and circulating (found in 
peripheral blood) DCs exist in an immature state, which is 
crucial for immunosurveillance and maintaining tolerance to 
self-antigens,66-68 Immature DCs (iDCs) excel at taking-up 
extracellular material and promoting the expansion of regula-
tory T cells (Treg) if DCs encounter self-antigens, thereby 
preventing autoimmunity,69–73 Upon encountering activating, 
foreign, and/or non-self stimuli, iDCs undergo maturation,74– 

82 which is characterized by decreased antigen uptake, 
increased expression of co-stimulatory molecules, and 
enhanced cytokine secretion, enabling them to efficiently 
prime T cells in lymph nodes.69,73

Given their pivotal role in antigen presentation and T cell 
activation, DCs have become central to anticancer vaccination 
strategies,83–90 Classically, in clinical studies, DC vaccines are 
generated by differentiating DCs ex vivo from patients’ auto-
logous monocytes, followed by exposing these DCs to tumor- 
associated or specific antigens (TAAs or TSAs)91,92 and 
maturation-inducing agents. These DC vaccines are then rein-
fused back into the patients.1,88,93–103 Although the precise 
relationship of such moDCs to the canonical DC lineages is 
not entirely clear, such cells become particularly prevalent 
under inflammatory conditions.104,105,106 They are potent sti-
mulators of CD4+ T cells and cross-present antigens and acti-
vate CD8+ T cells.95,106 Despite some success in triggering anti- 
tumor immune responses, the therapeutic impact of DC-based 
vaccines in clinical trials has been constrained, largely due to 
the potent immunosuppressive mechanisms within the 
TME.94,107–111

Although moDCs are commonly used for vaccine develop-
ment due to practical advantages, increasing evidence indicates 
that cDCs may have superior T cell stimulatory 
capabilities.95,97,112,113 Consequently, there is growing interest 
in exploring naturally occurring DC subsets, such as cDCs, 
Langerhans cells (LCs) – cells that originate from the bone 
marrow and then migrate into the epithelium to perform the 
function of antigen recognition and presentation114,115− and 
pDCs, in the context of DC vaccines. Early clinical trials show 
promising results, but further validation of the protocols for 
isolating or differentiating these cells in vitro is still 
needed.31,115–120

To determine whether the historically low efficacy of 
moDC-based vaccines stems from their potentially less 
effective T cell stimulation or other unknown resistance 
mechanisms specific to DC vaccines, future clinical trials 
involving cDC- and pDC-based anticancer vaccines will be 
critical121–125 Additionally, significant advancements have 
been made in the field of therapeutic DC vaccination, 

with a range of sophisticated strategies now being tested 
in preclinical and clinical trials. These strategies encompass 
the ex vivo loading of DCs with TAAs/TSAs, genetic mod-
ification of DCs to express TAAs or TSAs, and in vivo 
activation using various agents such as immunostimulatory 
cytokines or molecules like pathogen-associated molecular 
patterns (PAMPs) and damage-associated molecular pat-
terns (DAMPs) that interact with toll-like receptors 
(TLRs).123,126–129

In defiance of considerable progress, sipuleucel-T 
(Provenge®), a therapy integrating DCs (amongst other 
immune cells) for treating asymptomatic or minimally symp-
tomatic metastatic castrate-resistant prostate cancer, remains 
the only FDA-approved DC-integrating therapy for the last 14  
years. Indeed, sipuleucel-T is not a pure DC preparation but 
a mixture of various immune cells, which could have contrib-
uted to its mixed clinical performance.130–134

Despite the challenges, numerous ongoing clinical studies 
are exploring DC vaccination as a cancer treatment, with many 
investigating multimodal therapeutic approaches that combine 
DC vaccines with immune checkpoint blockers (ICBs) and 
adoptive T cell transfer (ACT),135–141 These innovative combi-
nations offer promising prospects for enhancing DC-based 
cancer immunotherapy.142 This Trial Watch outlines the latest 
advances in preclinical and clinical research on DC vaccines, 
highlighting their potential as a powerful anticancer approach.

Recent preclinical developments

Numerous preclinical studies have been published since our 
last Trial Watch article on DC vaccination for cancer treatment 
in July 2022.143 We have chosen a few key publications to 
highlight the main trends in the field (presented in no order).

Vedunova et al. (National Research Lobachevsky State 
University of Nizhny Novgorod, Nizhny Novgorod, Russia) 
reported the efficacy and molecular mechanism of glioma cell- 
loaded DC vaccines going through immunogenic cell death 
(ICD) induced by photosensitizer-based photodynamic ther-
apy (PS-PDT). Herein, the transcriptional program induced in 
the DC vaccine following incubation with glioma cells under-
going ICD involved a TH17-like footprint. Accordingly, in an 
orthotopic mouse model, the efficacy of ICD-based DC vaccine 
was dependent on retinoic acid receptor-related orphan recep-
tor-(ROR)γt. Interestingly, analysis of the transcriptome of the 
ICD-based DC vaccine highlighted a predictive four-gene sig-
nature (CFH, GALNT3, SMC4, and VAV3) that was related to 
a better overall survival (OS) in glioma patients.144

Adamik et al. (Parker Institute for Cancer Immunotherapy, 
San Francisco, USA) analyzed the transcriptomic and 
immuno-metabolic profiles of the DC vaccines from 35 sub-
jects enrolled in a trial with late-stage melanoma patients. DC 
vaccines demonstrated alterations in multiple immune and 
metabolic pathways, a functional decrease in oxygen consump-
tion rate (OCR)/oxidative phosphorylation (OXPHOS), and an 
increase in extracellular acidification rate (ECAR)/glycolysis. 
By using a technique called single-cell energetic metabolism by 
profiling translation inhibition (SCENITH), they showed that 
metabolic skewing and increased glycolysis in DC vaccines 
impacted OS in melanoma patients. Moreover, single-cell 
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metabolic regulome profiling showed that the lactate transpor-
ter MCT1 (monocarboxylate transporter-1) was increased in 
melanoma patients' DCs as compared to healthy donors. In 
line with this, an increase in glucose uptake and lactate secre-
tion was observed, the latter being described as an immune- 
inhibitory molecule in many immune-related processes.145 

This suggested that culture conditions that more tightly control 
metabolic pathways of monocytic cells might be necessary to 
create more effective DC vaccines capable of inducing effica-
cious antitumor T cell responses.146

Sprooten et al.. (KU Leuven, Leuven, Belgium) used multi- 
omics analyses to find that clinical DC vaccines do not simply 
move from an immature state to functionally mature state after 
relevant clinical preparation steps, as widely expected based on 
previous data. Instead, the DC vaccines develop into three 
patient-dependent developmental trajectories i.e., a type 
I IFN responseHIGH T1 trajectory, which associated with effi-
cacious in situ antigen-specific responses and prolonged 
patient survival. This contrasted with the other T2 (macro-
phage-like state) or T3 (mature regulatory/mreg DC-like state) 
trajectories, both of which correlated to weak in situ antigen- 
specific reactions and a shorter patient survival. However, 
contrary to the above expectations, pre-clinical version of DC 
vaccines following the T1 differentiation trajectory induced an 
unprecedented negative feedback loop that resulted in CD8+ 

T cell-suppressive programmed death-ligand 1 positive (PD- 
L1+) macrophages. This was evident in both preclinical settings 
and glioblastoma (GBM) patients (in an ongoing Phase II 
clinical trial). More specifically, they observed that DC vac-
cines, counter to expectations, created a unique niche of PD- 
L1+ lymph node-associated macrophages (LAMs) as well as 
tumor-associated macrophages (TAMs) across lymph nodes 
and tumors, respectively. These LAMs and TAMs killed 
CD8+ T cells via TNF-related apoptosis-inducing ligand 
(TRAIL) signaling in both these anatomical locations thereby 
inhibiting these DC vaccine’s ability to activate anticancer 
T cells. Accordingly, they showed that combining PD-L1 
blockade (but not blockade of other immune-checkpoints) 
with DC vaccination achieved significant tumor regression by 
depleting PD-L1+TAMs/LAMs, suppressing myeloid inflam-
mation, and de-inhibiting effector/stem-like memory T cells. 
Accordingly, they proposed a mandatory multimodal immu-
notherapy combined with DC vaccines exhibiting a type I IFN 
responseHIGH state, to robustly overcome T cell-depleted 
tumors.147

Han et al. (University of Illinois at Urbana-Champaign, 
USA) to enable targeted modulation of adoptively transferred 
DCs for developing improved DC vaccines reported an easy 
metabolic labeling approach. Labeling with metabolic glycan 
showed a reduction of the membrane mobility of DCs, thereby 
activating DCs and improving their ability to present antigens 
and to subsequently prime T cells. Furthermore, the cell- 
surface chemical tags introduced via this labeling method also 
enabled in vivo conjugation of cytokines onto adoptively trans-
ferred DCs, which additionally enhanced cytotoxic 
T lymphocytes (CTL) response and antitumor efficacy.148

Basirjafar et al. (School of Medicine, Rafsanjan University of 
Medical Sciences, Iran) used a murine breast cancer model to 
access the effects of leptin and/or lipopolysaccharide (LPS)-treated 

DC vaccines on multiple T cell-related immunological markers. 
Leptin/LPS-treated DC vaccines showed more efficacy in inhibit-
ing breast cancer development and preventing metastasis. 
Increasing immune responses against tumor induced by leptin/ 
LPS-treated DC vaccines was linked to a significant increase in the 
frequencies of splenic CTLs and TH1 cells, an increased produc-
tion of IFNγ and IL-12, a significant increase in T-box transcrip-
tion factor TBX21 (best known as T-bet) and granzyme 
expression as well as a concomitant decrease in tumor growth 
factor beta (TGF-β) and forkhead box protein P3 (FOXP3) 
expression.149

Chan et al. (University of Guelph, Canada) demonstrated 
the quick hiring of neutrophils to the draining lymph nodes of 
DC-vaccinated mice, a process that occurred together by an 
increased number of IFN-γ-producing NK cells expressing the 
degranulation marker CD107a. In line with this, the reduced 
numbers of NK cells in draining lymph nodes as compared to 
the controls arose from the decrease in neutrophils in DC- 
immunized mice. Notably, the authors also showed that DC 
vaccines induced IFNγ− and TNF-producing CD8+ T cells that 
expressed CD107a, and were not impacted by neutrophils 
depletion, suggesting that neutrophil-mediated antitumor 
immunity induced by DC vaccines might be targeted to 
enhance vaccination efficacy.150

Because cancer vaccines based on peripheral blood mono-
cytes or bone marrow treated with granulocyte-macrophage 
colony-stimulating factor (GM-CSF) i.e., GMDCs, were shown 
to depend on the transfer of antigens from the DC vaccine to 
the host cDC1, Ferris et al. (Washington University in 
St. Louis, Missouri) evaluated whether cDC1 are superior to 
GMDC-based vaccines. For this, they compared antitumor 
responses induced by GMDCs and cDC1s in mice with 
a deleted enhancer located at +32 kb of the interferon regula-
tory factor 8 (Irf8) transcriptional start site (Irf8 +32−/− mice), 
which leads to a lack of endogenous cDC1s in these mice and 
are incapable of rejecting immunogenic fibrosarcoma. Both 
GMDCs and cDC1s could cross-present cell-associated anti-
gens to CD8+ T cells in vitro. Still, tumor injection of GMDCs 
in Irf8 +32−/− mice failed to trigger antitumor immunity, 
aligned with the reported dependence on host cDC1. On the 
other hand, tumor injection of cDC1 into Irf8 +32−/− mice 
induced their migration to the draining lymph node, as well 
as CD8+ T cell activation and tumor rejection. This tumor 
rejection did not require antigen loading on cDC1, showing 
that in vivo acquisition of the antigen by cDC1 leads to anti-
tumor responses.151

Silva et al.. (Oncology Research Institute (IPON), Federal 
University of Triângulo Mineiro (UFTM), Brazil) evaluated 
the behavior of the adhesion molecules, intercellular adhesion 
molecule (ICAM)-1 and ICAM-2, in DC-based immunother-
apy. For this, tumor and lymph nodes of Balb/c mice were 
analyzed 7 and 14 days after therapy. This showed that 
ICAM-2 was associated with a reduction in tumor volume. 
This suggested that the DC vaccine enhances the immune 
system and that ICAM-2 might serve as a marker for high 
immunogenicity.152

Sultan et al.. (Department of Pathology and Immunology, 
Washington University School of Medicine, St. Louis, MO, 
USA) discovered that the efficacy of therapeutic peptide 

ONCOIMMUNOLOGY 3



vaccines targeting tumor-specific neoantigens is strongly influ-
enced by the dosage of the MHC-II neoantigens included in the 
vaccine. To achieve this, Sultan and his team used vaccines 
with MHC-I neoantigens and different doses of tumor-derived 
MHC-II neoantigens and observed that while low doses of 
MHC-II-restricted peptides promoted tumor rejection, high 
doses inhibited rejection in tumor-bearing mice. Inhibitory 
cells induced by the high-dosage vaccines were identified as 
type 1 regulatory T (Tr1) cells (identified as FOXP3-negative, 
IL-10-producing inhibitory cells.153 These tumor-specific Tr1 
cells suppressed tumor rejection driven by anti-PD1 therapy, 
or adoptively transferred tumor-specific effector T cells. 
Mechanistically, Tr1 cells selectively targeted and killed 
cDC1s, resulting in reduced cDC1 numbers within the tumors. 
Overall, these findings demonstrate that Tr1 cells have a role in 
suppressing antitumor responses and thus impeding immune 
control of cancer.154

The studies selected above represent a small portion of the 
numerous preclinical studies on DC vaccines found in the 
published literature. This shows a significant interest in opti-
mizing and advancing anticancer DC vaccines.

Completed clinical trials

Since the publication of our previous Trial Watch on this 
subject (July 2022),143 we have identified 26 new clinical trials 
that investigated the safety and efficacy of DC-based therapeu-
tic interventions in cancer patients, which have been published 
in the peer-reviewed scientific literature in the past 2 years 
(source http://www.ncbi.nlm.nih.gov/pubmed).

The findings from these published studies incorporate trials 
conducted across 11 distinct types of cancers, of which the 
most common were melanoma,120,155–158 followed by prostate 
cancer,159–162 GBM,163–165 multiple myeloma,166,167 lung 
cancer168,169 and ovarian cancer170,171 (Figure 1). Compared 
to our previous Trial Watch,143 the new clinical trials targeted 
mainly the same cancer types as in the years before.

Most of the studies reviewed here present findings from 
clinical trials assessing autologous moDCs loaded with TAAs/ 
TSAs or TAA-derived peptides,120,155,157,161,166,172–175 TAA/ 
TSAs-coding RNAs,162,166,176 and autologous/allogenic cancer 
cell lysates156,158,159,163,165,168,177,178 (Figure 1). This is in line 
with our previous report of July 2022143. Additionally, one 
publication reported the use of cDC2 and pDC120 instead of 
moDCs, and another study used immature DCs in combina-
tion with ICBs such as anti-programmed cell death-1 (PDCD1, 
best known as PD-1) and anti-cytotoxic T-lymphocyte asso-
ciated protein 4 (CTLA-4) antibodies.160

In contrast to our previous Trial Watch,143 the use of indi-
vidual antigens for DC pulsing has reduced substantially, such 
that most of the recently published studies focused on a range 
or mixture of TAAs (Figure 1). However, the TAAs targeted in 
some of these reports are in line with the general trend also 
reported previously, i.e., they target common TAAs, such as 
melanoma antigen family (MAGE) antigens,166 Epstein–Barr 
virus (EBV) antigens,173 WT1 transcription factor (WT1) 
antigen,166 or baculoviral IAP repeat containing 5 (Survivin) 
antigen.175

In the studies mentioned above, DC vaccines were evaluated 
either as a single agent therapy161,164–166,170,173,178 (usually after 
surgery) or in conjunction with conventional anticancer treat-
ments, predominantly chemotherapeutics159,168,169,171,175,177 

and other standard-of-care (SOC) regimens157,162,163,176 

(Figure 1). Besides conventional treatments, other trials com-
bined DC vaccines with immunotherapeutic agents such as 
ICBs (mainly anti-PD1 and anti-CTLA4 antibodies) or immu-
nomodulatory factors such as GM-CSF.155,156,158,167,172,174,179

The majority of these publications were on Phase I or II 
studies, including 9 Phase I studies, 8 Phase II studies, 5 Phase 
I/II studies followed by only 4 Phase III studies. Existing 
literature, and in line with our previous reports on the subject, 
indicates that DC vaccines were generally well tolerated, with 
the majority of studies reporting only mild-to-moderate 
adverse effects (grade 1–2) such as fatigue, fever, and influenza- 
like symptoms. However, two studies reported a significant 
number of severe adverse events (grade 3–4): (I) a Phase 
I study174 where 57.9% of the patients had grade 3 or 4 treat-
ment-related effects, and (II) a Phase I/II study175 where all 
patients had at least one adverse event of grade 3 or higher, 
although these effects were associated with the adjuvant che-
motherapy (carboplatin/paclitaxel) rather than the DC vac-
cines. Overall, in these trials, DC vaccination showed 
promising immunological changes, demonstrated by (but not 
limited to) the increased antigen-specific T or B cell activity 
and/or the tumor infiltration of lymphocytes.

Herein, the results of the 4 Phase III studies that assessed the 
clinical benefits of DC-based therapy need particular attention. 
One Phase III trial enrolled 1182 patients with metastatic 
castration-resistant prostate cancer (mCRPC), and evaluated 
the efficacy and safety of DCVAC/PCa (DC-based vaccine 
where DCs prepared from the patient’s monocytes were col-
lected and subsequently exposed to a human prostate adeno-
carcinoma cell line (LNCaP) killed by immunogenic modality) 
combined with chemotherapy (docetaxel and prednisone) ver-
sus chemotherapy alone.159 The study reported no difference 
in OS between the DCVAC/PCa plus chemotherapy and che-
motherapy alone groups, with OS of 23.9 months and 24.3  
months, respectively. Also, no differences in the secondary 
efficacy endpoints (radiological progression-free survival, 
time to prostate-specific antigen progression, or skeletal- 
related events) were observed. Another study evaluated the 
possible delayed clinical outcome caused by sipuleucel-T in 
men with mCRPC.161 Two cohorts of men were included: the 
prospective evaluation of chronic pancreatitis for epidemiolo-
gic and translational studies (PROCEED) which is the first 
prospective, observational cohort study of chronic pancreatitis 
in the USA; and the cohort of mCRPC patients treated with 
sipuleucel-T at Dana-Farber Cancer Institute (DFCI). From 
these cohorts, men who received three infusions of sipuleu-
cel-T and did not initiate a new therapy for more than 6  
months after completion of sipuleucel-T, were included. 
Prostate-specific antigen (PSA) response was observed in 
19.9% of patients from the PROCEED cohort and 14.3% of 
patients from the DFCI cohort, and with a median OS of 49 
and 60 months, respectively. In this analysis of mCRPC 
patients treated with sipuleucel-T, using two datasets, 
a delayed PSA response was observed in a subset of patients, 
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suggesting a delayed but detectable clinical activity. On the 
basis of (previous) promising Phase I/II data, another Phase 
III trial in advanced renal cell carcinoma (RCC) further inves-
tigated the safety and efficacy of the combination therapy 
involving CMN001 (a DC-based immunotherapy, employing 
autologous DC electroporated with autologous tumor RNA) 
plus the SOC sunitinib.176 In the trial, 426 patients were either 
treated with CMN-001 plus SOC treatment or SOC treatment 
alone. The study reported almost no difference in OS between 
the combinatorial group (27.7 months) and the SOC group 

(32.4 months). The last Phase III trial covered by our current 
survey, focused on investigating whether adding autologous 
tumor lysate-loaded DC vaccine (DCVax-L) to SOC extends 
survival among GBM patients.163 The study involved 232 
patients with newly diagnosed GBM or recurrent GBM in the 
DCVax-L group and 99 patients in the SOC only group. 
Median OS for patients with newly diagnosed GBM treated 
with DCVax-L was 19.3 months vs. 16.5 in SOC only groups. 
For recurrent GBM patients treated with DCVax-L this median 
OS was 13.2 months vs.7.8 in SOC only groups. This study 

Figure 1. Overview of current strategies of dendritic cell (DC) vaccination for cancer therapy. DC, dendritic cell; MUC1, mucin 1, cell surface associated; NY-ESO-1 (official 
name: CTAG1B), cancer/testis antigen 1B; TAA, tumor-associated antigen; TSA, tumor-specific antigen; TERT, telomerase reverse transcriptase; WT1, WT1 transcription 
factor; CAR, chimeric antigen receptor; CTL, cytotoxic T lymphocyte; CTLA4, cytotoxic T-lymphocyte associated protein 4; ERBB, erb-b2 receptor tyrosine kinase; EBV, 
Epstein-Barr virus; GM-CSF, granulocyte-macrophage colony-stimulating factor; MAGE, melanoma-associated antigen; PD1, programmed death ligand 1; PDL1, 
programmed cell death 1 ligand 1; Tp53, tumor protein p53.
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demonstrated that incorporating DCVax-L with the SOC 
might extend survival in patients with both newly diagnosed 
GBM and recurrent GBM, compared to matched external 
controls who only received SOC. Although the results of this 
study require additional validation with compatible con-
trol arm.

Overall, the findings from these studies underscore the 
inconsistent clinical potential of DC vaccination. This suggests 
significant opportunities for enhancement in areas such as 
patient selection, tailoring for specific cancer types, personaliz-
ing antigens, and developing more targeted combinatorial 
strategies.

Ongoing clinical trials

This Trial Watch recorded 52 ‘ongoing’ clinical trials registered 
at http://www.clinicaltrials.gov/in the period between 
January 2022 and February 2024, evaluating the efficacy, safety, 
and therapeutic profile of anticancer DC vaccination. The 
details of these trials are summarized in Table 1.

In these ongoing clinical trials, the most common cancer 
being targeted is breast cancer followed by basket trials that 
enroll patients with multiple solid tumors (Figure 1 and 
Table 1). Such basket studies cover a range of tumor types 
like breast cancer, ovarian cancer, prostate cancer, non-small 
cell lung cancer, and leukemia (Figure 1 and Table 1). Notably, 
although the majority of studies are Phase I or II trials, at least 
two advanced-phase clinical trials are evaluating DC vaccina-
tion: a Phase III study enrolling mCRPC patients 
(NCT06134232), and a Phase II/III trial focusing on pancreatic 
ductal adenocarcinoma (NCT05955157). This suggests that 
some DC-based therapies have progressed to a more advanced 
clinical development.

In most of the ongoing trials, the DC vaccines consist of 
autologous DCs pulsed with TAAs/TSAs, TAA-derived peptides, 
or tumor lysates (Figure 1 and Table 1). However, several studies 
are focusing on DCs pulsed with personalized TSAs or neoanti-
gens (Table 1). Trials reporting autologous DCs pulsed with TAAs 
show a variety of common TAAs as targets, such as WT1, and 
EBV antigens as described before (Figure 1 and Table 1).

Interestingly, most of the ongoing trials administer DC- 
based vaccination alone, or in combination with other cancer 
therapies, including (but not limited to) ICBs targeting PD-1 
(pembrolizumab or nivolumab), or CTLA4 (ipilimumab). 
Besides ICBs, chemo- and radiotherapy and other immu-
notherapeutic strategies such as ACT and chimeric antigen 
receptor (CAR) T cells are also being used (Figure 1 and 
Table 1). The goal of these combinations is to improve the 
efficacy of these DC-based vaccines.

In summary, the field of clinical DC vaccines is moving 
toward the use of tailored TAAs or personalized TSA 
approaches with the tendency to combine DC-based therapies 
with other forms of immunotherapy and/or chemotherapy.

Status update on clinical trials

Since our previous Trial Watch (July 2022) several clinical 
trials listed previously on DC-based vaccination as cancer 
treatment have changed status. NCT04523688, 

NCT04348747, NCT04093323, and NCT05127824 are now 
“Recruiting”, after being previously listed as “Not yet recruit-
ing”. NCT04552886, NCT04837547, and NCT04147078 have 
changed their status from “Recruiting” to “Completed”. 
NCT04105582 is now listed as “Completed” after having been 
listed as “Active not recruiting”. The following trials have 
changed to “Active, not recruiting” from “Recruiting”: 
NCT04487756, NCT04911621, NCT04968366, 
NCT03970746. NCT04078269 changed from “Unknown” to 
“Active, not recruiting”. Additionally, several trials are now 
listed with “Unknown” status: NCT04085159, NCT04571632, 
NCT04801147, NCT04317248, NCT04335890, NCT05023928, 
NCT04567069, NCT03914768, NCT04115761, NCT04888611, 
NCT04277221, NCT03870113, NCT04082182, NCT04292769, 
NCT05020119, NCT04672473, NCT04476641, NCT04388033. 
Lastly, the following trials have terminated: NCT04614051 and 
NCT04615845 (difficult recruitment), NCT04963413 (termi-
nated by mutual agreement of sponsor and institution), 
NCT03927222 (resource shortage), and NCT04203901 (strate-
gic corporate decision).

Concluding remarks

In comparison with our previous trial watch, we observe 
a slight decline in the number of ongoing clinical trials (from 
55 to 52) using DC vaccines for cancer therapy.135,180 This 
decrease is likely due to the quick adoption of ICBs as part of 
the SOC for multiple cancers, along with the limited-to-poor 
clinical performance of DC vaccines180–184 However, ICBs are 
also not effective for all cancers, and both primary as well as 
adaptive or acquired resistance to ICBs remain significant 
challenges in many cancers185–191 As a result, DC vaccines 
are finding niche applications, for example, in cancers char-
acterized by an immune-cold microenvironment (e.g., GBM) 
and resistance to ICBs, ACTs and/or CAR-T cells192–199 This 
reflects an increasing focus on pinpointing specific tumor types 
where DC vaccines may be effective, particularly when com-
bined with other therapies,184,200–207 or when integrating the 
targeting of tumor-specific neoantigens208,209,210 DC vaccines 
are also being explored to ‘pre-prime’ tumors for subsequent 
T cell-based therapies.170,211,212

Also, there seems to be a disconnection between preclinical 
research, which focuses on increasing the immunogenicity of 
DC vaccines, and the clinical unmet needs.213 Regardless of 
several compositions being tested,214–218 the clinical outcomes 
have not matched the preclinical promise.219 This suggests that 
issues beyond DC vaccine-associated immunogenicity, such as 
adaptive or acquired resistance pathways might be operating in 
the clinical context and require urgent preclinical as well as 
translational investigations.6,220–226

Emerging technologies, such as personalized neoantigenic 
vaccines and multimodal combinatorial therapies, hold pro-
mise in addressing the limitations of DC vaccines by enhancing 
antigen specificity, boosting immunogenicity, and overcoming 
tumor immunosuppression.21,134,140 By combining the preci-
sion of neoantigen targeting with the synergy of multiple 
therapeutic modalities, these emerging technologies have the 
potential to revolutionize cancer immunotherapy, enabling 
more robust and durable antitumor responses.208,217,219
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Table 1. Overview of clinical trials registered on clinicaltrials.gov between January 2022 and February 2024 testing dendritic cell (dc)-based immunotherapy in cancer 
patients.

Strategies Indication Phase Status TAA/TSA(s) Combinatorial treatment Reference

Autologous DCs Gastrointestinal  
Tumors

II Not  
yet 
recruiting

n. a Pembrolizumab, Nivolumab, 
Sintilimab, Toripalimab, 
Camrelizumab, Tislelizumab

NCT05461235

Glioma Recruiting n. a Single agent NCT06156150
Recruiting n. a NCT06043232

Hepatocellular Carcinoma II Not yet 
recruiting

n. a Single agent NCT06193733

Liver Cancer I/II Not yet 
recruiting

n. a Single agent NCT05622825

Pancreas Cancer I/II Not yet 
recruiting

n. a ICBs NCT06172634

II/III Recruiting n. a Tegafur NCT05955157
Pleural Mesotheliomas I Not yet 

recruiting
n. a Single agent NCT05304208

Postoperative treatment Early I Not yet 
recruiting

n. a Oral NMN NCT06036355

Prostate Cancer I Recruiting n. a Prodencel NCT05533203
Solid Tumors I Recruiting n. a Single agent NCT06015269

Autologous DCs loaded with 
tumor lysate

Melanoma I/II Completed Tumour Lysate, TAAs PROLEUKIN NCT06152367

NSCLC I/II Recruiting Tumour Lysate N-803 NCT05642195
Ovarian Cancer I/II Recruiting Tumour Lysate Single agent NCT05773859
Pancreatic Cancer I Completed Tumour Lysate Mitazalimab NCT05650918
Solid Tumors I/II Recruiting Tumour Lysate Nivolumab, Entinostat NCT05898828

II Recruiting Tumour Lysate Single agent NCT06175221
Autologous DCs transfected or 

pulsed with TAA-coding 
RNA(s)

Angiosarcoma I Recruiting Tumor-derived mRNA, 
tumor lysate

Paclitaxel, Filgrastim, 
Pegylatedinterferin alpha-2A

NCT05799612

Autologous DCs loaded with 
recombinant TAAs or TAA- 
derived peptide(s)

Breast Cancer I/II Recruiting ERBB2 Trastuzumab, Pepinemab NCT05378464

I Recruiting ERBB2, ERBB3 Single agent NCT05504707
II Recruiting ERBB2 Trastazumab, Pertuzumab, 

Paclitaxel
NCT05325632

I Not yet 
recruiting

Neoantigens Single agent NCT06195618

I Recruiting Neoantigens Single agent NCT05809752
II Not yet 

recruiting
ERBB2 Pembrolizumab NCT05539365

Colorectal Carcinoma II Not yet 
recruiting

Neoantigens Pembrolizumab NCT05518032

ESCC I Unknown 
status

Neoantigens Single agent NCT05317325

Fallopian Tube 
Carcinosarcoma

I/II Recruiting Neoantigens Pembrolizumab NCT05920798

Glioma I Not yet 
recruiting

Neoantigens Ipilimumab, Nivolumab, Poly ICLC NCT05457959

Head and Neck Carcinoma I/II Recruiting HPV Poly-ICLC NCT06007092
Hematologic Neoplasms I Enrolling by 

invitation
EBV antigens Single agent NCT05635591

Leukemia I Withdrawn Neoantigens STING Dependent Activators 
(STAVs)

NCT05321940

Lung Carcinoma I Recruiting Neoantigens Pembrolizumab, Durvalumab NCT05886439
Lymphoma Early I Active, not 

recruiting
EBV antigens Single agent NCT05882305

Nasopharyngeal Cancer I/II Recruiting Neoantigens Single agent NCT05261750
Neoplasms I Withdrawn Neoantigens Single agent NCT05589844
NSCLC I Recruiting Personalized 

neoantigens
Low dose cyclophosphamide NCT05195619

Ovarian Cancer I Unknown 
status

Tumor-associated 
antigen and patient- 
specific neoantigens

Single agent NCT05270720

I/II Not yet 
recruiting

Personalized 
neoantigens, tumor 
lysate

Low dose cyclophosphamide NCT05714306

Pleural Mesotheliomas I/II Recruiting WT-1 Atezolizumab, Platinum/ 
Pemetrexed based 
chemotherapy

NCT05765084

Prostate Cancer III Not yet 
recruiting

Neoantigens Sipuleucel-T NCT06134232

II Recruiting Neoantigens Testoterone cypionate NCT06100705
I Recruiting Neoantigens Single agent NCT05806814

(Continued)
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Of course, to advance the development of DC vaccines 
toward socio-economic impact, they must either demonstrate 
clear survival benefits in patients or mechanisms behind their 
clinical failures must be identified, to guide future improve-
ments. The number of Phase III clinical trials for DC vaccines 
is limited159,161,163,176 and has not shown significant 
benefits.227 The results of other advanced trials, especially for 
cancers that do not respond to current ICBs, are eagerly 
awaited. Subsequent investigations should address the short-
comings of previous DC vaccine trials and explore alternative 
strategies, such as using physiological DCs instead of 
moDCs.142 However, generating large quantities of certain 
DC subsets, like cDC1/cDC2, remains a challenge228–231 DC 
vaccine research must also address challenges similar to those 
faced by ICBs,219 such as immunosuppressive TME, the emer-
gence of antigen-loss variants, and patient-to-patient immune 
heterogeneity or diversity.13,91,232–234 Also, manufacturing 
costs must be reduced, potentially through higher automation 
or even using HLA-matched donors, to improve practicality. 
Moreover, ICBs have benefited immensely from the use of 
specific biomarkers183,235–237 to guide patient pre-selection 
for their personalized application. But there is a severe lack of 
robust biomarkers for similar patient pre-selection for DC 
vaccines. Using multi-omics and spatial biomarker profiling 
to identify predictors of positive responses to DC vaccines 
could help design better clinical trials focused on specific 
patient subsets rather than all cancer or patients, thereby 
improving response rates as well as possibility of robust reg-
ulatory approvals.238–240

Finally, while success has been somewhat limited up to now, 
DC vaccines still possess substantial potential in the field of 
cancer immunotherapy.241 Advances in biomarker profiling, 
understanding of clinical DC biology and immune resistance 
mechanisms, will together enable the development of more 
effective and personalized DC vaccines.13,142,242 We believe 
that DC vaccines will play a crucial role in sensitizing and 
priming ‘immune cold’ tumors to overcome ICB resistance in 
various cancers.
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