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Abstract

Background: Prior infection with one strain TB has been linked with diminished likelihood of re-infection by a new strain.
This paper attempts to determine the role of declining prevalence of drug-susceptible TB in enabling future epidemics of
MDR-TB.

Methods: A computer simulation of MDR-TB epidemics was developed using an agent-based model platform programmed
in NetLogo (See http://mdr.tbtools.org/). Eighty-one scenarios were created, varying levels of treatment quality, diagnostic
accuracy, microbial fitness cost, and the degree of immunogenicity elicited by drug-susceptible TB. Outcome measures
were the number of independent MDR-TB cases per trial and the proportion of trials resulting in MDR-TB epidemics for a
500 year period after drug therapy for TB is introduced.

Results: MDR-TB epidemics propagated more extensively after TB prevalence had fallen. At a case detection rate of 75%,
improving therapeutic compliance from 50% to 75% can reduce the probability of an epidemic from 45% to 15%.
Paradoxically, improving the case-detection rate from 50% to 75% when compliance with DOT is constant at 75% increases
the probability of MDR-TB epidemics from 3% to 45%.

Conclusions: The ability of MDR-TB to spread depends on the prevalence of drug-susceptible TB. Immunologic protection
conferred by exposure to drug-susceptible TB can be a crucial factor that prevents MDR-TB epidemics when TB treatment is
poor. Any single population that successfully reduces its burden of drug-susceptible TB will have reduced herd immunity to
externally or internally introduced strains of MDR-TB and can experience heightened vulnerability to an epidemic. Since
countries with good TB control may be more vulnerable, their self interest dictates greater promotion of case detection and
DOTS implementation in countries with poor control to control their risk of MDR-TB.
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Introduction

Multidrug resistant (MDR) tuberculosis affects between 0.5 to 2

million annually [1,2]. Yet there were only 111 MDR-TB cases

reported in the U.S. in 2006 [1] with 82% of U.S. cases foreign

born. Both MDR and overall TB caseloads in the U.S. have

declined since the 1990s [3,4]. Although the current low burden of

MDR-TB in the US may fuel complacency from speculation that

drug resistant mycobacteria lack sufficient virulence to sustain

large epidemics, growing caseloads in central Asia suggest

otherwise. Ten of the regions with the highest and most rapidly

growing prevalence of MDR-TB are all in the former Soviet

Union [1]. It is significant that current MDR-TB epidemics in

central Asia followed on the heels of modest success in the control

of TB in the Soviet Union [5,6].

Because primary infection with drug susceptible TB confers

partial immunity against exogenous re-infection with a different

strain, a population may become more vulnerable to the spread of

MDR-TB when the prevalence of latent TB infection has been

lowered [7]. We hypothesize that improving a population’s TB

prevalence can have dual effects on the probability of an MDR-

TB epidemic. Drug susceptible TB is the substrate from which

MDR TB emerges, but it also may confer partial protection

against exogenous re-infection with MDR-TB. Our findings

suggest that reductions in TB caseloads need to occur rapidly to

eliminate the substrate from which MDR strains emerge before

lack of immunity is sufficiently widespread to ease the spread of

mutant strains. Improving compliance with treatment programs is

one of the chief public health tools to lower the prevalence of drug

susceptible TB. Under certain circumstances, when treatment

compliance is poor, increasing the availability of programs could

actually increase the probability of MDR-TB. This paper identifies

the features of TB control programs that alter the likelihood of

novel MDR-TB strain emergence and the extent of spread of
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newly emerged resistant strains. In so doing, the paper highlights

strategies that achieve the goal of controlling drug susceptible TB

while maintaining minimal risk of MDR-TB outbreaks.

Methods

Study design
Some tuberculosis simulation models are constructed specifical-

ly to forecast disease burdens in the future. For forecasting,

validating model output with available empirical observations on

recent disease trends is paramount [8,9,10]. Other simulation

exercises are designed to enhance understanding of the basic

biology of the disease [11]. To understand TB biology, one alters

biological and environmental parameters to see how much these

parameters matter regardless of whether this replicates field data.

This study is of the latter type, designed to understand how MDR-

TB spread reacts to biological and policy parameters along a

continuum that cannot be observed in real world epidemiological

data.

The model begins with a stylized population just launching its

use of antimicrobials and follows their subsequent 500 years of

experience with TB. One could consider the starting conditions to

represent an Alaskan or Native American population in the year

1950 prior to widespread treatment with antimicrobials [12]. The

simulated population will not experience any migration, there is

no age structure, no population growth, no gender, and no co-

infections with conditions that alter susceptibility to TB. Also BCG

is assumed to either not be in use or to have no protective efficacy.

These omitted factors have all had important effects on historical

trends in TB, but because they have little direct effect on the

emergence of resistant TB their inclusion would raise complexity

without helping to address the question of interest. This strategic

decision makes it impossible to seek model validation by

comparing TB trends in the model to historical trends that were

influenced by outside economic factors. Validation depends on

selecting model parameters consistent with the known epidemiol-

ogy of TB transmission and ensuring that the model responds

appropriately to these parameters.

The population is kept constant at 1000 people throughout

time. Each person is modeled individually. Each individual’s TB

status is updated 10 times per year. At each clock interval each

individual obtains random draws from probability distributions

governing contact between susceptible and infectious individuals

and governing the odds that infected individuals will have

progressive disease. All state transitions are calculated one

individual at a time, ten times per year for 500 years. The boxes

in Figure 1 display the various TB states that are tracked for each

individual and the arrows depict the stochastically determined

transition probabilities. At the start of each run of the model it is

assumed that 50% are latently infected with TB and the other

Figure 1. How agents progress in the model. While different in mechanics, the model has states most similar to the Cohen and Murray model.
Healthy agents come into contact with actively infected agents (either drug-susceptible or MDR) and can either be infected and develop latent TB or
remain healthy. Latently infected agents suffer a 10% per year chance of developing active TB for the first 10 years and a 5% per year chance of
developing active TB after 10 years. Actively infected agents with drug-susceptible TB will either receive treatment or die. (Spontaneous cures of TB
are possible but were not included for lack of space). Treated agents receive either DOTS or non-DOTS treatment. DOTS-treated agents recover and
remain non-infective but have a 1% per year relapse rate. Non-DOTS, agents can be fully compliant, and act the same way as DOTS treated agents, or
have user-determined degrees of non-compliance. Non-compliant agents have a probability of developing MDR-TB that reaches a maximum of 1%
when agents take every other dose (50% compliance). DOTS never leads to MDR-TB because by definition every dose is observed and non-
compliance is impossible. Once MDR-TB develops it has user-determined fitness cost which affects the probability of its spread to a susceptible host
and its progression from latent to active.
doi:10.1371/journal.pone.0012843.g001
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50% are uninfected and susceptible to TB (See Figure 1). This

high prevalence of latent TB was observed in many real

populations prior to widespread antimicrobial treatment [12,13].

For the first 10 years of latent TB, patients experience a 1%

annual rate of progressing to active TB and 0.5% thereafter [14].

From active TB, agents can die or potentially be detected by a TB

program and then started on treatment. Before receiving

treatment or dying, active TB patients can cause latent infections

in susceptible patients at a rate of 1.3 secondary cases per index

case.

MDR-TB spreads the same way as drug-susceptible TB,

however, MDR-TB can have a fitness cost which reduces both

its infectivity and the probability it will progress out of latency.

Another obstacle is the immunity provided by having drug-

susceptible TB. When the protective effect of drug-susceptible TB

is set at 100%, any contact between an active-MDR case and a

drug-susceptible case never results in MDR infections. In other

sets of runs, the protective effect is set to other values (75% and

50%) so that contact between active-MDR cases and drug-

susceptible cases can result in MDR-infection albeit at a reduced

rate.

All agent-to-agent disease transmission is governed by proba-

bility distributions calibrated to reproduce known TB transmission

rates. Parameters fall into two general categories: biological factors

that are uncontrollable from a policy maker’s view and treatment

factors, amenable to policy. Biological factors include infectivity,

mortality, activation of drug-susceptible TB, and probability of a

new strain of MDR-TB to arise based on non-compliance.

Treatment factors include case detection and compliance. (See

Table 1) Case detection is defined as correct determination that a

diseased individual has active TB. Compliance is defined as the

proportion of prescribed drugs ingested by the patient from 0

percent to 100 percent. The states and pathways listed in Figure 1

are the same states used in prior models of MDR-TB transmission

[15,16,17] The model differs from the Dye model due to the

absence of a separate latent state characterized by rapid

breakdown [18]. The model differs from Cohen/Murray because

only one MDR strain is modeled at a time [17].

The biological effects highlighted by the model are 1)Effects on

the frequency of new MDR-strain emergence due to poor

adherence to drug treatment by TB patients; 2)Effects on the

extent of spread of new strains due to a potential protective benefit

from immunity due to prior latent infection with TB; and 3)Effects

on the extent of spread of new strains attributable to hypothesized

reduction in virulence that mycobacteria sustain in order to

maintain their resistance to antimicrobials, this reduction is known

as a ‘‘fitness cost’’. The importance of these three elements is

discussed below.

The simulation is programmed in NetLogo software [19]. The

full model has been posted in the public domain at mdr.tbtools.

org. Agent based models in NetLogo depict independent

individuals interacting with their neighbors in space and time

following simple rules that the individual agents follow probabi-

listically. The model follows the TB status of every individual over

time from birth to death. New individuals enter and exit the

model, and each generation’s epidemiological environment reflects

the TB prevalence established by the contingent history of prior

generations. This allows the realistic depiction of multi-century

epidemics like TB. The inherent random variation that occurs

across populations and over time makes each run of the model

different. Sensitivity analysis is based on running multiple

iterations with systematically differing parameter settings.

The effect of poor compliance
Directly observed therapy short course (DOTS) is one way to

prevent non-compliance. Ideally, DOTS therapy, being directly

observed, ensures that a patient takes all of their doses, com-

pletely eliminating any non-compliance whatsoever. [20] Non-

compliant agents have a probability of developing MDR-TB

based on the degree of non-compliance. Probability for a new

Table 1. Variables, settings, and sources of parameters in the model.

Treatment Variables Base Case
Range
Tested Source

Probability TB case receives any treatment 50% 25–75%

Probability treated agent receives DOTS 75% 50–100%

The percent of prescribed doses taken by non-compliant agents
receiving non-DOTS treatment

50% 25–75%

Biological Variables

Probability of latent infection in susceptible agent after contact with
active drug-susceptible TB

1.3 secondary cases per primary case of TB 1 Blower & Chou, 2004 [36]

Case Fatality of Untreated Active Drug-susceptible TB 50% per year Murray, Styblo, & Rouillon,
1990 [37]

Probability of progression from latent drug-susceptible TB to active TB 1% per year for first 10 years Styblo, 1991 [14]

0.5% per year after 10 years

MDR-Variables

Relative Fitness 2 75% 50–100%

Immunogenicity multiplier for the probability that a latent drug-
susceptible case can be infected by an MDR case 3

75% 50–100%

1This infectivity is calibrated such that one index case creates on average 1.3 secondary cases in a population of 1000 healthy susceptibles and conforms to Blower
(2004) [36].

2Fitness is a multiplier that determines both the probability of transmission to susceptibles and progression from latent to active in MDR cases.
3DNA fingerprinting of active TB cases shows that it is rare that patients are infected with multiple strains simultaneously [22] making it plausible that latent infection
offers immune protection. Evaluating the potential importance of this phenomenon is one of the key contributions of this model.

doi:10.1371/journal.pone.0012843.t001
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strain of MDR-TB to arise in any given case is set at a maximum

when compliance implies that agents took only half of their

antibiotics. If there is 0% compliance then the bacteria infecting

the agent has no pressure to develop resistance. If there is 100%

compliance then this scenario can be assumed to be exactly like

ideal DOTS.

Cases that are not directly observed may be less compliant, or

they may visit clinicians who use mono-therapy. Either way they

have a higher chance to later develop MDR-TB [21]. DOTS

treated agents have a reduced mortality and have a small

probability of relapse as shown in Table 1.

Protective benefits of drug-susceptible infections with
drug-susceptible TB

It is widely believed that having drug-susceptible infection from

one unique strain of mycobacterium tuberculosis (MTB) grants an

individual full or partial immunity against other different strains of

MTB. Infection with multiple strains is rare [22] although

exogenous re-infection has been documented [23,24,25] Under-

standing the protective benefits of drug-susceptible infection is

important because the prevalence of drug-susceptible MTB is at a

historical low in high-income countries. As the prevalence of drug-

susceptible MTB declines, vulnerability to an imported MDR-

strain may escalate.

Fitness costs
In order for tuberculosis to develop drug resistance in any form,

it must undergo genetic changes [20]. The term. ‘‘fitness cost’’

describes a situation where the genetic changes granting drug

resistance also reduce the ability of MTB to reproduce within its

host population. For example, isoniazid relies on the catalase-

peroxidase activity controlled by the katG gene to transform the

drug from inactive to active form. Typically an isoniazid-resistant

strain will have some gene insertion or deletion that reduces its

katG functionality [17]. Human and animal studies on isoniazid-

resistant strains have demonstrated some, but not all, strains to be

less pathogenic than drug-susceptible (wild-type) tuberculosis

[20,26,27]. Guinea pigs infected with highly resistant strains had

a 100% survival rate, while guinea pigs infected with moderately

resistant strains typically died after 33–43 days [20]. Guinea pigs

infected with drug-susceptible TB typically died after 12–19 days

[20].

Data collation
Table 1 shows the model’s parameters with ranges and sources.

The parameters were applied to the 1000 agents according to the

probability distributions shown in the table. During each run of

the model data were collected on the number of agents in each

category at each time. The outcomes of interest are the percent of

total agent years spent in MDR-categories, the number of runs

where MDR prevalence exceeded 5% (these are counted as having

created an MDR-TB epidemic), and the number of new

developments (index cases) of MDR-TB.

Scenarios and definitions
Nine policy regimes were constructed as three levels of case

detection stratified by three levels of non-compliance to treatment.

Case-detection was set so that 25%, 50% or 75% of all agents with

active tuberculosis received treatment. The proportion of non-

compliant cases was set so that 25%, 50%, or 75% of agents within

a policy scenario were non-compliant to their drug regimen.

Each of the nine policy regimes was run in each of nine different

biological regimes for a total of 81 separate scenarios. The

biological regimes were depicted by three different fitness settings

stratified by three different levels of immunogenic TB infection.

MDR-TB could be 100% as fit, 75% as fit, or 50% as fit as drug-

susceptible strains. Drug-susceptible infection could confer 50%,

75%, or 100% immunity from MDR-TB infection. With 50%

immunity a susceptible individual who contacted an active case of

TB would have half the probability of becoming infected

compared to an individual with no immunity. Nine policy regimes

times nine biological regimes produced 81 permutations of the

model. Each permutation was run 100 times and the results

summarized. The use of 100 iterations enabled the bootstrap

computation of confidence intervals based on the standard

deviation of observations across the iterations of each scenario.

Results

Figures 2 and 3 show some typical graphs of MDR-TB

epidemics that occurred under the various treatment programs

illustrating general trends in MDR-epidemics. These graphs

illustrate a window of vulnerability for MDR-TB where there must

be enough drug-susceptible TB to create MDR-TB index cases,

but not too much drug-susceptible TB to generate host immunity

that inhibits the spread of MDR-TB. With less immunogenic

drug-susceptible TB, higher prevalence is needed to inhibit the

spread of MDR-TB strains after they emerge.

Figure 4 shows in three dimensions, the independent effects of

compliance and case-detection on the probability of an MDR-TB

epidemic. Low case detection rates allow drug-susceptible TB to

flourish. But when TB cases are not detected they are not treated

and MDR-TB cannot emerge unless cases get treated. The model

shows that with low rates of case detection, the resulting high

prevalence of drug-susceptible TB can prevent the rampant

spread of MDR-TB, depending on its immunogenicity. If one

examines the rows of bars in Figure 4 from front row to back row

the slope across the rows becomes steeper in the back row (where

case detection is 75%) compared to the front row where case

detection is 25%. The steepness is an indicator of how important

compliance is in preventing MDR-TB epidemics and our results

show that compliance is more important when case detection

rates are high.

The effects of increasing case-detection are non-linear when

more agents do not comply with therapy. When non-compliance

rates are 50%, intermediate case-detection rates lead to more

emergent strains of MDR-TB than when there is lower or higher

case-detection. This paradox is discussed below.

Figure 5 shows the generalized effects of immunogenicity and

non-compliance on the probability of an MDR outbreak. No

matter how non-compliant the population is, the less immunity

afforded by drug-susceptible TB the higher the probability of an

MDR outbreak. Figure 5 also demonstrates how immunogenicity

parameters moderate the competition between drug-susceptible

and MDR-TB for hosts. The front two rows of Figure 5 show that

when drug-susceptible TB confers 75 to 100% immunity, higher

rates of non-compliance create more cases of drug-susceptible TB

and more individuals immune to MDR-TB, hence lowering the

probability of MDR-TB outbreaks. However, as shown in the back

row of Figure 5, when immunogenicity is 50%, the human ecology

is such that the greater numbers of newly emergent MDR-TB

strains arising, coupled with rising rates of non-compliance are

able to spread throughout the population with greater frequency.

The data supporting Figures 4 and 5 and a summary of all 81

policy and biological regimes is given in tables 2 and 3.

Variation in the outcome of runs tended towards a normal

distribution for each of the tested values. Standard deviations

MDR TB Epidemics
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were low, indicating that averages attained were reliable

outcomes from the model. Figures 4 and 5 show the impact of

changing the parameters in the model and provide a sensitivity

analysis of how important both policy and biological parameters

are in supporting or inhibiting the emergence of MDR TB

strains.

Under most treatment policies, lower immunogenicity of drug-

susceptible TB makes MDR-epidemics more probable. However,

the extent to which immunogenicity affected the probability of

MDR-epidemics diminished as MDR-TB became relatively more

fit. Fitness cost appeared to be the greatest obstacle to the spread

of MDR-TB. With MDR-TB set to be 50% as fit as drug-

susceptible TB, MDR-TB could not produce a single epidemic in

the 2700 iterations studied with fitness at this low setting.

Increased MDR-TB fitness almost always led to increased

probability of MDR-TB epidemics. Tables 1 and 2 summarize

the detailed results of 8100 runs (9 policies scenarios69 biological

sets6100 iterations). Additional information is available in

Appendix S1 entitled ‘‘Appendix to Heightened vulnerability to

MDR-TB epidemics after controlling drug-susceptible TB’’.

Discussion

The results of the model stress the need to maintain linkage

between success in TB case detection and success in reducing non-

compliance with TB treatment. As new TB diagnostics are

developed in coming decades, one must consider the implications

of deploying them in areas that cannot maintain high rates of

compliance with treatment. Minimum standards for success in TB

treatment need to accompany phasing in better diagnostics. The

worst scenario in our model in terms of MDR-TB emergence is

high case detection rates combined with high non-compliance

rates as shown in the back row, far right of Figure 4. Although a

heavy focus on compliance without case detection will not stem the

general epidemic of drug susceptible TB, it will keep MDR-TB in

check as shown in the bars along the left edge of Figure 4. The

interesting aspect is that at 25% and 50% rates of non-compliance,

MDR-strains emerge more readily when case detection rates are

intermediate than when they are low or high. This occurs because

intermediate rates of case detection are more likely to open the

window of vulnerability where general TB prevalence is low

Figure 2. Treatment Program with 75% non-compliance and 75% case-detection 100% fitness. These panels are only 2 unique examples
out of 200 runs. In panel A, drug-susceptible is 100% immunogenic, while in panel B it is only 75% immunogenic. Note that with less immunogenic
drug-susceptible TB, MDR-TB takes over more rapidly, and with higher prevalence of drug-susceptible TB present.
doi:10.1371/journal.pone.0012843.g002
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enough to keep immunity down but there are enough non-

compliant cases circulating in the community poised for breeding

MDR-strains.

An exciting discovery from the model was the presence of

windows of vulnerability for MDR-TB epidemics to emerge.

These windows occur after the prevalence of TB infection and the

immunity it confers has been reduced to less than 30% prevalence

of latent TB leaving most of the population vulnerable. New

emergent strains of MDR-TB could only perpetuate after this

window of vulnerability opened. The window closes when

countries bring their rates of prevalent TB below 5%. At these

low rates of TB prevalence, there are too few cases of active TB for

poor treatment to have a chance to yield MDR-strains. Imported

MDR strains would be a larger threat, but these are not covered in

the model.

MDR-TB epidemics are dependent on the dynamics of

competition between MDR and drug-susceptible TB. (See

figure 5). Both drug-susceptible and MDR-TB compete for a

common resource: susceptible hosts. TB treatment policies in the

model alter how well MDR-TB competes against drug-susceptible

TB. Weak treatment policies that allow non-compliance, select

against drug-susceptible TB and permit resistance to emerge, but

they only give MDR-TB a foothold when most of the population

has not had a prior infection with TB.

Paradoxically, the model shows that a TB program’s success

against drug-susceptible TB makes a population vulnerable to

MDR-TB. A high prevalence of drug-susceptible TB can provide

herd-immunity against MDR-TB, in effect preventing MDR-TB

from progressing out of static low prevalence. The more

immunogenic drug-susceptible TB is, the less the prevalence

needed to achieve herd-immunity. Treatment that reduces the

prevalence of drug-susceptible TB while the population is exposed

to a low prevalence MDR-TB for decades facilitates MDR-TB

epidemics by providing MDR-TB with more susceptible hosts and

the time needed to perpetuate. However, allowing drug-suscepti-

ble TB to remain unchecked is not an acceptable policy strategy.

Speed is the key to a treatment policy that minimizes MDR-TB

development and is effective against drug-susceptible TB. Rapid

Figure 3. Treatment Program with 75% non-compliance and 75% case-detection and MDR with 75% of the fitness of drug
susceptible TB. In panel A, drug-susceptible TB is 100% immunogenic, while in panel B it is only 50% immunogenic. In the A panel, MDR-TB is not fit
enough to cause an epidemic given that drug-susceptible prevalence is high, however with a reduction in immunogenicity, drug-susceptible TB does
not produce herd-immunity. This allows the less fit strain of MDR-TB to cause an epidemic.
doi:10.1371/journal.pone.0012843.g003
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Figure 4. New MDR strain emergence by rates of non-compliance and case detection. Within each case-detection level, worse non-
compliance always leads to more new MDR strains emerging. This implies that when non compliance is high (i.e. at 75% non-compliance) detecting
more cases leads to more MDR emergence. As noted by arrows, with non-compliance down to 50% or 25% better case detection no longer leads
automatically to more emerging strains of MDR TB. The reason is that there are fewer drug susceptible TB cases for MDR-TB to emerge from when
non-compliance is low and case detection is high.
doi:10.1371/journal.pone.0012843.g004

Figure 5. Probability of MDR-TB outbreaks by non-compliance and the degree of immunogenicity of drug-sensitive TB infection.
Probability of an MDR TB outbreak is highest when patients have highest rates of non-compliance (e.g. 75% non-compliant) and when
immunogenicity of prior infection with TB is low (e.g. 50% of patients are protected from successive infections by prior infections.) The back row of
the graph shows that when with low immunogenicity there is a systematic rise in probability of MDR-TB outbreaks as rates of non-compliance rise. As
shown in the front two rows, this relationship is reversed when immunogenicity is higher. When immunogenicity is high non-compliance serves
primarily to spread the immunizing strain of drug-sensitive TB which lowers the probability of an MDR TB outbreak.
doi:10.1371/journal.pone.0012843.g005
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elimination, however, requires both high case-detection and

compliance rates. High case-detection rates coupled with high

rates of non- compliance yield high rates of MDR-TB creation as

shown in Figure 4. High compliance rates coupled with low case-

detection are ineffective in controlling drug-susceptible TB. The

key finding regarding policy is to first develop consistent and

rigorous DOTS which must be maintained throughout the course

of improving case detection. Lapsed DOTS while at intermediate

levels of case detection is more permissive of MDR-TB, more so

than at low and high levels of i case detection. With low case

detection the high levels of immunity from latent drug-susceptible

TB hold MDR-TB in check. With high case detection there is less

protection from latent immunity.

In this model as well as other models of MDR-TB, biological

fitness costs can be the greatest natural obstacle to the

development of MDR-TB epidemics. If MDR-TB strains are

substantially unfit then even under less vigilant policy regimes they

cannot spread. In our model, a 25% reduction in fitness (from

100% to 75%) with 50% case-detection and 50% non-compliance

lowers probability of MDR-TB an epidemic from 98% to 3%. It

remains an important goal to quantify the relative fitness of MDR-

TB strains. However, our model highlights that as the quality of

treatment programs improves, the importance of all of the

biological factors of TB diminishes. Good treatment means there

are fewer organisms that can develop resistance and fewer cases of

bad treatment to provide an opportunity for resistance to emerge.

Strengths and limitations
The model is limited in that innate differences in host immunity

(e.g. due to HIV/AIDS) are ignored. Host immunity plays a major

role in the development and spread of tuberculosis as is well

known from the spread of MDR-TB from immunocompetent to

HIV infected patients during an outbreak in New York [28].

Likely, the fitness cost of drug resistance would be moderately

negated, and the immunogenic effect of latent TB would be

lessened in HIV patients. In regards to this, the simulations where

drug susceptible strains are less immunogenic and where MDR

strains are more fit would be informative about how the presence

of prevalent HIV could affect the model. The inclusion of HIV in

subsequent models therefore may reduce the protective effect of

drug susceptible TB on a population level and increase the spread

of less fit strains of MDR-TB. On a population level this reduces

the protective effect of latent drug susceptible TB infection in

regions with highly prevalent HIV infection. HIV co-infection can

be added to later versions of the model, but simplicity was

intentionally stressed in this initial version.

In addition, the model makes no provision for second-line drugs

to treat MDR-TB or for the introduction of new drugs active

against both drug-susceptible and MDR-TB [29,30,31,32]. In

effect the modeled version of MDR-TB is essentially extensively-

drug resistant (XDR) TB (resistant to at least isoniazid, rifampicin

as well as any quinolone and at least one injectable second line

agent). In addition, each new MDR-TB strain has the same

virulence. Whereas in reality, independent cases of MDR-TB

would be likely to have their own unique antibiotic susceptibility as

well as fitness costs [17]. It is reasonable to assume that over time,

independently arising strains that perpetuate would show conver-

gent evolution towards similar compensatory mutations, however

this is likely to be a very slow process.

Another central assumption of the model is that the net death

rate is equivalent to the net birth rate, so population remains

constant. Population density affects the daily contact rate of agents

and therefore the number of secondary cases developed per index

case, and by setting population and therefore population density as

a constant, the model removed a dynamic part of the

epidemiological progression [33,34].

Another important limitation is that there is no migration

because the focus is on the conditions for MDR-strains to emerge

and spread within a single population. Focusing on a population’s

resistance to immigrant strains of MDR-TB would be a

straightforward extension, but much is learned from the current

model by studying the ability of native MDR-strains to arise and

perpetuate. The principal findings regarding how TB treatment

policies affect the probability of new MDR strains arising would

not be changed by the inclusion of population growth and

migration. The prevalence of drug susceptible strains, regardless of

population dynamics, determines the protective benefit from latent

TB. This study concludes that when current knowledge about TB

epidemiology is condensed into a computer model it reveals that

MDR strains are most likely to emerge and spread in populations

that have just begun to enjoy successful control of drug susceptible

TB. The window of vulnerability to the spread of native MDR

strains (and by extension to imported strains) is highest when few

members of the population have ever been infected by TB. This

underscores the current vulnerability of populations in Europe,

Japan, and North America. In the 1990s the re-emergence of TB

in the US was attributed to an abandonment of public health

measures to control TB [35]. Paradoxically it is our current success

in controlling drug-susceptible TB that makes the US population

more vulnerable to both native and introduced outbreaks of

MDR-TB. The most successful approach to reduce this risk would

be to ensure that populations around the world combine high rates

of case finding that is tightly coupled to high compliance with

DOTS.

Supporting Information

Appendix S1 Appendix to heightened vulnerability to MDR-TB

epidemics after controlling drug-susceptible TB.

Found at: doi:10.1371/journal.pone.0012843.s001 (0.17 MB

DOC)
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