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It typically takes a lot of time to monitor life-testing experiments on a product or material. Units
can be tested under harsher conditions than usual, known as accelerated life tests to shorten the
testing period. This study’s goal is to investigate the issue of partially accelerated life testing that
use generalized progressive hybrid censored samples to estimate the stress-strength reliability in
the multicomponent case. Also, the fuzziness of the model is considered that gives more sensi-
tive and accurate analyses about the underlying system. Maximum likelihood estimation method
under the inverse Weibull distribution and using the generalized progressively hybrid censoring
scheme is introduced to obtain an estimator for the fuzzy multicomponent stress-strength reliabil-
ity. Also, an asymptotic confidence interval is deduced to examine the reliability of the fuzzy mul-
ticomponent stress-strength. Simulation study is conducted using maximum likelihood estimates
and confidence intervals for the fuzzy multicomponent stress-strength reliability for different val-
ues of the parameters and different schemes. A real data application representing the data for
the failure times for a certain software model is introduced to obtain the fuzzy multicomponent
stress-strength reliability for different schemes.

» The fuzzy multicomponent stress-strength reliability is investigated under partially acceler-
ated life testing and the generalized progressively hybrid censored scheme.

* An algorithm is introduced to simulate data for the censoring scheme.

+ A real data application is presented to obtain the fuzzy multicomponent stress-strength reli-
ability at different schemes.
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Background

There are variety techniques of accelerated life testing. One of these techniques is the constant stress accelerated life testing where
the stress applied to the product units in the test remains constant over time. Another technique is the progressive stress accelerated
life testing in which the stress is increased over time. And the step stress accelerated life testing in which the test condition is altered
for a predetermined amount of time or failures.

Zarrin et al. [1] introduced an estimation in constant stress partially accelerated life tests for Rayleigh distribution under type-I
censoring. Kamal [2] presented the constant stress partially accelerated life test design for inverted Weibull distribution with type-I
censoring. Ismail [3] considered the constant stress partially accelerated life tests with type-I censoring under Weibull distribution.
Hyun and Lee [4] studied constant-stress partially accelerated life testing for log-logistic distribution with censored data. Almarashi
[5] introduced an estimation for constant-stress partially accelerated life tests of generalized half-logistic distribution based on pro-
gressive type-II censoring. Ahmadini et al. [6] presented an estimation of constant stress partially accelerated life test for Fréchet
distribution with type-I censoring. Dey et al. [7] introduced an inference on Nadarajah-Haghighi distribution with constant stress
partially accelerated life tests under progressive type-II censoring. Yousef [8] presented a statistical inference for a constant-stress
partially accelerated life tests based on progressively hybrid censored samples from inverted Kumaraswamy distribution. El-Sagheer
et al. [9] introduced inferences for stress-strength reliability model in the presence of partially accelerated life test to its strength vari-
able. Eliwa and Ahmed [10] introduced a reliability analysis of constant partially accelerated life tests under progressive first failure
type-II censored data from Lomax model. Nassar and Elshahhat [11] introduced a statistical analysis of inverse Weibull constant-stress
partially accelerated life tests with adaptive progressively type I censored data. Sarhan and Tolba [12] introduced an analysis for the
stress-strength reliability under partially accelerated life testing using Weibull model.

The goal of fuzzy reliability is to give researchers the tools they need to sensitively and precisely analyze the underlying systems of
life dependability. There are only two possible outcomes in the probability theory which is based on perception. To deal with the idea
of partial truth, fuzzy theory is extended from its linguistic information foundation. While fuzzy reliability requires more information
to produce the fuzzy value comparison of traditional reliability, fuzzy values are determined between true and false. Eryilmaz and
Tiitiincii [13] presented the stress strength reliability in the presence of fuzziness. Sabry et al. [14] discussed an inference of fuzzy
reliability model for inverse Rayleigh distribution. Yazgan et al. [15] introduced a study for the fuzzy stress-strength reliability for
weighted exponential distribution.

In accelerated life testing, the fuzziness is increased by the models used to transform life times under high stress levels in order to
estimate life time distribution under usual stress. For results that are realistic, data fuzziness must be quantitatively described.

The models that are used in accelerated life testing to convert life times under high stress into life time distributions under typical
stress raise the degree of fuzziness. For results that are realistic, data fuzziness must be quantitatively described.

Censoring is a useful technique that is frequently applied in lifetime tests. When there are not enough test units or when it
is not possible to collect data for all test units due to a lack of time or resources, censoring is crucial in practical experiments.
The mathematical ease of Type-I and Type-II censoring draws a lot of interest. In Type-I censoring, the test is terminated when a
predetermined time has passed; in Type-II censoring, the test is terminated when a predetermined number of units fail. However, if the
experimenter needs to remove units on a sporadic basis, both censoring strategies might not be appropriate. As a result, progressive
Type-II censoring is thought to be preferable and has become popular recently. The intermittent removal of units is permitted in this
censoring. Additionally, it helps you save some money and some time.

On the basis of various censoring methodologies, it is difficult to derive effective statistical procedures under various life testing
experiments for the unknown interesting quantities. Hybrid censoring is the combination of Type-I and Type-II censoring schemes.
In hybrid censoring scheme, the experiment ends after a certain amount of time has passed and a certain number of failures. Yousef
et al. [16] used the generalized progressive hybrid censoring design to discuss the inference of stress-strength model based on the
exponentiated exponential distribution. Nagy et al. [17] discussed the generalized Type-II progressive hybrid censoring sample from
the Burr Type-XII distribution. Wang et al. [18] discussed the inference of Kumaraswamy distribution under generalized progressive
hybrid censoring.

Numerous censoring schemes that can be used in reliability analysis can be found in the literature. Kohansal [19] introduced an
estimation of reliability in a multicomponent stress-strength model for a Kumaraswamy distribution based on progressively censored
sample. Hassan et al. presented [20] an estimation of multicomponent stress-strength reliability following Weibull distribution based
on upper record values. Mahto et al. [21] introduced an estimation of reliability in a multicomponent stress—strength model for a
general class of inverted exponentiated distributions under progressive censoring.

Jha [22] introduced multicomponent stress-strength reliability estimation based on unit generalized Rayleigh distribution. Saini
et al. [23] presented the reliability estimation of multicomponent stress strength model for Burr XII distribution using progressively
first-failure censored samples. Hu and Gui [24] introduced reliability inference of multicomponent stress—strength system based on
Chen distribution using progressively censored data.

The Weibull distribution does not offer a satisfactory parametric fit if the data show a non-monotone and unimodal hazard rate
function, so the inverse Weibull distribution is a better fit model than the Weibull distribution. Depending on the value of the shape
parameter, the hazard rate function of the inverse Weibull distribution can be either decreasing or increasing. The inverse Weibull is
used to model several types of data, including the time it takes for an insulating fluid to break down when subjected to the action of
Diesel engine mechanical parts like pistons and crankshafts are under constant tension and deterioration.

Keller and Kamath [25] established the inverse Weibull distribution with two parameters. It has been used to simulate a variety
of real-world scenarios, including the deterioration of mechanical parts like hammers and diesel drive shafts. The inverse Weibull
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distribution is used in analyzing data from reliability engineering and life testing experiments. Keller et al. [26] showed that the
inverse Weibull distribution is the best in fitting the dataset of dynamic engine parts when compared to the other distributions. If X
is a continuous random variable that follows the inverse Weibull distribution with shape and scale parameters g and y, respectively,
then the probability density function and its corresponding cumulative distribution function are given, respectively, by

s =Lt s 0

F(x):e_ﬁ/xy, x, B, y>0

In this paper, a study of the multicomponent stress-strength reliability is introduced in presence of partially accelerated life testing
and fuzziness. The study is performed considering the generalized hybrid censoring scheme under the inverse Weibull distribution.
Rare articles in literature discussed the issue of fuzzy multicomponent stress-strength reliability in case of partially accelerated life
testing. In the present study, a novel analysis of the multicomponent stress-strength reliability is introduced assuming partially
accelerated life testing and generalized hybrid censoring scheme in presence of fuzziness. The motivation of this article is to study
the behavior of the system when each unit of the system is run at either normal condition or accelerated condition. Since most
tests make it simpler to maintain a stress-strength with partially accelerated life test. Additionally, for some materials and products,
the accelerated test models for stress-strength under the partially accelerated life testing are better developed and data analysis for
reliability estimation is well developed. Sometimes the experiment in real-world tests couldn’t be fully controlled because things could
accidentally break. So, the generalized progressive hybrid censoring scheme is used. The system’s time is described by the inverse
Weibull model, which increases the system’s flexibility. An estimator of the multicomponent stress-strength reliability is obtained
by using the method of maximum likelihood. An asymptotic confidence interval for the multicomponent stress-strength reliability
is deduced. A simulation study is introduced to obtain numerical results for the fuzzy multicomponent stress-strength reliability for
different values of the parameters and different schemes. A real data application representing the failure times for a software model
is introduced to obtain the fuzzy multicomponent stress-strength reliability when applying different schemes.

Method details
Partially accelerated life testing modeling description

Consider that the stress variable Y is consisted of n components which will be divided into two groups. The first group is consisted
of nV components with the normal condition case. The second group is consisted of #® = n —n) components with the accelerated
condition case. Each component in Y has a subsystem of the strength variable X with k components. Also, the subsystems of X will be
divided into two groups. The first group is consisted of n(l) subsystems each with k components under the normal condition case. The
second group is consisted of n® subsystems each with k components under the accelerated condition case. The probability density
function of X and Y will be given, respectively, by

M e /Y pormal case
F0 =15
=3 1
% e’ﬁl/(’b‘)y, accelerated case
(4x)
% e P2V normal case
y
g»=9",
% e_ﬁZ/(Ayy, accelerated case
(4y)

where 1 > 1 is the acceleration factor
Generalized progressive hybrid censoring scheme

For the stress variable Y, assume that the predetermined integers () and () with 1 < A" < pM < »(V in the normal case and h,
and b, with 1 < h® < b@ < n® in the accelerated case. Consider the two predetermined time points 7 and 7 in the normal and

accelerated conditions, respectively. The non-negative integers qil), qg), s ‘723 for the normal case and qiz), q;z)’ . q’(jz)) for the
) . b (), ) _ (D) b 2 2 _ @) ) @
accelerated case represent prefixed numbers with 37", ¢, + b =n'V and 37" ¢;” + b? = 1. Let Y and Yoo denotes

the failure of the i-th unit of the test in case of normal and accelerated conditions, respectively, then the testing will stop at the
following points:

) F e (8) (%) (%)
Veoraoae 77 <Y 0.0 < Yo .00
#(8) — ) £ ; ) (8) (%) _
TENT Y 600 <7 <Y e 0= 1 2
) . () 1 )
Yo o000 Y6000 <Y .00 <7

Where 6 = 1, 2 represents the case of normal and accelerated conditions, respectively. The following scenario can be observed in
case of the different types of failures under the generalized progressive hybrid censoring scheme:
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Fig. 1. Graphical presentation of the generalized progressive hybrid censoring scheme for the stress variable.

(8) s i £ (5 () ()
Scheme I: Y] b0 0@ Yoep@ e 0 Y@y prope T < Yh(n) OO Y;,(S) () : 5@
(%) 8)
. (
Scheme II: ¥, b<5> 1 Vi@ 5 e 0 e(,;) @ h(,;) 5O < 70 <Y )0 n®
© 8) 1 )
Scheme III: Y b(é) 17 Lp6): @)y Yb(a) 5@ Y, (6) 50 < Y500 <7

where 6 = 1, 2 for normal and accelerated case, respectively. The graphical presentation of the generalized progressive hybrid cen-

soring scheme is shown in Fig. 1.
where

o©®
¢® = n® _ p® _ Z q”

9y6)
o)
*(8) (@]
96 = Z 4;
o®

8 3
q(() — n(é) _ b(&) _ Z ‘15 )

For the strength variable X, assume that the predetermined integers 1?1) and mﬁl) for i=1,2, .., bV with 1 < lfl) < m[(.l) < kﬁl) in
b® with 1 < 152) < m,@ < kf.z) in the accelerated case. Consider the predetermined
time points T(l) fori=1, 2, .., ¥V and T,@ fori=1, 2, .., b® in the normal and accelerated conditions, respectively. The non-

negative prefixed integers r(l) r(.l), 0 fori=1, 2, .., b» in the normal case and r<2) ) fori=1, 2, .., b®
2 sHm 2 b@m?

the normal case and lfz) and ml(_z) fori=1, 2, ..,
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Fig. 2. Graphical presentation of the generalized progressive hybrid censoring scheme for the strength variable.
in the accelerated case where Z D D =, O fori=1, 2, ..., b and Z (2) m? =kP fori=1, 2, .., b?. Let X M
j i i i i (l) k(l)
fori=1, 2, ..., bV and X (2) e fori=1, 2, .., b® denotes the failure of the j-th element in the i subsystem of the test in case of

normal and accelerated condltlons, respectively, then the testing will stop at the following points:

) . (6) %) )
X oo T <X o 00 <X 00,0
5 () : ) (%) (5) P (5) _
Ti*( ) — Tl N if Xi,[‘(,s):mf K T <X mi .mfé):kf.é)’ fori=1, .., b%, 6=1,2
) if () < x® AQ)

m® :m® O D n® O S )4

where 6§ = 1, 2 represents the case of normal and accelerated conditions, respectively. The following scenario can be observed in case
of the different types of failures under the generalized progressive hybrid censoring scheme:

3) (4) (©)] (8) (©)] (@]
SchemeI"X( X oy X© if T < x <X
m@ @ i ® @ T @000 L@ @ 4 @ @ 14
) <6> ® 0 > ©® _ y®
Scheme I’ ; X,.I OIMOLERA Xl. ONNORMOLA X FICICINCY if Xi,w). K <TT<X m® @ 11
’ i [t B B 1 l i i
@ ® 0 @ 5 5)
Scheme IIT : X( ,X©® L X i x® e x O < T
W@ k@ L@@ 7 e e 00 N e 0,0 S 6,00 S

fori=1, .., b®, § =1, 2. the graphical presentation of the generalized progressive hybrid censoring scheme is shown in Fig. 2.
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where
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1
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Fuzzy multicomponent stress-strength reliability

The multicomponent reliability of a system is the probability that at least (X, X,, ..., X;) will exceed Ywhere X and Y are
independent random variables. Let us consider that the units of the system will attend the normal case with probability p and the

accelerated case with probability (1 — p). From the definition of fuzzy probability given by Zadeh [27], the fuzzy multicomponent
stress-strength reliability can be formulated as follows.

k

R = (’f) {p /O w1 = RO [F )] d6,) + (1= p) /0 w1 = B[R k"'dGz(y)}, 0<p<l

i=s

Where p4(y) is an appropriate membership function on Y — [0, 1], therefore in the case of inverse Weibull y,(y) is assumed to
increase as Y is increasing which can be formulated as follows

_ 0, y<0
Ha(y) = e_c/yr’ y>0

Since X and Y follow the inverse Weibull distribution, then fuzzy multicomponent stress-strength reliability will be given by
k .
k © ey - L gy B2y
RE =Y <i>{p/0 e 1 et | o B i gy
=5

+(1 - 17)/co e [1 - e’ﬁl/“W]ie"’l“"")/(’ly)’ uﬂ%e’mwydy}, 0<p<l, e>0
0 y

S (K (i P (1-p)p,
RF = (_)(_)(—1)1' 2 + 2 M
sk Z’Z:; i) \J [c+pik—i+ ) +py]  [cAr +Bk—i+))+pB)

It can be observed that when p = 1, we obtain the fuzzy multicomponent stress strength reliability with all units in the normal
case only. When A = 0, we obtain the fuzzy multicomponent stress strength reliability with all units in the normal case only. When
¢ =0, we obtain the classical multicomponent stress strength reliability.

Maximum likelihood estimation method

In order to obtain an estimate for the fuzzy multicomponent stress strength reliability under the generalized progressive hybrid

censoring and in case of the accelerated life testing, the maximum likelihood method is applied as follows. The likelihood function
for the model can be formulated as follows.

(¢h) @ @
X11 X12 lem
1
@ (¢h) @ (¢))
Yl X21 X22 X2m(l>
y® 2
2 .
: @ @ @
(1) X (1) X (1) (1)
me b1 b2 HDm b
Y=|: | X= :
y® x® x® x®
1(2) 11 12 "”(12)
Y.
2 )] @) @)
: X21 Xzz X2m<2>
) : : :
b»2) y
(2) 1 )
Xb(2> 1 Xb(z) 1 e e
»2
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6=1 i=1 ¢ #(9)
5( 457159 TG (20-1.0011%6)
[G(}‘ Vi po)- ,,(a)>] [G(}‘ T )] ‘
where
6) : (6) (3) (©)]
h if T < Y600 <Y b(é) 5O : (6
©) — ) 56 i
e =1¢ if Y6500 < @ < y;,(o) @ @
(5) : ( (1) 8)
b i Y6000 <Yy apm < T
) . ()] (©)] )
IS if t <X R
i 1@ @ @ D @ g
©®) @ MO ® _  ©®
d =14 if ,<6> n® 4 <X ®.,0.,0
K MR
(@] - (5) ) )
m. 1 pe N . <X . . <t
b 0040 <00 e <
. @ — y® ®)
0 if 77 <Y 6000 < Vo500
#(8) _ #(6) . () 5) )
o =1%o Yerse.a0 <7 <Y6.6 .0
- ) 0Y] )
0 Y 6 < Yy pm e <7
. (5) ) (%)
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( m® @ i
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The likelihood function after the inverse Weibull distribution will be given as follows.

#8)
(5)

[ - - o)
16—1,5
1—e (7'

The logarithm of the likelihood function is taken and the result is given as follows.

2 & o® o
logL =Y { (Z d;‘(5)> log f; + <Z d,@ + e(‘”) logy + @ log g, — y(Z di(‘s) + e(5)>
o=1 | \J i i=1

@ d¥ o d? o® d® )

g PR e PR
(8) +1
fifi”

5
5=1i=1 _h I

AT |y BT

5
4@ _ A A "ij A

By %!

L= (a-1y2)™"!

log/l‘s 1—(y+1)2210gxu zz(
i=1j

o)
vXr

o®)

(é)

28=1y8 Y *
Zq(‘”log l—e ( i) +qf((§a)>

i=1

i=1 j=

(6)[1(5) log[l—e

A

Y

s}

o

—(y+1)210gyf—z

TENIYAl
i=1 (}“silyi)

i=

)

1

ZZr log| 1 - (lﬁile/)y

i=

=1j=

o)

b

R
e(&) 10g |:1 —e (/1511(5))7:|

@

The maximum likelihood estimates of the parameters f,, §,, y and 4 can be obtained by using Eq. (2) and the method of Newton

Raphson by the aid of R software program [28]. Then the maximum likelihood estimate for the fuzzy multicomponent stress-strength
reliability is obtained by substituting in Eq. (1).
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Asymptotic confidence interval

In order to obtain an asymptotic confidence interval for the fuzzy multicomponent stress strength reliability, the variance of f(f B
is formulated as

N KL% N 1% R CL R L
Uar(Rf,k> = aﬁw var(f,) + aﬂ" ar(B) + 0” var(y) + ai var(4)
1 . ) R v h A
br1=h, L h=h y= 1zi
[ORG ] [oRG] o IR, oRF, A
+2 : — cov(fy,By) +2 . = cov(pfy, 7
b | |as | . (h1.5,) %, A | (B1.7)
o dp=pL 4 p=p \=h r=>
[orT ] [oR,] (d) [aRfk] [aRfk] )
+2 . : cov(f,A)+2 : - cov(f,, 7
9 ~ d4 . 0 R )
L A 4p=p L d=1 b br=hs 4 =9
oRE] [oRE] [oRE] [oRL, A
T : A)+2| == : 5.4
| o, il 94 ], ;"”(ﬁz ) + Py | icou(y )
L dbh=p L 4= r= =
where
P 0%logL . 32logl. Ploal]™"
var(f)) = E|- %8 ,var(f,) = E |- 08 varp) = E| - 2%
1 aﬂz . 2 0ﬂ2 . ayz A
Lo dp=p 2 1p=p y
A [ 021 AN A A n 621 Al
var(4) = E |~ ozg , cov(By, ) =0, cov(fy,7) = E[— 08! ] ’
o4 = opor hi=Pi.r=7
A [ 0logL]™" o Plogl]™!
cov(p.2) = E ~ 3507 | s s ,cov(fy,7) = E|- 0 o
L0 pi=pya=d 207 | py=y y=i
PN [ 92logl]™" R loeL.] ™!
cov(p,,A) = E _aﬁ_ag,1 o Leov(i ) = E[_a_a‘i] )
- 2 Pr=P2,A=4 4 y=p.A=1

The (1 — @)100% asymptotic confidence interval for the fuzzy multicomponent stress strength reliability will be given by

nE RF
R, +22 var(RS,k)

Simulation study

Balakrishnan and Sandhu [29] presented an algorithm to simulate data for censoring scheme. The following algorithm is con-
structed in order to simulate data for the generalized progressive hybrid censoring scheme.

1. Set iteration =1000

. Start withi =1

. Put initial values for the parameters f,, f,. y, 4 and the constants n, k, p,c

. Set the predetermined values for (n®, h(‘s),b(‘s),lf‘s), mf.é) ), fori=1, ., b® 5=1,2
Pand Y for j=1,.., mPi=1,..., 59 6=1,2

. Generate two random samples Vi(l) and Vi(z) with sizes b1 and b, respectively from the distribution uni f orm(0, 1)

. Define the schemes ¢

N U WN

-1
(8) 4)
N (HZ'L &) _ii1 9 >
7. Define z® =v,* U for i=1,2,...,69, 6=1, 2
5 .
cSet o =1 [, 27 for i=1,2,..,69, 6=1,2
9. The simulated random samples will be computed from the following relations:

« In the normal condition

©

1y
B>

log (wgl))

« In the accelerated condition

1/y
__h
(=)

A

YO = |-

Y® =
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10. Generate random samples Yl(.j) with sizes m,@ forj=1,..., ml(.é), i=1,..., b¥, 5=1, 2 from the distribution uni form(0, 1)

No! A\t
<,-+z » rjy)
j=m.  —i+1
11. Define ¢? =y, '™ " for j=1,..,m?, i=1,...09, 5=1,2

©®

0) _ m; () s @) - _ ) —

12. Set U 1 —Hj:m(.é)_’__H qﬁij forj=1,...,m"”, i= L,...,b®, §=1,2

13. The simulated random samples will be computed from the following relations:
* In the normal condition

1y

x® = _L(D
tog (1)

« In the accelerated condition

1/y
__h__
@ _ < IOg(”Ff))>

ij 1

X

Two different schemes will be considered which will be given as follows.

Scheme (I)
@ =0 fori=1,..69-1, qZ‘(S;) =n® —p® §5=1,2
r9 =0, j=1.., m® 1,
ij i
® _ . @ . _ ¢ . _ ©)
m<.5)j_ m’, 1,2 ,b', j=1,2 ,m;

Scheme (II)

@ =n® @ ¢P =0 fori=2,..69 5=12

rl(_‘ls) =0, rl(.j) =k- m,@ forj=2,..., mgé), i=1,2,... ,b(‘s)

Scheme (I) and (II) are applied to obtain the maximum likelihood estimates for the fuzzy multicomponent stress-strength reliability
when n =10, s = 3 and k = 5 using the given algorithm. The results are shown in Table 1. Also, the asymptotic confidence intervals
for fuzzy multicomponent stress-strength reliability are obtained.

From Table 1, it can be observed that:

1. The mean squared errors (MSE) are decreasing as the values of p and c¢ are increasing.

2. The width of the confidence intervals is decreasing as the value of p is increasing.

3. The mean squared errors (MSE) in case of scheme (I) is smaller than the mean squared errors (MSE) in case of scheme (II).
4. The confidence intervals in case of scheme (II) are wider than the confidence intervals in case of scheme (I).

Application to real life data

The following data represents the failure times for a certain software model which is discussed in Lyu [30]. Let us consider that
the failures due to software faults represent the strength data (X) and the failures due to Pascal programming represent the stress
data (Y). These data are presented as follows.

35.85
43.50
45.30
56.40
94.90
173.40(
184.90
196.20
236.30
346.40
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Table 1
The results for the maximum likelihood estimates (with mean and MSE) and the asymptotic confidence intervals for R}, when
y=15 6 =p,=05 1=0.1.

Scheme c P Ry RE mean(RY ) MSE Cl.
M 0.1 0.1 0.482357 0.414145 0.322448 0.038652 [0.205475, 0.622815]
(0.417340)
0.3 0.457223 0.383314 0.299661 0.035631 [0.195390, 0.571238]
(0.375847)
0.5 0.432089 0.352484 0.276873 0.032943 [0.112982, 0.434339]
(0.321357)
0.9 0.381821 0.224822 0.228663 0.028921 [0.133563, 0.316082]
(0.182518)
0.5 0.1 0.442095 0.593931 0.297679 0.032270 [0.454437, 0.733425]
(0.278988)
0.3 0.375598 0.307348 0.243921 0.024599 [0.181422, 0.433273]
(0.251850)
0.5 0.309100 0.181568 0.191241 0.018060 [0.082070, 0.281065]
(0.198994)
0.9 0.176105 0.094084 0.090582 0.008387 [0.041534, 0.146633]
(0.105098)
0.9 0.1 0.418131 0.352336 0.280098 0.028962 [0.289469, 0.415203]
(0.125734)
0.3 0.340692 0.287524 0.223747 0.019439 [0.22788, 0.347164]
(0.119280)
0.5 0.263253 0.208187 0.168474 0.012332 [0.154139, 0.262235]
(0.108095)
0.9 0.108375 0.064038 0.056849 0.003095 [0.033568, 0.094507]
(0.060938)
m 0.1 0.1 0.482357 0.560078 0.335106 0.044607 [0.316990, 0.803166]
(0.486175)
0.3 0.457223 0.507037 0.294315 0.043893 [0.302316, 0.711758]
(0.409442)
0.5 0.432089 0.304499 0.256680 0.043646 [0.138479, 0.470519]
(0.332039)
0.9 0.381821 0.074940 0.213930 0.041229 [0.052492, 0.371992]
(0.319499)
0.5 0.1 0.442095 0.502682 0.316508 0.036764 [0.253109, 0.631081]
(0.377971)
0.3 0.375598 0.397140 0.252611 0.028131 [0.249577, 0.544703]
(0.295126)
0.5 0.309100 0.291599 0.188713 0.021479 [0.185270, 0.397928]
(0.212657)
0.9 0.176105 0.101167 0.060667 0.014254 [0.062320, 0.140013]
(0.077692)
0.9 0.1 0.418131 0.360656 0.303930 0.033514 [0.155198, 0.566113]
(0.410914)
0.3 0.340692 0.282045 0.238700 0.022878 [0.128884, 0.435207]
(0.306323)
0.5 0.263253 0.203435 0.173471 0.014526 [0.093441, 0.313429]
(0.219988)
0.9 0.108375 0.046214 0.043011 0.004668 [0.022163, 0.070265]
(0.048101)
4 6 14 14 15 22 42 84 221 303 758 760
I 15 19 24 41 44 54 145 153 180 397 409
1 5 8 16 17 19 29 36 54 87 163 1337
3 10 11 24 54 100 163 179 252 253 360 460
x=|3 9 9 12 15 18 75 137 212 328 366 428
|1 30 115 131 264 269 279 344 472 495 550 999

15 36 55 75 111 288 407 409 845 897 1314 4179
56 59 98 212 287 385 1682 1812 2439 3500 4973 6203
35 47 83 92 249 352 607 614 673 863 991 9549
10 19 20 20 24 60 79 250 338 1737 1960 7984

The Kolmogorov-Smirnov (K-S) test is performed to ensure that X and Y follow the inverse Weibull distribution. Also, the inverse
Weibull distribution is compared with some other distributions, such as exponentiated exponential distribution and the inverse Topp-
Leone distribution. The results are shown in Table 2.

10



N.S.Y. Temraz MethodsX 12 (2024) 102586

Table 2
Comparison between the inverse Weibull and other distributions.
Data set Distribution A 7 Log L AIC K-S p-value
Y Inverse Weibull 491.6597 1.4473 (0.0778) —58.6583 121.3167 0.2539 0.4647
(11.8941)
Exponentiated 1.904e+05 (4.194) 4.078 (6.898e-02) —275.4576 554.9153 0.59999 0.00056
Exponential
Inverse Topp-Leone - 0.25018 (0.07911) —77.6907 157.3814 0.51923 0.004939
X Inverse Weibull 6.7853 (0.9278) 0.5152 (0.0347) —824.9238 1653.848 0.3638 0.0841
Exponentiated 3.850e-01 1.232e+03 (2.966) —833.5991 1671.198 0.152 0.007816
Exponential (3.516e-02)
Inverse Topp-Leone - 0.24527 (0.02239) —944.7076 1891.415 0.26999 5.049e-08

The exponentiated exponential distribution [31] with shape parameter # and scale parameter y has the cumulative distribution

function and probability density function given, respectively, as follows

F(x) = (1 —e %)ﬂ,x,ﬁ,y >0

) = (1 _e r)ﬂ_le’ P Xy >0

The inverse Topp-Leone distribution is introduced by Hassan et al. [32] which has the probability density function and cumulative

distribution function given respectively by

FO) =2rx(1+x)" 71 +2x)", x, 7> 0

(1 +2x)7}
Fx)=1-4{ ——
) {(1 e

The results obtained in Table 2 show that the inverse Weibull model is the better distribution to model the datasets than the other

distributions.

Now, considering three different schemes, to obtain the results for maximum likelihood estimates for the fuzzy multicomponent

stress strength reliability when s = 3, k = 5. The different schemes are illustrated as follows.

For nD =n® =5 M =p® =2, b0 =p> =4, ¢V =¢@ =0(fori=1,24), ¢ =¢P =1

Scheme I: 7V = 40, M < v{!) - < ¥ _ terminates at ¥} _ with ¢" =0.4{" =3, Y = (35.85, 43.50)
@ =180, 1@ <¥2) < Y(z) terminates at Y,*) | w1th q@) 0.4 =3, Y® = (173.40, 184.90)

4:4:5

Scheme II: 0= 50 Y(l) a5 <t < Y4(:'3125 terminates at ()  with q(]) = q;]) 0, q(” =Lq, =1 ED =3 yvD =
(35.85, 43.50, 45.30)
@ =200,Y7) (<@ <Y _ terminates at 7@ with ¢\ = ¢’ = 0,47 = 1.¢* o =1, E? =3, Y® = (17340, 184 90, 196.20)

Scheme III: M =100, Yz(li < Y(l) s <t terminates at Y4<-14)1~5 with qg ) = (1) =0, q(l) 1 q =0, YD =
(35.85, 43.50, 45.30, 56.40)
@ =350, . <¥? <@ terminates at Y7,  with 4" = 4" = 0,4’ = 1,477 =0, Y® = (173.40, 184.90, 196.20, 236.30)

For k" = kP =12, 1" = 1P =5 m"=m® =7, AV =0(forj=1.3.4.56.7. ) =2,
r =2, r<2) 0(forj=2,3,4,56,7

Scheme I: T(” 10, T“) <xO <xO terminates at X' with r(l)—O(forJ—l 3,4, r (1) =2, r M =35, x® =

1,5:7:12 1,7:7:12 1,5:7:12 15 1.j
@, 6, 14, 14 15)
2) _ (2) )] 2) : )] : (2) (2) P (5) 2 _
T, =200, T, X15712 X17712 terminates at X15712 with " =2, =0(forj=2,3,4,r 15—5, Xl’j—
(1, 30, 115, 131, 264)
Scheme II: T(l)_20 X§15)7 1 Tl(l) X§]7)7 2 terminates at Tl(]) with r =0(forj=1,3,4,5),r (') =2, d(” s, r’;_(l) =
1
5, X“) @, 6, 14, 14, 15)
T =270, X7, < TP < X)), terminates at T\ with 7 =2, /) =0 (forj=2,3, 4,5, 6), d? =6, o =4 Xy =
(1, 30, 115, 131, 264, 269)
1 1 1 1 1 1 1 1 1
Scheme IIL: 7{" = 50, X{1.,.,, < X}")...,, <T," terminatesat ) ., with ) =0 (for j= 1,3, 4,5, 6), r{}) =2, (17>_3, xi) =
@, 6, 14, 14 15, 22, 42)
(2) 2) ) (2) 2) : 2) _ (2) _ (2) 2 _
T,” =280, X15712 X177 1 <T,” terminates at X17712 with ri=2r7.=0(forj=23,4756),r;=3, Xl’j_

(1, 30, 115, 131, 264, 269, 279)

11
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For ky) =k =12, 1) =17 =5, m) =’ =8, r)) = i) =210 =1 =0 (for j=2,3, 4,56, 7.1y = ;28):5

Scheme I: T(l) 30, T(') XSS) . X;]S g1, terminates at X25 812 with r(l) 2, rg) 0(forj=2,3,4), r Xg;:
(1, 15, 19724, 41)
Tz(z) 100, T(Z) <X§25) . <X§28 g:1p terminates at ng):snz with rézl) =2, (2) =0(forj=2,3,4), r(z) =5, X;zj) =

(15, 36, 55, 7s, 111)
Scheme I: 7\" =50, x{) . <7V < x{) terminates at 7\" with r{!) =2, “> =0(forj=23,4,5, 6, V=4 xP=

2,5:8:12 2,8:8:12 2(1) 2,j
(1, 15, 19, 24, 41, 44)
7% =200, Xf; gpp <T <X;2§ .., terminates at T\ with =2, (2’ =0(forj=2,3,4,5),r %; 5, Xf; =
(15, 36, 55, 75, 111)
Scheme III: 7" = 150, X355, 12<X§1§ 4o <T3" terminates at X{ . with r}) =2, (1)—0(f0rj—2 3.4.5.6, 7.0 =
3, X“):(l 15, 19, 24, 41, 44, 54, 145)
T =425, X3P, < Xgho, < Ty terminates at X330 with r5) =2, 1) =0 (for j=2,3, 45,6, Nry) =3, X)) =

(15 36, 55, 75 111 288 "407, 409)

For ki) =k =12, 1) =10 =6, m) =m’ =8, ) = P =1.1) =) =0 (forj=2,4,5 6 1) =r) =2/ =r{ =1

31 31 3j 38 = 38
Scheme I: T“) 18, T(” X;lﬁ)g " X;lgg 2 terminates at X;lgg 12 with rgll)—l 0 =0(forj=2,4,5), r(”_z (1)
3, X(lj) =(1, 5, 8, 16, 17, 19)
(2) (2) 2 2) 2) (2) 2 _ (2) _ @ _
T, = 300, T, <X36812<X%3812 terminates at X%esn with rs 1, =0(forj=2, 4, 5)r 2, 36—3, le—
(56, 59, 98, 212 287, 385)
Scheme II: T(l) =20, X;lg g2 < T(l) < X;lg 12 terminates atT(l)w1thr(') =0(forj=2,4,5,6), r(” 2, ’*((112 =3, X(')
1, 5, 8, 16, 17, 19)
(2) 2 (2) 2) (2) () _ (2) (2) #(2) @ _
T3 =450, X36 812 <T <Xﬂs 812 terminates at T with 3 =1,r=0(forj=2,4,5, 6),r 3 =2,r (2) =3, le =

(56, 59, 98, 212, 287, 385)
Scheme I: 7" =40, X{? .~ <x{ <7 terminates at X{ . with r(;l)=l, D=0 (forj=2.4,56 7. =2, =

3,6:8:12 3,8:8:12 3,8:8:12
1, X(l)_(l 5,8, 16, 17, 19, 29, 36)
T = 2000, xfgg 12<x§2§8 1, <Ty’ terminates at X\ . = with r=1, (2> =0(forj=2.4.56 7.0 =23 =

1, X(z) (56, 59, 98, 212, 287, 385, 1682, 1812)

For k(" = k@ =12, 1V = 1P =5, ! =m® =7, /) = /D =4, = <2>_0(f0”_23467) L

my-=my Ty Ty = T4s
. (1) (1) ()] (1) : (l) s ) _ @ _
Scheme I: T, =35, T, X45712<X47712 terminates at X45712 with r 4r =0(forj=2,3, 4),r45—3,X4’j—
3, 10, 11, 24 54)
(2) (2) (2) ) s 2) : (2) _ (2)
T, =130, T,” < X, 7, , <X, , terminates at X/, with  r, /' =4,r=0(forj=2,3,4), r ) =3, X5 =
(35, 47, 83, 92 249)
1 _ (1 (1) (¢Y] : (1) s (1) (l) *(1) M _
Scheme II: T,” =60, X45 g <T,7 < X47 ,.1, terminates at T, with r =4,r,) =0(forj=2,3, 4),r, T“’ X, =
(3, 10, 11, 24, 54)
(2) (2) (2) ) : (2) : (2) _ (2) 2 _ *(2) @ _
T,” =260, X, 0., , <T,” <X;, , terminates at T, with r =4,r7=0(forj=2, 3, 4),rg; (2)—2)( =

(35, 47, 83, 92, 249)
W _ M M
Scheme III: 7, = 180, X572 < X47:7:10
(3, 10, 11, 24, 54, 100, 163)
T;z) 470;)3 );3 @ 7 4192<3);ff7>66 1 <T¢  terminates at T,”  with =47 =0(f0orj=2 34,677 =1,X7 =
(35, 47 52, 607)

<T{" terminates at 7" with ) =4, rf‘l) =0(forj=23.4.67.r0 =1, X(l)

The results for the values of maximum likelihood estimators for the parameters f,, f,,7 and A with their standard errors under
different schemes are presented in Table 3. Also, the results for the fuzzy multicomponent stress strength reliability are obtained

From the results obtained in Table 3, it can be observed that scheme III is the best scheme since it gives better values for the MLE
of the fuzzy multicomponent stress strength reliability.

Method validation

In this paper, a study of the multicomponent stress-strength reliability is introduced in presence of partially accelerated life testing
and fuzziness and applying the generalized hybrid censoring scheme under the inverse Weibull distribution. The motivation to this
study that rare papers in literature analyzed the fuzzy multicomponent stress-strength reliability in case of partially accelerated
life testing and generalized hybrid censoring scheme. In the present study, a novel analysis of the multicomponent stress-strength
reliability is introduced assuming partially accelerated life testing and generalized hybrid censoring scheme in presence of fuzziness.

12
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Table 3
The results for MLE for the parameters with standard errors (in parentheses) and fuzzy multicomponent
stress strength reliability for the three schemes.

Scheme b b, 4 §) ¢ p IQ; 5
I 4.34590 9.43523 0.46487 0.28017 0.5 0.1 0.24571
(1.07544) (3.77778) (0.06269) (0.16826) 0.3 0.24340
0.5 0.24110
0.9 0.23649
2 0.1 0.20404
0.3 0.19730
0.5 0.19056
0.9 0.17709
I 3.46528 7.07788 0.43777 0.27314 0.5 0.1 0.25653
(0.68713) (3.06453) (0.05087) (0.14841) 0.3 0.25352
0.5 0.25051
0.9 0.24450
2 0.1 0.20118
0.3 0.19315
0.5 0.18511
0.9 0.16905
111 3.93967 7.57285 0.50031 0.22713 0.5 0.1 0.27765
(0.75342) (3.97195) (0.04640) (0.09942) 0.3 0.27405
0.5 0.27044
0.9 0.26322
2 0.1 0.22863
0.3 0.21848
0.5 0.20834
0.9 0.18805

The inverse Weibull model is used to describe the time of the system which make the system more flexible. An estimator of the
fuzzy multicomponent stress-strength reliability is obtained by using the method of maximum likelihood. An asymptotic confidence
interval for the fuzzy multicomponent stress-strength reliability is deduced. A simulation study is introduced to obtain numerical
results for the fuzzy multicomponent stress-strength reliability for different values of the parameters and different schemes. A real
data application representing the failure times for a software model is introduced to obtain the fuzzy multicomponent stress-strength
reliability when applying different schemes.
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