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Abstract
Transitive inference (the ability to infer that B > D given that B > C and C > D) is a wide-

spread characteristic of serial learning, observed in dozens of species. Despite these

robust behavioral effects, reinforcement learning models reliant on reward prediction error

or associative strength routinely fail to perform these inferences. We propose an algorithm

called betasort, inspired by cognitive processes, which performs transitive inference at low

computational cost. This is accomplished by (1) representing stimulus positions along a

unit span using beta distributions, (2) treating positive and negative feedback asymmetri-

cally, and (3) updating the position of every stimulus during every trial, whether that stimu-

lus was visible or not. Performance was compared for rhesus macaques, humans, and the

betasort algorithm, as well as Q-learning, an established reward-prediction error (RPE)

model. Of these, only Q-learning failed to respond above chance during critical test trials.

Betasort’s success (when compared to RPE models) and its computational efficiency

(when compared to full Markov decision process implementations) suggests that the study

of reinforcement learning in organisms will be best served by a feature-driven approach to

comparing formal models.

Author Summary

Although machine learning systems can solve a wide variety of problems, they remain lim-
ited in their ability to make logical inferences. We developed a new computational model,
called betasort, which addresses these limitations for a certain class of problems: Those in
which the algorithm must infer the order of a set of items by trial and error. Unlike extant
machine learning systems (but like children and many non-human animals), betasort is
able to perform “transitive inferences” about the ordering of a set of images. The patterns
of error made by betasort resemble those made by children and non-human animals, and
the resulting learning achieved at low computational cost. Additionally, betasort is difficult
to classify as either “model-free” or “model-based” according to the formal specifications
of those classifications in the machine learning literature. One of the broader implications
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of these results is that achieving a more comprehensive understanding of how the brain
learns will require analysts to entertain other candidate learning models.

Introduction
Tests of transitive inference (TI) are among the oldest tools for assessing abstract thinking. First
introduced by Piaget [1] to demonstrate the emergence of logic in child development, TI has
since been studied in many species. The cognitive faculties that permit transitive inference are
very general: To date, TI has been observed in every vertebrate species tested [2], including pri-
mates [3], rodents [4], birds [5], and even fish [6]. The widespread occurrence of this phenom-
enon suggests that TI procedures tap into deep and enduring learning systems.

There are obvious benefits to being able to compare scalar quantities like distance and
amount, all of which are transitive by definition. Evidence also suggests that subjective evalua-
tions of temporal duration [7] and subjective utility [8] are treated as scalar variables. For all of
these characteristics, organisms will inevitably be faced with choices. Transitive comparisons
avoids costly (and potentially risky) trial-and-error by allowing subjects to compare relative
values following a minimal number of exposures. Provided an appropriately scalar encoding,
such inferences can be achieved by direct comparison.

Some biologically relevant orderings are even more abstract, and may change rapidly. Social
dominance hierarchies are an important example. Systematic analysis suggests that the vast
majority of dominance relations in animals are transitive [9]. Status is often not obvious from
physical appearance alone, and animals can avoid costly conflicts if they can discover and
update hierarchies as third-party observers. Transitive inferences of social rank, based on
observation alone, have been reported in pinyon jays [10], tilapia [8], and rhesus monkeys
[11]. Furthermore, comparative studies in both corvid species [5] and lemur species [3] report
a link between TI performance in a given species and the typical size of social groups in that
species. Given that social groups can, in some species, consist of dozens or even hundreds
of individuals, inferring social relations from partial information depends on an efficient
algorithm.

In order to avoid confound, classical TI tasks are entirely abstract, using ordered lists assem-
bled from otherwise arbitrary stimuli. For example, seven photographic stimuli are given the
ordered labels A through G. During training, subjects are only shown randomly selected adja-
cent pairs (AB, BC, CD, DE, EF, and FG), and are required to select one stimulus in every trial.
The only feedback provided is a reward (if the earlier list item was selected) or no reward (if the
later item was selected). No other cues indicate that stimuli have an ordering, and no more
than two items are ever simultaneously presented. Following training, preference is assessed
for non-adjacent pairs (e.g. BD). If subjects select earlier items in novel pairs at above-chance
levels, they are said to have performed a “transitive inference” because doing so exploits the
transitive relationship that B> C and C> D implies B> D. Fig 1 depicts sample stimuli, trial
structure, and stimulus pairings for a 7-item TI task.

In the above example, only the stimuli A and G are differentially rewarded, and can there-
fore be identified on the basis of reward prediction error. Accordingly, these stimuli are cor-
rectly identified more often, (the terminal item effect). Correct choices among stimuli B, C, D,
E, and F are more difficult to explain, however, because their expected value during training is
0.5. The pair BD is a critical pair during testing because that pair is novel and contains no ter-
minal items. Learning models that rely on only the expected values of stimuli fail to make the
inference and respond at chance levels [12].

Implicit Value Updating & the Betasort Model
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Despite decades of research, controversy remains over what exactly is learned during TI
tasks. One such debate regards whether such learning requires cognitive processes, or can
instead be explained merely by associative mechanisms. The cognitive learning school of
thought holds that inferring the order of BD based only on BC and CD implies internal repre-
sentation of the ordered list [13]. On the other hand, the associative learning school maintains
that TI can be explained by stimulus-response-outcome associations alone [14]. Although asso-
ciative models of TI struggle to accommodate the full range of empirical findings [15], their
mathematical formalism at least permits specific predictions [16]. Cognitive models, by con-
trast, have historically been too vague to permit the simulation of behavior [12].

Here, we attempt to resolve this difficulty by comparing the ability of computational models
to explain aspects of TI performance observed in humans and monkeys. These include the

Fig 1. The transitive inference procedure, as implemented for rhesusmacaques responding using eye tracking. (Top) Each session used a novel
seven-item list, like the one depicted here. However, subjects were never presented with the entire list. (Middle) Each trial began with a fixation point.
Following fixation, two stimuli appeared, and subjects received feedback upon a saccade to either stimulus. If the stimulus appearing earlier in the list was
selected, a reward was delivered; if the other stimulus was selected, the animal was subjected to a timeout. Either outcome constituted the completion of a
trial. In the event of an incomplete trial (e.g. subjects fixating but failing to saccade to a stimulus) was deemed incomplete and did not count toward the set of
trials completed. All dashed lines and arrows represent eye movements and fixation areas, and did not appear on the screen. (Bottom) Subjects were initially
trained only on the six adjacent pairs. Following adjacent pair training, subjects were then tested on all twenty-one pairs. These varied in their ordinal distance
(with the pair AG being the largest). Additionally, six pairs were considered the critical transfer pairs (shaded in gray) because they were neither adjacent nor
did they include the terminal items. Consequently, these are the pairs that provide the strongest test of transitive inference and symbolic distance effects.

doi:10.1371/journal.pcbi.1004523.g001
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transfer of knowledge from adjacent to non-adjacent pairs, and symbolic distance effects. One
model, drawn from the machine learning literature, can only learn from frequencies of reward
delivery. Another is a new model, called betasort, that can infer the relative list positions of the
stimuli. We argue that these models are representative of associative learning on the one hand,
and cognitive learning on the other.

Humans and monkeys performed a transitive inference task, and their performance was
characterized in terms of several learning models, including betasort. Betasort successfully per-
formed the transitive inference task at low computational cost, whereas the associative model
was unable to learn during adjacent pair training or to show distance effects at transfer.

Models

Terminology and Notation
When situating TI in the current literature, it is important to define terms. The overarching
topic of reinforcement learning (RL) pertains to how subjects learn by trial and error, whether
through associative or cognitive processes. This approach is informed by the machine learning
literature (popularized by Sutton and Barto [17]), which specifies a different distinction:
“model-free” RL vs. “model-based” RL [18]. Typically, these two groupings of algorithms are
presented in the following fashion:

A number of accounts of human and animal behavior posit the operation of parallel and
competing valuation systems in the control of choice behavior. In these accounts, a flexible
but computationally expensive model-based reinforcement-learning system has been con-
trasted with a less flexible but more efficient model-free reinforcement-learning system.

Otto and colleagues, 2013, p. 751 [19]

With few exceptions, the “model-based” algorithms used by computational neuroscientists
rely on contingency tables that relate states and actions. This represents a vast range of poten-
tial models, which either are or seek to approximate the behavior ofMarkov decision processes
(MDPs). “Model-free” algorithms are in turn typically assumed to have the following
characteristics:

1. Each action is represented by an expected value of reward.

2. Values are updated as a function of discrepancy between the expectation and outcome,
called reward-prediction error (RPE).

3. Predictions are made about available actions, so only values associated with available actions
are updated.

Such algorithms can solve certain problems without contingency tables, instead using RPE to
approximate the expected value of a given action. These ‘value function approximations’ often
rely on dynamic programming techniques pioneered by Bellman [20]. These estimated values
converge at the limit with the stochastic expectations of MDP models under certain conditions.
When conditions are good for rapid convergence, RPE models give rise to adaptive behavior
without instantiating a contingency table [21].

Defining ‘available actions’ in a clever fashion permits RPE models to generalize. For exam-
ple, by recognizing that pressing a button with one’s left or right hand may be functionally
equivalent, an algorithm can learn the general predicted value of ‘button pressing’ independent
of which hand is used. The most powerful such generalizations yet observed are those of “deep
Q-network” (DQN) learning [23], which performs well under many (but by no means all)
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testing conditions. Other value function approximations are sometimes labeled as “model-
free,” such as the Rescorla-Wagner model [22]. To avoid misunderstanding, we henceforth will
refer to MDP and RPE models directly, rather than refer to broad categories of algorithms.

Although value function approximation can produce successful behavior in many contexts,
it routinely fails to yield effective solutions to TI problems. Because each ‘state’ (i.e. the pair of
stimuli currently visible) is independent of the previous action, and because the stimuli them-
selves are assigned a rank arbitrarily, there are no explicit cues that RPE algorithms can use to
enhance their predictions about the expected value of the non-terminal items. Furthermore,
because subjects are only told whether a response was ‘correct’ or ‘incorrect’ (as opposed, for
example, to being told the distance between items following every trial), no additional informa-
tion is provided about the relationship between stimuli.

Let cht denote the index associated with a subject’s choice at time t. Let rt indicate the deliv-
ery of a reward (or lack thereof), indicated by a value of 1.0 or 0.0 respectively. Let ℵ denote the
set of all stimuli presently employed in the experiment. ℵ+t denotes only those stimuli that are
presented during the current trial, while ℵ −t denotes those stimuli whose presence is implied
by past experience but are not currently visible. Additionally, let nct denote the set of stimuli
not chosen. The models here described also make a distinction between an updating policy
(which modifies memory as a function of feedback) and a choice policy (which selects the next
behavior). These are best understood as subroutines.

The Betasort Algorithm
Overview. Betasort is designed to be a computationally inexpensive formalization of the

spatial coding hypothesis [13, 24–27]. By coding stimulus position spatially, betasort can per-
form inferences over arbitrarily large sets of items. By treating item position as a density func-
tion, rather than a point estimate, the uncertainty associated with a position can also be
represented. The feedback provided during the TI task is used to shift and consolidate those
stimulus densities.

Betasort directly instantiates a spatial model, and so bears little functional resemblance to
an MDP approximator. It is instead based on three principles. The first is the use of beta distri-
butions. Although commonly used as sampling distributions for probabilities, we instead use
them here to represent stimulus position on a unit scale. Betasort selects behaviors using these
distributions, and then updates stimulus positions and their uncertainty. The second principle
is that feedback should be used to update the position of a stimulus, rather than its expected
value. Consequently, when the outcome of an action is satisfactory, one should consolidate the
current position, rather than shift it. The third principle is that every stimulus representation
should be updated during every trial, regardless of which stimuli are presented. Collectively,
these principles provide a plausible mechanism for transitive inference. A schematic represen-
tation of the algorithm is provided in Fig 2.

The position of a stimulus i is represented by two parameters: An “upper” parameter Ui and
a “lower” parameter Li, both positive. If Ui > Li, then the stimulus position is closer to the top
of the scale; if Li > Ui, then it is closer to the bottom. As Ui and Li both get larger, the uncer-
tainty associated with the stimulus position decreases. The density function over a sample
space from 0.0 to 1.0 is given by:

Betaðx;Ui; LiÞ ¼
GðUi þ LiÞ
GðUiÞGðLiÞ

xUi�1 ð1� xÞLi�1 ð1Þ

Here, Γ() represents the gamma function. When Ui = Li = 1.0, the probability density is uni-
form; it grows increasingly normal as these parameters increase. In order to consolidate a
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stimulus position, rather than shift it, these parameters are increased by a proportion of their

current value (i.e. Ui  Ui þ Ui
UiþLi and Li  Li þ Li

UiþLi). This distributes a single reward across

both parameters, leaving the position intact while reducing its uncertainty.
Incrementing values of Ui and Li is effectively Bayesian updating. The beta distribution at

the time of a choice represents a subject’s prior belief about where the stimulus might be, based
on the evidence collected up to that point. When the subject received feedback, this new evi-
dence is factored in, changing the distribution to a posterior belief. The resulting posterior then
acts as the prior for the subsequent trial. Although Bayesian updating of most continuous dis-
tributions is computationally expensive, the beta distribution is an exception because it is a con-
jugate prior. This means that, if our prior on an unknown probability is beta-distributed, then
so too is the posterior. The parameters of this new posterior are identical to the prior values of
Ui and Li, plus a small increment that corresponds to the feedback. Consequently, updating the
beta prior entails almost no computational cost.

Because of this elegant property, the beta distribution is commonly used as a sampling dis-
tribution for an unknown probability, on the basis of a set of binary outcomes [28]. IfH and T
are thought of as the accumulated number of Heads and Tails resulting from flipping a coin,
then Beta(p;H, T) yields a credible interval for the probability p of the next toss coming up
Heads. Each additional Head or Tail is added to its corresponding count, tightening the beta
distribution around the coin’s true probability of Heads. In betasort’s case, however, the aim is
not to estimate an unknown probability, but rather an unknown position along the unit scale.

Betasort also tracks the reward (Ri) and non-rewards (Ni) associated with trials that include
each stimulus. Importantly, if a trial is rewarded, the value of Ri is increased for both stimuli.
This is because Ri and Ni control the algorithm’s explore/exploit tradeoff, increasing the vari-
ability of behavior when the current representation is not functioning effectively.

Betasort’s choice policy (red in Fig 2) draws random values from each position distribution,
and selects the largest from among the available actions. The policy uses one free parameter:

Fig 2. Outline of the betasort algorithm over the course of one trial. The algorithm’s logic is presented in
both a schematic (left) and detailed (right) outline. Rectangles refer to operations, diamonds to logical
branches, and octagons to loops that iterate over sets of items. Four phase are depicted: the choice policy
(red), the relaxation of the contents of memory (green), the processing of explicit feedback (blue), and implicit
inference (yellow).

doi:10.1371/journal.pcbi.1004523.g002
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noise (0.0< τ< 1.0), which is the probability that betasort ignores its memory and selects an
action at random. When τ = 1.0, the algorithm is entirely stochastic; when τ = 0.0, all choices
are governed by memory. Note that, early in learning, choices governed by memory will also
look like guessing, because of the substantial uncertainty about each stimulus position. Conse-
quently, τ is not strictly a variable that governs ‘guessing behavior,’ but rather one that governs
how often the algorithm disregards the contents of memory.

Betasort’s updating policy begins with the relaxation phase, (green in Fig 2), which makes
use of another free parameter: recall (0.0< ξ< 1.0), which scales the contents of memory
downward during every trial prior to processing the feedback for that trial. For example, if Ui =
20 and Li = 10, then given ξ = 0.9, these values will be updated to (ξ × Ui) = 18 and (ξ × Li) = 9,
respectively. These representations are further relaxed as a function of Ri and Ni: As the algo-
rithm makes more mistakes, it discounts its representation more rapidly (and thus explores
more); given fewer mistakes, it discounts more slowly (and thus exploits more).

Following trial feedback, betasort applies explicit feedback (blue in Fig 2) to those stimuli
present in the current trial. If the choice was rewarded, both have their current positions con-
solidated. If the choice was not rewarded, their positions are shifted to improve performance
during later trials. Next, betasort applies implicit inference (yellow in Fig 2) to the values of all
stimuli not presented during the trial. If the choice was rewarded, all inferred positions are con-
solidated; if not, those stimuli that fall between the trial stimuli are consolidated, but those that
fall outside the trial pair are shifted toward the edge of the sample space. Fig 3 presents relaxa-
tion, explicit feedback, and implicit inference during a single incorrect trial.

Memory structure. The betasort algorithm makes use of four 7 × 1 vectors to track feed-
back concerning the available stimuli: U, L, R, and N. The vector U indicates the degree to
which stimulus i is close to the top of the unit scale. The vector L plays a similar role the bottom
end of the scale. Jointly, U and L provide the parameters to the beta distributions that represent
the estimated position of each stimulus on the unit span. Meanwhile, R and N store rewarded
and unrewarded trials for each stimulus, respectively. Thus, if Ri = 10.5 and Ni = 4.5, then the
algorithm estimates 70% probability of reward during trials in which i was present, based on
the last 15 trials. Although all four vectors conceptually represent sums of discrete events, they
support fractional values, resulting from the relaxing phase of the updating policy.

Choice policy. At stimulus onset for every trial, each stimulus in the set ℵ+t had a number
Xi drawn at random either from a beta distribution, parameters governed by past learning Ui

and Li, or else draws these values from a uniform distribution (in which case behavior is
entirely random). The odds of choosing entirely randomly is governed by the “noise” parame-
ter τ, such that 0� τ� 1:

Xi ¼
Betað1; 1Þ if Rnd < t

BetaðUi þ 1; Li þ 1Þ otherwise
ð2Þ

(

A value of 1 is added to Ui and Li in order to act as a prior on the probability distribution. This
also prevents the distribution from approaching a singularity as a consequence of some edge
conditions during updating.

The betasort choice policy is to select the alternative whose random value is largest:

cht ¼ i such that Xi ¼ max ðXi2ℵþt
Þ ð3Þ

This choice policy is only marginally more expensive than softmax, in that it involves only
drawing random values from a handful of closed-form probability density functions. It also has
the added benefit that, because the absolute values of Ui and Li are preserved, they govern the
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narrowness of the beta distributions and thus model a subject’s growing accuracy as a function
of increased experience.

Updating policy. Betasort’s updating policy involves three stages: Relaxation, explicit
updating, and implicit inference. Relaxation weakens the influence of old information in favor
of more recent feedback. This is governed by the “recall” parameter ξ, such that 0� ξ� 1. All
four vectors (U, L, R, and N) are multiplied by ξ, so all qualify as “leaky accumulators” [29],
steadily decreasing in absolute value. These losses are then counteracted by subsequent updat-
ing. In addition to ξ, the values of U and L are further relaxed by a vector of factors ξR, based
on the reward rate accrued during trials in which a given stimulus was present. When accuracy
is high, this additional relaxation is minimal; however, when accuracy is low, more aggressive
relaxation yields greater variability in behavior, helping to keep the algorithm from being

Fig 3. Visualization of Betasort’s adjustment of the beta distributions during a single trial in which an incorrect response is given. For this example,
the trial stimuli are the pair CE. The initial conditions show the beta distributions of a well-learned list, with means marked by a vertical line. During the choice
phase, a value is drawn randomly from the beta distributions of each trial stimulus, and the stimulus with the larger random value is chosen. In this example,
the algorithm incorrectly selects stimulus E, an unlikely but possible event. Immediately following the choice, but before feedback is taken into account, the
positions of all stimuli are relaxed (using ξ = 0.6 for this example). This has the effect of making all density functions slightly more uniform, and reduces the
influence of older trials in favor of more recent ones. During explicit feedback, the increases LE by one, while also increasing UC by one. This increases the
odds of future selections of stimulusC, while decreasing the odds of future selections of stimulus E. Next, the algorithmmakes implicit inferences about the
positions of all known stimuli that did not appear during the trial. Because stimulusD falls betweenC and E, its count of successes and failures is
consolidated and its position does not change. Stimuli A and B are positioned above the trial stimuli, and so are shifted upward. Stimuli F andG are shifted
downward.

doi:10.1371/journal.pcbi.1004523.g003
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trapped in local minima. Collectively, relaxation makes the following modifications, for all sti-
muli i:

Ri  Ri � x
Ni  Ni � x

xRi  
Ri

Ri þ Ni

Ri

Ri þ Ni

þ 1
þ 0:5

Ui  Ui � xRi � x
Li  Li � xRi � x

ð4Þ

Subsequent updating depends on a vector of “expected values” V of each stimulus. These
are not expected values in the econometric sense, but instead represent the best estimate of the
position of each stimulus along the unit span:

Vi ¼
Ui

Ui þ Li

ð5Þ

In the event that (Ui = Li = 0.0), Vi is set to 0.5. Subsequent updating depends on (1) whether
the trial resulted in a reward or not, (2) whether each stimulus i was part of the set present dur-
ing the trial or not, and (3) the relative values of V.

If the response is rewarded, then the algorithm consolidates its current estimates. This is
done by increasing every Ui by an amount equal to Vi, whereas every Li is increased by an
amount equal to (1 − Vi):

Choice was correct :
Ui  Ui þ Vi

Li  Li þ 1� Vi

ð6Þ
(

This is done regardless of whether the stimulus was present on the current trial. If, on the other
hand, the response was not rewarded, then Lch is increased by one, as is Unc. Then, for all other
stimuli not present during the trial, their values are updated as a function of their Vi relative to
the stimuli presented:

Choice was incorrect :

Ui2ℵ�t
 

Ui þ Vi if Vnc > Vi > Vch

Ui þ 1 if Vi > Vnc

(

Li2ℵ�t
 

Li þ 1� Vi if Vnc > Vi > Vch

Li þ 1 if Vch > Vi

(

8>>>>>><
>>>>>>:

ð7Þ

Thus, in the cases where the response was incorrect, the algorithm consolidates the representa-
tion of those stimuli falling between the pair, and pushes those lying outside the pair outward
toward the margins.

The entire process for updating is specified by the pseudocode entitled Algorithm 1 in S1
Text.

Although this procedure involves a number of logical comparisons, its adjustments are oth-
erwise strictly arithmetic, and can be computed rapidly without recourse to bootstrapping.

Parameter estimation. Although generating choices and updating memory can both
be accomplished rapidly, computing the likelihood of an observed response is more
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computationally costly. Doing so requires computing the incomplete beta distribution:

I ðxjUi; LiÞ ¼
Z x

0

BetaðxjUi; LiÞdx ð8Þ

In the case of a two-stimulus trial, the odds of stimulus A being chosen over stimulus B, the
odds depend both on the noise parameter τ and integrating over two convolved distributions
[30]:

p cht ¼ Ajℵþt ¼ fA;Bg; tð Þ ¼ t
2
þ 1� tð Þ

Z 1

0

Beta xjUA; LAð Þ I xjUB; LBð Þdx ð9Þ

Given this formula, computing log-likelihoods associated with the parameters (τ, ξ) for a set of
observed data can be performed in much the same manner as with the Q/softmax algorithm.

Unfortunately, τ and ξ are not strictly orthogonal: Performance near chance can alterna-
tively be explained by high values for τ or low values for ξ. To avoid unstable parameter esti-
mates, values of τ were estimated heuristically, based on the observation that subjects reliably
showed near-ceiling performance on the pairs AF, BG, and AG. Under the assumption that the
integral above equals 1.0 for those pairs, a bit of arithmetic yields the following estimate:

t � 2� 2pðcorrectjfA; Fg _ fB;Gg _ fA;GgÞ ð10Þ
Having set this parameter, we then used the fminsearch() optimizer packaged with Matlab
2014b (The MathWorks, Inc.) to identify the maximum likelihood parameter estimate for ξ.
Parameters were obtained for each session.

The BetaQ Algorithm
Overview. To emphasize the importance of the implicit inference stage, we also present

the betaQ algorithm, which uses beta distributions but only updates the values of stimuli pres-
ent during the trial (omitting all implicit inference).

Memory structure. Identical to betasort: four 7 × 1 arrays, meant to represent successes U,
failures L, rewards R, and nonrewardsN for all stimuli.

Choice policy. Identical to betasort.
Updating policy. Incorporates only those aspects of betasort’s updating policy that relate

to the presently-visible stimuli. Pseudocode describing this process is entitled Algorithm 2 in
S1 Text. In this respect, betaQ preserves the longstanding associative assumption that only the
stimuli present during the current trial can have their corresponding values updated.

Parameter estimation. Identical to betasort, differing only in its use of the betaQ updating
policy.

Q-Learning & Softmax
Overview. Q-learning [31] is a widely-studied RPE model that estimates each action’s

expected value. Q-learning is only unbiased if, during training, it performs every action in
every context uniformly [32]. Favoring successful actions (and avoiding harmful ones) during
training can catastrophically bias its estimates. Accurate convergence is only guaranteed when
Q-learning is paired with a counterproductive “try everything” choice policy, a recognized
shortcoming of RPE models generally [33]. Despite this, Q-learning is often paired with the
softmax function [34], a choice policy that selects actions stochastically as a function of
expected values. We subsequently refer to this pairing as Q/softmax, which takes two parame-
ters (α and β, described below).

Implicit Value Updating & the Betasort Model

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004523 September 25, 2015 10 / 27



Memory structure. Information about the stimuli was stored in a 1 × 7 vector denoted by
Q, with each column indicating the expected value of a given stimulus on a scale from 0.0 to
1.0. By convention, the value of stimulus i at time t is denoted by Qt(i) to clearly delineate time
and stimulus index. Each value of Qt(i) is initialized to a value of 0.5 when (t = 0). Although no
Q-learning method is ever truly “model-free” in the cognitive sense, this constitutes the sim-
plest model of memory that accommodates RPE-based updating.

In theoretical discussions of reinforcement learning, the value stored in memory is routinely
denoted by Qt(st, at), where st refers to a current state, whereas at refers to a particular action in
that state. This formalism is particularly ill-suited to the transitive inference procedure, how-
ever, because the states about which we are curious during testing (i.e. non-adjacent pairs)
have never before been seen. The manner in which the model extrapolates to these hitherto-
unknown states must be formally specified. Rather than smuggle inference in at the extrapola-
tion stage, the present model is limited to ascribing an expected value to each stimulus and
extrapolating on the basis of the relative values in any stimulus pairing.

Choice policy. Stimuli are selected using the softmax function, which has one free parame-
ter β, such that β� 0:

p cht ¼ ijℵþt;Qtð Þ ¼ exp ðb � QtðiÞÞP
j2ℵþt

exp ðb � QtðjÞÞ
ð11Þ

Updating policy. This algorithm uses the most basic form of temporal difference reward-
prediction error, which has a single free parameter α, such that 0� α� 1:

Qtþ1ðiÞ ¼ QtðiÞ þ adtðiÞ; for all i; given that

dtðiÞ ¼

1� QtðiÞ i 2 ℵþt ^ ððrt ¼ 1 ^ cht ¼ iÞ _ ðrt ¼ 0 ^ cht 6¼ iÞÞ

�QtðiÞ i 2 ℵþt ^ ððrt ¼ 0 ^ cht ¼ iÞ _ ðrt ¼ 1 ^ cht 6¼ iÞÞ

0 otherwise

ð12Þ

8>>><
>>>:

Thus, the value of Qt(i) for every stimulus i is updated at time t, but only those present during
the current trial (i.e. i 2 ℵ+t) are updated as a consequence of the feedback rt. If the choice was
rewarded, the value of the chosen stimulus is increased by some factor of the discrepancy
between the reward and the value, while the unchosen stimulus has its value correspondingly
decreased. If, on the other hand, the choice was not rewarded, the opposite occurred: The
selected stimulus was decreased and the unchosen alternative was increased. The updating pro-
cess is also specified by the pseudocode entitled Algorithm 3 in S1 Text.

Note that many RPE implementations do not use this symmetrical structure, and instead
only update the stimulus that was selected. We implemented both the version above and a cho-
sen-stimulus-only updating procedure, and these yielded nearly indistinguishable results.

Parameter estimation. Since softmax gives the probability of selecting an outcome
directly (once β is specified), and since the value of Qt(i) is straightforwardly defined for every
trial (once α is specified), it is therefore easy to calculate the log-likelihood associated with a set
of parameters (α, β), given an observed history of choices and responses (as described by Daw
[35]). Because Q/softmax is an iterative algorithm, no closed-form solution exists for finding
the parameters that maximum the likelihood. Consequently, these were identified using the
fminsearch() optimizer packaged with Matlab 2014b (The MathWorks, Inc.). In general, opti-
mal parameters of β were large (i.e., greater than 4), in order to guarantee the stimulus with the
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greater value was selected almost exclusively. This, in turn guaranteed values of α that were
very small, to prevent preferences becoming too extreme too quickly.

Results
Here, we present an analysis of TI performance by rhesus macaques and college undergradu-
ates, the raw data of which are provided in S1 Dataset. Additionally, these empirical results are
modeled using three algorithms: betasort, betaQ, and Q/softmax.

Behavioral Results from Rhesus Macaques
Three rhesus macaques completed sessions of TI training, learning novel 7-item lists during
every session. Choices were made using eye movements. The six adjacent pairs (AB, BC, . . .,
FG) were presented in randomized blocks of twelve pairs each to counterbalance for stimulus
position. After 20 blocks of training, subjects were presented with all 21 pairs of stimuli in a
similarly counterbalanced fashion.

Fig 4A shows response accuracy (averaged across monkeys) for the non-terminal adjacent
pairs (BC, CD, DE, and EF, in red), as well as the critical pairs with ordinal distance 2 (BD, CE,
and DF, in orange), 3 (BE and CF, in green), and 4 (BF, in blue). Adjacent-pair performance is
close to chance during training, but performance is above chance on non-adjacent pairs at
transfer, showing a symbolic distance effect (with highest accuracy for distance 4 pairs, fol-
lowed by distance 3, etc.). This constitutes a symbolic distance effect [25, 36], which is consis-
tent with subjects’ use of serial representations. Over the next 400 trials of training,
performance continued to improve. Each algorithm had two free parameters (noise τ and recall
ξ for betasort and betaQ; α and β for Q/softmax) that were fit to the monkey data using a maxi-
mum likelihood method, as described in the methods. The sequence of stimulus pairs shown
during each session was then presented to each algorithm using that session’s best-fitting
parameters. Simulated performance was then averaged to compare the algorithms to the
monkeys.

Fig 4B shows the average simulated performance of the betasort algorithm, based on the ses-
sions and best-fitting parameters derived from the monkey data. Because simulation permits
undisruptive probe trials, putative accuracy for non-adjacent pairs is also plotted during adja-
cent-pair training. Although monkeys and betasort differ in their particulars, several important
hallmarks of the TI behavior are displayed. A distance effect is observed with the non-adjacent
critical pairs, which persists over the course of the subsequent training. Contrastingly, Fig 4C
shows the average simulated performance of the betaQ algorithm, which displays less resem-
blance to the monkey data. Although a weak symbolic distance effect is observed, it does not
exceed an accuracy of 60% at transfer. Fig 4D, which displays the average simulated perfor-
mance for the Q/softmax algorithm, resembles the monkey data the least: Its performance on
the non-terminal adjacent pairs is precisely 50% throughout training, and no transitive infer-
ence is displayed at transfer. Instead, the algorithm begins the all-pairs phase of the experiment
at chance on all critical pairs, and only gradually determines their ordering once it has received
all-pair training.

Fig 5A–5C presents the contrast between model predictions and animal behavior during the
first block of trials following transfer. The betasort algorithm, in red, (Fig 5A) largely aligns
with observed response accuracy, in green, for all 21 possible pairs. This includes a distance
effect for the critical pairs, which are indicated by a gray backdrop. Confidence intervals were
calculated using bootstrapping, and corrected for multiple comparisons using the Holm-Bon-
ferroni step-down procedure [37]. Those pairs whose means differ significantly are denoted in
Fig 5 with an asterisk below the pair’s axis label; 5 such pairs differed significantly in Fig 5A.
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Contrastingly, the betaQ algorithm (Fig 5B, blue) did less well in approximating performance.
While the betasort algorithm tended to overperform on the critical transfer pairs, betaQ tended
to underperform. Of the 21 pairs, betaQ differs significantly from observed performance for 6.
The Q/softmax algorithm (Fig 5C, brown) transfered poorly: Its goodness of fit was driven by
terminal item effects, and all non-terminal pairs displayed chance performance. Of the 21
pairs, 9 differed significantly from observed.

Two omnibus model comparisons of algorithm performance at transfer were calculated for
each model, relative to subject accuracy: the Schwarz-Bayes Information Criterion [38]
(“SBIC”) and the log-likelihood ratio [39] (“G”). Betasort received the lowest (i.e. most favor-
able) score in both cases (SBIC = 9248.7, G = 186.5) compared to betaQ (SBIC = 9264.8,
G = 200.7) and Q/softmax (SBIC = 9338.6, G = 276.4). This constitutes strong evidence favor-
ing betasort over the two competing models. Since SBIC provides an approximation of twice
the log marginal model likelihood, it may also be used to compute an approximate Bayes factor
[40]. According to this metric, the evidence strongly favors betasort over both betaQ (loge(BF)
= 8.1) and Q/softmax (loge(BF) = 45.0).

Behavioral Results from Humans
19 college undergraduates completed sessions of TI training, using a touchscreen. Training con-
sisted of 36 trials consisting of adjacent pairs, which was then followed by 90 trials consisting of
only the non-adjacent pairs. The session then concluded with 42 trials using all pairs. Average
response accuracy for the non-terminal pairs is shown in Fig 4E, for four symbolic distances.

Fig 4. Monkey and human performance on non-terminal stimulus pairs. Trial zero is the point of transfer
from adjacent-pair to all-pair trials. (A) Smoothed response accuracy for three rhesus macaques, divided into
pairs with ordinal distance one (BC, CD, DE, and EF; red), two (BD, DE, and CF; orange), three (BE and DF;
green), and four (BF; blue). Subjects show an immediate distance effect from the first transfer trial. (B)
Simulated performance using betasort, using each monkey’s maximum-likelihood model parameters for each
session. Hypothetical performance is plotted for all distances at all times, to show how the algorithm would
respond had it been presented with trials of each type. Like the monkeys, the algorithm displays an
immediate distance effect. (C) Simulated performance using betaQ, with maximum-likelihood parameters.
Although a small distance effect is observed, performance remains close to chance throughout training. (D)
Simulated performance usingQ/softmax. Performance remains strictly at chance throughout adjacent-pair
training, and only begins to display a distance effect after the onset of the all-pairs trials. (E) Performance of
human participants given 36 trials of adjacent-pair training, followed by 90 trials of non-adjacent pairs only,
and finally 42 trials of all pairs. Unlike the monkeys, participants rapidly acquire the adjacent pairs, and show
only a mild distance effect at transfer. (F-H) Simulations based on human performance using the three
algorithms, analogous to panels B through D. As in the monkey case,Q/softmax displays no distance effect
at all until non-adjacent pairs are presented.

doi:10.1371/journal.pcbi.1004523.g004
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As with the monkeys, best-fitting algorithm parameters were identified based on maximum
likelihood, and these were used to simulate the behavior of each participant. Fig 4F–4H depict
average performance of the simulations at transfer. Although betasort shows the closest
approximation of the symbolic distance effect at transfer, several discrepancies are evident. In
particular, performance on the non-terminal adjacent pairs is rapidly learned by humans, but
is not learned by the algorithms. This suggests that, in addition to an inferential procedure, par-
ticipants also used rote memorization.

Fig 5D–5F show performance at transfer for each of the 21 pairs by humans (green) vs. each
of the algorithms. Betasort (red) provided the best fit: 9 pairs differed significantly at transfer,
based on bootstrapped comparisons of means corrected for multiple comparisons, compared
to 12 and 13 pairs for betaQ (blue) and Q/softmax (brown) respectively. As in the monkey
case, the Q/softmax algorithm shows no symbolic distance effect at transfer. The same omnibus
model comparisons performed for the monkeys were also computed for the humans, and these
also favor betasort (SBIC = 1001.1, G = 152.1) over betaQ (SBIC = 1062.3, G = 213.4) or Q/

Fig 5. Estimated response accuracy on the first transfer trial for each of the 21 possible pairs.
Estimates compare performance by subjects (blue lines) to those generated by simulations using each
algorithm. Those pairs with a gray backdrop are the critical transfer pairs that are not expected to be subject
to the terminal item effect. Shaded regions around each point/line represent the 95% confidence interval for
the mean, determined using bootstrapping. (A) Monkey performance (green) compared to the performance of
the betasort algorithm (red), given each session’s maximum likelihood parameter estimates. An overall
distance effect is reliably observed from the simulation. (B) Monkey performance (green) compared to the
betaQ algorithm (blue), given maximum likelihood parameters. Although a distance effect is evident among
critical pairs, betaQ fails to perform appropriate levels of accuracy. (C) Monkey performance (green)
compared to theQ/softmax algorithm (brown), given maximum likelihood parameters. Apart from a robust
terminal item effect, the algorithm’s responding is strictly at chance, including all critical transfer pairs. (D-F)
Human performance compared to the three algorithms, analogous to panels A through C. Although none of
the algorithms precisely resemble the participants, the betasort algorithm comes closest, yielding a distance
effect on critical transfer pairs.

doi:10.1371/journal.pcbi.1004523.g005
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softmax (SBIC = 1100.1, G = 251.3). In direct models comparisons using approximate Bayes
factors, betasort is favored over both betaQ (loge(BF) = 25.6) and Q/softmax (loge(BF) = 44.5).

Simulations
Betasort provided a better fit to the human data than betaQ or Q/softmax, but all three dis-
played poor transfer on critical pairs. This poor fit might reflect the model’s inability to do well
in general, or 36 trials may not be sufficient training. To assess this, each algorithm was pre-
sented with extended adjacent-pair training in order to determine how rapidly transitive infer-
ence effects were expected to emerge.

Fig 6 displays response accuracy, for each pair, over 200 trials of adjacent-pair training.
Using parameters similar to those obtained from the highest-performing human participants
(τ = 0.05, ξ = 0.95), the betasort algorithm (red) rapidly improved accuracy for all non-adjacent
items, exceeding 80% accuracy for critical transfer pairs after 200 trials. The betaQ algorithm
(blue), working with the same parameters, fared worse, but nevertheless showed a symbolic
distance effect. Q/softmax (brown; α = 0.03, β = 10) remained at precisely chance levels for all
non-terminal pairs.

To showcase the trial-by-trial behavior of each algorithm, another simulation was per-
formed, consisting of three phases: (1) 200 trials of adjacent pairs only, (2) 200 trials of all
pairs, and then (3) 200 pairs of only the pair FG. This third phase was included to test the pre-
diction that inferential updating should make betasort’s representation of stimulus positions
robust against massed trials (unlike RPE models, which are expected to fail [12]). Rather than
response accuracy, Fig 7 depicts the contents of memory for each of the algorithms ( U

UþL in the

case of betasort and betaQ, and Q in the case of Q/softmax; full density functions are omitted
for clarity).

Fig 7A shows expected values for the betasort algorithm. By the end of adjacent pair train-
ing, betasort has inferred that items should be spaced evenly over the unit span. Subsequent
massed trials do not disrupt the stimulus ordering. Although the value of stimulus F rises,
implicit inference ensures that stimuli A through E are modified accordingly.

Fig 7B shows the expected values for the betaQ algorithm. Although a mild symbolic dis-
tance effect is observed at transfer, non-terminal items remain clustered near the center. Dur-
ing the third phase, massed pairings of FG causes the expected value of stimulus F to move out
of order. Because the stimuli A through E are not presented during this period, their values
remain static.

Fig 7C depicts the stored memory for the Q/softmax algorithm. During training, the values
of all non-terminal Qi remain at 0.5, which is why the algorithm fails at transitive inference.
The ordering begins to emerge when all pairs are presented in the second phase, but is dis-
rupted by massed FG trials.

Computational Complexity
Although betasort appears diagrammatically elaborate in Fig 2, the calculations it performs are
generally inexpensive, and its performance scales linearly as a function of trial complexity. This
linear computational cost is the basis for our claim that betasort is computationally inexpen-
sive. Furthermore, betasort’s memory load is also trivial.

Let N represent the number of stimuli in a list used in a serial task, and letM represent the
number of stimuli presented per trial (such that N�M). The largest memory structure needed
for either betasort of betaQ to perform the operations is a N × 4 matrix, with an additional two
variables needed for model parameters, an N × 2 matrix needed for model-related calculation
of X and V, and a half-dozen or so variables local to the random sampling aspect of the Choice
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phase. A rigorous accounting also includes N flag variables to distinguish between present vs.
absent stimuli. Thus, it is a good rule of thumb to say that all betasort variables may be fit into
an N × 8 matrix, regardless of the size ofM.

The procedure outlined in Fig 2 specifies only four artihmetic operations (addition, subtrac-
tion, multiplication and division) and inequality comparators. The procedure also draws ran-
dom samples from the beta distribution, a process that can be performed efficiently using a
procedure outlined by Press and colleagues [41]. To assess the computational cost, let γ repre-
sent the fixed cost associated with a particular operation, which (for the sake of concision) we
will group into γar, γcmp, and γbeta, respectively. Of these γbeta is unambiguously the most costly,
requiring about 20 times as long to run as would sampling from a uniform distribution. We
assume, in this breakdown, that set membership evaluation can be encoded efficiently using
inequality comparators.

The cost, then, of the worst case scenario for betasort would have an approximate cost of:

ð2gar þ 3gcmp þ gbeta þ CMÞM þ ð16gar þ 3gcmp þ CNÞN þ Call

Here, each C is a constant that absorbs fixed costs such as value assignments resulting from
comparisons. Of these, the largest single cost is due to the uniform random sample compared
to τ. Since all arithmetic operations use item-wise multiplication, and since only a handful of
comparator operations are needed per item, the runtime for betasort is O(M+N), which

Fig 6. Simulated response accuracy for all stimulus pairs over the course of 200 trials of adjacent-pair training. Performance was modeled using
betasort (red), betaQ (blue), andQ/softmax (brown). Critical transfer pairs are indicated with a gray shaded background. Both betasort and betaQ used the
same parameters (τ = 0.05, ξ = 0.95), whileQ/softmax used the parameters (α = 0.03, β = 10). Betasort shows more pronounced transfer in the critical pairs,
whereas betaQ shows a more pronounced terminal item effect.Q/softmax rapidly acquires the terminal items, but remains strictly at chance for all non-
terminal pairs.

doi:10.1371/journal.pcbi.1004523.g006
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reduces to O(N) in the case that N =M. In practice, since most studies useM = 2, the expensive
beta sampler is nearly a fixed cost.

To demonstrate that runtime is approximately linear (and objectively fast), simulations
were performed using Matlab 2014b (MathWorks Inc.), running on a last-2013 Macbook Pro
with a 2.6 GHz Intel Core i7 processor. Each simulated ‘session’ consisted of 1,000 trials. Ses-
sions were run for various values of N (up to 625) andM (up to 47). The results of this simula-
tion are presented in Table 1. Based on these estimates, typical runtime can be approximated
by T = 0.0217M + 0.0006N+0.5133 (in seconds), revealing thatM is the dominant variable, pre-
sumably due to γbeta.

In principle, the computational costs of betaQ are also of order O(M + N), and are close to
those of betasort. BetaQ’s only difference is a set of order N additional arithmetic and inequal-
ity comparisons performed during the implicit inference phase; they are otherwise identical,
including the cost of beta sampling. In practice, differences may be observed as a function of
the manner in which the code has been optimized.

Fig 7. Visualization of the contents of memory for the three algorithms under simulated conditions. Three phases were included for each algorithm:
200 trials of adjacent pairs only, followed by 200 trials of all pairs, and then followed by 200 massed trials of only the pair FG. (A) Expected value for each
stimulus under the betasort algorithm, given parameters of τ = 0.05 and ξ = 0.95. Not only is learning during adjacent pair training faster, but massed trials of
FG do not disrupt the algorithm’s representation of the order, because occasional erroneous selection of stimulusG increases the value of all stimuli, not just
stimulus F. (B) Expected value for each stimulus under the betaQ algorithm, given parameters of τ = 0.05 and ξ = 0.95. Although the algorithm derives an
ordered inference by the time the procedure switches to all pairs, that order is not preserved during the massed trials of FG, as a result of the lack of
inferential updating. (C) Expected valueQ for each stimulus under theQ/softmax algorithm, given parameters of α = 0.03 and β = 10. Values for non-terminal
items remain fixed at 50% throughout adjacent pair training, and only begin to diverge when all pairs are presented in a uniformly intermixed fashion.
Subsequent massed training on the pair FG disrupts the ordered representation because rewards drive the value of stimulus F (and the value of stimulusG
down) while the other stimuli remain static.

doi:10.1371/journal.pcbi.1004523.g007
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Discussion
We present two new models, betasort and betaQ, alongside data from humans and monkeys
performing a transitive inference task. Whereas RPE models typically update the values of
states leading to the current outcome, betasort updates all state values that can be inferred on
the current trial. Although betaQ displays mild inference at transfer, betasort yields a much
more pronounced distance effect that better matches the empirical behavior of subjects, partic-
ularly the monkeys (Fig 5). This is achieved through active modification of memory for implicit
stimuli. Although these algorithms incur low computational cost, they are unambiguously cog-
nitive models: They place each stimulus along a putative number line and track the uncertainty
of those positions (Figs 2 and 3).

Both betasort and betaQ demonstrate transitive inference on critical test pairs (Figs 4 and 5),
a consequence of tracking putative stimulus positions as a serial representation. Positive feed-
back thus consolidates current position values, even if those values are low. Even without
implicit inference, betaQ is able to gradually ratchet its way towards reasonable values. However,
implicit inference allows betasort to substantially outperform betaQ. Another virtue of betasort
is that it protects against bias introduced by massed presentation of specific pairs (Fig 7A).

The strongest evidence favoring the serial representation hypothesis is the consistency of
symbolic distance effects among critical test pairs [25], which betasort also demonstrates (Figs
4 and 5). Pairs of items with greater symbolic distance (i.e. the number of steps needed to tra-
verse the list from one stimulus to the other) reliably yield more accurate discriminations at
transfer. Thus, contrary to predictions based on expected value, subjects should not only favor
stimulus B when presented with BE, but should also do so more than during BD trials. Cru-
cially, the strength of a distance effect at the precise moment of transfer is what indicates transi-
tive ability, not a distance effect in the trials following transfer. For example, although betaQ
rapidly manifests a symbolic distance effect over the first few dozen trials following transfer,
accuracy at transfer remains quite poor (< 0.6). This is the value of the implicit inference stage:
It permits a robust distance effect to emerge before any non-adjacent pairs have been trained.
This suggests that subjects relied on serial representations, rather than the frequency with
which stimuli are paired with rewards [27].

Betasort’s most salient discrepancy with the empirical data is its inability to correctly esti-
mate adjacent pair accuracy during adjacent pair training: It overestimates the accuracy of
monkeys during training, and underestimates that of humans. Although symbolic distance
effects at transfer suggest that the model is on the right track, several of the model’s assump-
tions will need to be examined more deeply. It is likely, for example, that subjects adjust the
explore/exploit tradeoff over time, which the model would represent by adjusting the values of
τ and ξ. It is also plausible that the manner in which τ is has been implemented could be
improved, to permit a more continuous range of possibilities between unbiased and random

Table 1. Median runtime of 1000 trials of betasort, as a result of 1000 simulations.

M = 2 M = 3 M = 5 M = 7 M = 11 M = 47

N = 4 0.53 s 0.55 s N/A N/A N/A N/A

N = 9 0.57 s 0.60 s 0.64 s 0.67 s N/A N/A

N = 16 0.59 s 0.64 s 0.68 s 0.70 s 0.76 s N/A

N = 25 0.61 s 0.67 s 0.72 s 0.74 s 0.80 s N/A

N = 36 0.63 s 0.70 s 0.75 s 0.79 s 0.85 s N/A

N = 49 0.65 s 0.71 s 0.79 s 0.83 s 0.90 s 1.81 s

N = 625 0.94 s 1.07 s 1.15 s 1.20 s 1.29 s 1.93 s

doi:10.1371/journal.pcbi.1004523.t001
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behavior. Although an improved fit can always be achieved by adding parameters [42], we pre-
fer to reconsider the existing parameters in the interest of parsimony.

Implications for Associative Models
Prediction error has long been a seen as a possible basis for ‘laws of behavior’ [43], an approach
which has been elaborated by modern associative theory [44]. Temporal difference learning
(TDL) builds on this tradition by using RPE to provide a satisfactory descriptive account of
neural activity under various conditions [45, 46]. For these reasons, TDL is typically seen as a
successor to the Rescorla-Wagner account of Pavlovian conditioning [47].

Despite the ubiquity of TI effects in vertebrate species [2, 16], RPE models are categorically
unable to yield appropriate inferences. In Fig 4, Q/softmax gradually develops a robust distance
effect, but only does so when trained with all pairs. This is because RPE models like Q/softmax
use observed frequency of reward to predict the efficacy of future actions, and thus can only
exceed chance when the training data yield differential reward probabilities.

Such models fail transitivity tests, and do not display symbolic distance effects, because
non-terminal stimuli are rewarded equally during training. Although models have been pro-
posed that overcome the limits of RPE in specific cases [48, 49], they remain vulnerable to bias.
To illustrate this, Lazareva and Wasserman [12] trained pigeons and RPE models on adjacent
pairs from the 5-item list ABCDE. They then presented massed trials of only the pair DE.
Pigeons correctly identified B> D, but all RPE models either concluded that the value of stim-
ulus D was larger than that of every other stimulus, or responded at chance levels. RPE models
fail to learn correctly from massed trials because they are only adaptive in cases where expected
value is a suitable proxy for behavior. Despite outperforming Q/softmax during the initial
training, betaQ is also vulnerable to massed trials. Betasort’s implicit inference stage protects
against this, as it allows generalization that is robust against varying base rates.

It is nevertheless not our aim to argue that betasort is the learning model used by subjects to
solve transitive inference problems. Rather, published TI results strongly suggest that organ-
isms make use of representations that have a spatial character, and that represented list mem-
bers benefit from implicit updating. The failure of Q/softmax, on the other hand, reflects the
more general conclusion that TI performance cannot be explained by associative strength
alone.

Betasort not only performs transitive inference, but does so at low computational expense.
This efficiency depends chiefly on the sample space used to encode stimulus positions. This
places betasort within the cognitive tradition, in which TI is explained in terms of an organ-
ism’s ability to construct a representation of the ordering, which then serves as the basis for
subsequent judgments [50].

Implications for Machine Learning Approaches
There is presently a great deal of justified excitement over developments in statistical decision
theory [51]. This formal approach to decision-making permits algorithms (or, more precisely,
sets of algorithms) to discover not only the value of actions, but also the rules that govern when
actions should be performed. By erecting a scaffolding of machine learning on the foundations
of utility theory, algorithms may now be specified that can learn very complex tasks [23]. This
approach also allows a wealth of new RL models to be formalized and considered.

Because of its reliance on machine learning formalisms, this modern branch of decision the-
ory inherits much of the former’s terminology. “Reinforcement learning,” for example, is not
only a class of behaviors displayed by organisms, whose operations we seek as scientists to dis-
cover. RL is sometimes put forward as a normative framework to explain how such learning
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takes place [54]. Although formal reinforcement learning is sometimes presented as a service-
able statistical model [18], other accounts assert [54] (or imply [55]) that the brain directly
instantiates RL algorithms. Trying to relate betasort to this literature results in the seemingly
contradictory statement that betasort is a (phenomenological) reinforcement learning model
that does not rely on (formal) reinforcement learning.

The “model-based vs. model-free” distinction is also a source of terminological confusion.
Model-free and model-based RL algorithms are often described as being analogous to associa-
tive and cognitive mechanisms, respectively [52, 53]. Neural signals that correlate with signals
expected from ‘model-free” learning algorithms [56–58] or with ‘model-based’ algorithms [19,
60, 59] are sometimes presented as evidence that such algorithms are literally implemented,
rather than merely being statistical models of associative and cognitive mechanisms respec-
tively. Uncovering these signals is a major accomplishment for neuroscience. Nevertheless,
many models that are distinct from machine learning methods might be responsible for these
signals. Betasort is one such model; other include information-theoretic models [61], Bayesian
models [62], or incentive salience models [63]. When reinforcement learning phenomena are
framed exclusively in the language of machine learning, theory about the former becomes con-
flated with the limitations of the latter.

Betasort is not alone in its failure to map cleanly onto formal RL. Because TDL follows is an
obvious successor to the Rescorla-Wagner model, Pavlovian models are generally considered
“model-free.”However, many Pavlovian models require “model-based” techniques to be
described in machine learning terms [64]. Because the “model-based” umbrella covers a wide
variety of methods and implementations, it might be more fruitful to discuss the specific fea-
tures of individual models than it is to attempt to classify them as “model-free” or not.

Considering a wider diversity of models facilitates this feature-based approach. Betasort, for
example, violates the intuition that reinforcement learning of a cognitive map must necessarily
be resource- or memory-intensive. What distinguishes it is its representation of uncertain posi-
tion along a putative scale, and the use of implicit updating. An extensive empirical literature
suggests that these are the features needed to perform TI, whether the algorithm can be
described in terms of RL or not.

Machine learning’s rigorous formalism is both admirable and useful, but on its own, it rep-
resents a growing collection of tools. These tools will continue to fruitfully illuminate the hard
problems of neural computation, but they should not be seen as the only tools. Phenomena
such as TI suggest that abstract distinctions, such as those between associative learning and
cognitive representation, remain fruitful for future theorizing about the brain (see, for example,
Moses and colleagues [65]). It is time to wean ourselves of the habit of “confirming” specific
models in the brain on the basis of neural activity correlated with some aspect of those models.

Generality & Future Directions
Betasort is a specialized algorithm that relies upon strong assumptions. Meanwhile, Q/softmax
is at a disadvantage because it is ill-suited to inferences of the sort TI requires. A good test of
the spatial coding hypothesis, then, would be to implement different models with similar aims.
The operations of betasort could, for example, be emulated using a POMDP model [66–69].
We hypothesize that such a model would display similar behavioral characteristics to betasort,
provided such a model makes use of an instantiated linear state space that tracks putative stim-
ulus position and uses implicit updating to modify all such position estimates.

Contrastingly, we predict that a POMDP that does not have these characteristics will fail to
perform TI correctly, likely making the kinds of error observed in the case of betaQ. The reason
for this prediction is subtle but important: Betasort succeeds at TI because it uses feedback to
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update a model of position; these are not the expected value of each stimulus. Instead, the value
of a stimulus is a function of its relative position along a linear continuum. The adjacent-pair
training method prevents the accurate convergence of RPE approximations, but does not pre-
vent subjects (or betasort) from learning the ordering of the stimuli. A wealth of empirical evi-
dence, particularly symbolic distance effects, suggest that a linear state space is essential.
Additionally, massed trials will disrupt stimulus orderings unless some form of implicit updat-
ing is employed. At present, the literature is mute as to whether either an appropriately designed
POMDP or the betasort algorithm can be instantiated in the brains of tilapia and tree shrews.

Another approach is to instantiate neural networks directly, emphasizing biological plausi-
bility. Rombouts and colleagues [70, 71] report a neural network model that combines tradi-
tional RPE learning with global neuromodulation governed by integrating memory units.
These integrators maintain representations of all stimuli, even those not presently visible. By
comparing the model’s RPE learning to this sustained working memory representation, dis-
crepancies can be detected and implicit inferences performed. Although Rombouts and col-
leagues have not yet demonstrated that their model can pass the critical test of transitivity
(adjacent-only training, followed by testing on non-adjacent, non-terminal pairs), it neverthe-
less provides an example of how to construct a plausible computational model based on cogni-
tive and associative mechanisms.

There is every indication that future iterations the betasort algorithm will handle a broad
range of serial tasks. The simultaneous chaining procedure [13, 72] is another example of a
task used extensively in the study of non-human serial learning [73]. During each trial, a set of
images is presented, which must be selected in a specific order to yield a reward. Subjects must
discover this response sequence by trial and error, using no cues other than the fact that the
trial ends upon an incorrect choice.

Although simultaneous chain performance is difficult for associative models to account for
[74], it is difficult for a different reason than TI. In TI, trials are logically ambiguous and the
outcome provides incomplete information. That said, the configuration of stimuli in each trial
has a discoverable correct answer. Solving a simultaneous chain, however, requires overcoming
the assignment of credit problem [75]. Since all stimuli remain visible throughout the trial, the
experiment does not provide external cues to guide behavior. It is therefore up to the subject to
keep track of their progress in the list, and to treat progress as an implicitly informative cue.

Because betasort can select stimuli from sets of arbitrary size, simultaneous chains can be
solved as a successive process of elimination. Completing a five-item simultaneous chain
would require five iterations of the cycle depicted in Fig 2, with each success eliminating the
selected item from the list of remaining candidates. An erroneous response would end the trial,
and the algorithm would start over. The beta parameters learned from this process would then
be available for use in other serial tasks, consistent with reports of transfer between serial tasks
[13, 73].

The quest to decipher the brain’s cognitive machinery faces substantial obstacles. In the con-
text of transitive inference and models like betasort, the clearest difficulty is implicit updating.
As described, betasort updates every stimulus during every trial. This implies that, on any
given trial, neural signals will be observed that relate to stimuli not presently visible. It is
unclear how the presence of such implicit signals can be detected in either single-unit record-
ings or from fMRI data. Nevertheless, evidence from behavior suggests that such updating is
likely taking place. The difficulty of detecting these implicit mechanisms is a challenge for
recording techniques, not a weakness of cognitive theories. Until our understanding of brain
networks advances to a stage that permits more comprehensive examination of the contents of
memory, making theoretical commitments to specific mathematical formalisms hinders the
discovery of other plausible accounts.
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Materials And Methods

Monkey Experimental Procedures
Subjects. Subjects were three male rhesus macaques (Macaca mulatta). Subject treatment

conformed with the guidelines set by the U.S. Department of Health and Human Services
(National Institute of Health) for the care and use of laboratory animals. The study was
approved by the Institutional Animal Care and Use Committee at Columbia University and
the New York State Psychiatric Institute. Monkeys were prepared for experiments by surgical
implantation of a post used for head restraint, and a scleral search coil [76]. All surgery was
performed under general anesthesia (isoflurane 1–4%) and aseptic conditions. Monkeys were
then trained using positive reinforcement to sit in a primate chair for the duration of the exper-
iment with their heads restrained and to perform visual discrimination and eye movement
tasks for liquid rewards while eye movements were recorded. Although subjects had extensive
experience (> 6 months) with a version of the task during which all pairs were presented in a
counterbalanced fashion (a procedure identical to that reported by Jensen and colleagues [13]),
they were naive with respect to the adjacent-pair training procedure at the beginning of the
experiment.

Apparatus. Subjects were seated in an upright primate chair while head movements were
restrained by head post. Visual stimuli were generated by a VSG2/5 video controller (CRS,
Cambridge, UK). The output from the video controller was displayed on a calibrated color
monitor with a 60 Hz non-interlaced refresh rate. The spatial resolution of the display was
1280 pixels by 1024 lines. The video controller was programmed to send out digital pulses
(frame sync) for timing purposes at the beginning of each video frame in which a stimulus was
turned on or off. These pulses were recorded by the computer using a hardware timer and
stored together with the eye movement data. Unless otherwise noted, the apparatus was identi-
cal to that described by Teichert and colleagues [77].

Eye position was recorded using a monocular scleral search coil system [76, 78] (CNC Engi-
neering, Seattle, WA). Horizontal and vertical eye position signals were digitized with 12-bit
resolution at a sampling rate of 1 KHz per channel. Eye velocity was computed offline by
convolving eye position with a digital filter, constructed by taking the first derivative of a tem-
poral Gaussian, G(t):

dG
dt
¼ �k � t � exp �t2

y2

� �
ð13Þ

Here, θ = 8 msec, and k is a constant that sets the filter gain to 1.0. This filter does not introduce
a time shift between the position input and velocity output, but adds temporal uncertainty to

the velocity estimates. Horizontal eye velocities h0(t) and vertical eye velocities v0(t) were com-

bined to estimate radial eye speed r0(t), where speed is the magnitude of the two-dimensional
velocity vector:

r0ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0ðtÞ2 þ v0ðtÞ2

q
ð14Þ

Eye speed was used to estimate the onset of saccadic eye movements.
Procedure. A “session” is here defined as a continuous string of trials using a particular

ordered list of seven photographic stimuli. In some cases, subjects performed more than one
session during a day. A total of 107 sessions were completed across three animals (35 sessions,
51 sessions, and 21 sessions for the three subjects respectively).

Photographic stimuli were randomly selected in advance from a bank of 2500 stock photo-
graphs. The only criteria for assembling such a list was that stimuli were visually checked to

Implicit Value Updating & the Betasort Model

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004523 September 25, 2015 22 / 27



ensure that they did not appear easy to confuse for one another. Although the list ordering was
stored in the computer, it was never displayed or otherwise explicitly communicated to the
monkey. By convention, we will refer to the seven items presented during a session using the
letters A through G. Here, stimulus A is considered the “first” (i.e. “best”) list item and was
always rewarded when selected, whereas stimulus G is considered the “last” (i.e. “worst”) list
item and its selection was never rewarded. For the remaining stimuli (B through F), its selection
was only rewarded when it held an earlier list position than any other visible stimulus.

Individual trials began with a central fixation point (0.5 deg red square) for 933 ms. Follow-
ing fixation, two stimuli were presented on opposite sides of the central point. The fixation tar-
get disappeared at the same time the pictures appeared. Subjects responded by making a
saccade to one stimulus or the other, and then fixating on that stimulus for 0.5 s, at which time
feedback was provided. Failure to perform the initial fixation, or to saccade to a stimulus within
4 s of stimulus presentation, led to the trial being deemed “incomplete.” Once a saccade was
made to the chosen stimulus, subjects were required to fixate for 1 s on the stimulus in order to
receive a reward of 3 to 5 drops of juice. Number of drops varied day to day as a function of
subject motivation, but was always held constant within a session.

Each session was divided into “blocks” of trials. A block consisted of randomly permuted
presentations of a set of stimulus pairs, counterbalanced for screen position. For example, the
six adjacent pairs in a session were the pairs AB, BC, CD, DE, EF, and FG. A block of adjacent
pair trials would thus consist of twelve trials, with each pair presented twice (e.g. once with the
on-screen arrangement AB, and once as BA). Subjects did not begin a new block until they had
completed all trials in a previous block. If the monkey made an incorrect response, the trial was
not repeated within the same block. In the event that a trial was deemed incomplete, another
pair was randomly selected from the list of pairings not yet completed in that block. These
steps ensured that there was equal information provided about all stimuli.

Each session began with an adjacent-pair training phase, subjects completed 20 blocks con-
sisting of only the six adjacent pairs (240 trials total). Subjects then completed an additional
ten blocks (counterbalanced for position and presented without replacement) of all twenty-one
pairs (420 trials total). Throughout the session, the only information subjects received about
the stimuli were the rewards (or lack thereof) during completed trials; at no point were they
shown all stimuli at once, nor were there position cues suggesting stimulus ordering. In general,
responding resembled that seen when macaques perform TI using a touchscreen apparatus
(Jensen et al., 2013), suggesting that performance was modality-independent.

Human Experimental Procedures
Participants. Nineteen college undergraduate volunteers gave written consent to partici-

pate in the experiment for course credit. The study was approved the Institutional Review
Board in the Human Research Protection Office of Columbia University.

Apparatus. Participants selected stimuli by touching them using a touchscreen (Keytec,
Inc.) mounted on a 15 in deskmiddle computer monitor. Unless otherwise noted, the apparatus
was identical to that described by Merritt and Terrace [79].

Procedure. To introduce them to the task, participants first completed a session with a list
of seven novel images, consisting of 4 blocks (168 trials) of all pairs. Positive feedback was indi-
cated with a magenta screen and a bell sound, and negative feedback was indicated with a black
screen and a whoosh sound. Feedback was always provided immediately following each touch.
Apart from being told how to distinguish positive vs. negative feedback, and an instruction to
“do as well as you can,” participants were given no further instruction regarding the objectives
or content of the task.
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After this practice session, participants immediately completed a second session with a new
list of seven items, also lasting 168 trials. They first completed 3 blocks (36 trials) of only the
adjacent pairs, then completed 3 blocks (90 trials) of only the non-adjacent pairs. Finally, they
completed a single block (42 trials) of all pairs.

Supporting Information
S1 Text. Pseudocode for computational models. Detailed pseudocode describing the compu-
tational workings of the betasort, betaQ, and Q/softmax algorithms.
(PDF)

S1 Dataset. TI behavior data. Raw data of choices made by rhesus macaques and human par-
ticipants during sessions of the TI task.
(ZIP)
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