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ABSTRACT: This study used an organophoto-oxidative material to degrade the toxic azo dye, methylene blue (MB), due to its
hazardous effects on aquatic life and humans. MB is traditionally degraded using metal-based catalysts, resulting in high costs. Several
organic acids were screened for organo-photooxidative applications against various azo dyes, and ascorbic acid (AA), also known as
vitamin C, was found to be best for degradation due to its high photooxidative activity. It is an eco-friendly, edible, and efficient
photooxidative material. A photocatalytic box has been developed for the study of organo-photooxidative activity. It was found that
when AA was added, degradation efficiency increased from 42 to 95% within 240 min. Different characterization techniques, such as
HPLC and GC-MS, were used after degradation for the structural elucidation of degraded products. DFT study was done for the
investigation of the mechanistic study behind the degradation process. A statistical tool, RSM, was used for the optimization of
parameters (concentration of dye, catalyst, and time). This study develops sustainable and effective solutions for wastewater
treatment.

1. INTRODUCTION
During the past few years, environmental concerns have gained
more attention. The public, particularly entrepreneurs, are
concerned about conditions that negatively impact the
environment,1,2 such as industrialization and urbanization
that have affected the quality of water supplies.3 Chemical
contamination, especially wastewater generated by the textile
industries, contains a significant amount of colors and toxic
synthetic mixtures that are responsible for environmental
toxicity4 and have affected the clarity and taste of water,
making it unpleasant to consumers.2,5 Water is one of the most
valued assets on earth, but it contains a lot of pollutants,
including metal ions,6 anions,7 phenol,8 dyes,9 detergents,10

and pesticides.11 Textile dyeing uses a dye pigment to color the
products, and the dye causes problems with light penetration
into water and interference with photosynthesis as well as with
human beings.11,12 In addition to being toxic and carcinogenic,
some dyes pose a serious environmental and human health
risk.13 Methylene blue (MB) is a heterocyclic aromatic

compound mostly used for dyeing silk, cotton, and also for
indication of chemical change.14 Its presence in wastewater is
extremely hazardous. A variety of medical15 and biological16

applications use MB. Due to its water solubility, MB causes
pollution in aquatic, human, and animal food chains when
discharged directly into the water without prior treatment.17

There are several health risks associated with the release of
partially or untreated wastewater containing MB dye from any
of the aforementioned industries.18 A high intake of MB may
lead to several serious health problems, including shortness of
breath, burning sensations, chest pain, cancer, cyanosis, tissue
necrosis, Heinz body formation, vomiting, jaundice, shock,

Received: December 14, 2023
Revised: February 6, 2024
Accepted: February 13, 2024
Published: February 28, 2024

Articlehttp://pubs.acs.org/journal/acsodf

© 2024 The Authors. Published by
American Chemical Society

12069
https://doi.org/10.1021/acsomega.3c09989

ACS Omega 2024, 9, 12069−12083

This article is licensed under CC-BY-NC-ND 4.0

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Adnan+Majeed"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ahmad+H.+Ibrahim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sawsan+S.+Al-Rawi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Muhammad+Adnan+Iqbal"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Muhammad+Kashif"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Muhammad+Yousif"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Muhammad+Yousif"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zain+Ul+Abidin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shahzaib+Ali"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Muhammad+Arbaz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Syed+Arslan+Hussain"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.3c09989&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09989?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09989?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09989?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09989?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09989?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09989?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09989?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09989?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/acsodf/9/10?ref=pdf
https://pubs.acs.org/toc/acsodf/9/10?ref=pdf
https://pubs.acs.org/toc/acsodf/9/10?ref=pdf
https://pubs.acs.org/toc/acsodf/9/10?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.3c09989?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


enhanced heartbeat rate, and painful micturition.18,19 Fur-
thermore, MB has become a major problem for plants, such as
inhibiting growth and reducing pigment.20 For these reasons,
MB was chosen as the model dye for degradation. Thus,
efficient methods are required to remove dye contaminants
from effluents to protect water reservoirs.21

The treatment of dye wastewater involves physical methods
such as reverse osmosis,22 electrodialysis,23 nanofiltration,24

and various chemical methods like coagulation,25 redox
reactions,26 adsorption27 ozonation,28 microbial degradation,29

and photocatalysis.12 The strong aromatic and structural
properties of these dyes make them difficult to degrade.
Among these techniques, photooxidative degradation stands
out as a cost-effective, sustainable, eco-friendly, and easy
process that occurs on the catalyst surface.30

Over the past several years, photochemistry has undergone a
renaissance.31 In addition, metal-based photocatalysts were
involved in studies of Sharma et al.32 where magnetic spinel
ferrites MFe2O4 (M = Cu, Zn, Ni, and Co) were used in the
photo-Fenton process which described the degradation of MB;
the addition of H2O2 showed that CuFe2O4 has high reactivity
as compared to others such as ZnFe2O4, NiFe2O4, CoFe2O4,33

TiO2, ZnO, and plasmonic metals (like Ag, Au, and pt) which
were also successfully employed for efficient degradation but
their potential for photoredox catalysis to create novel
reactivity is limited by conventional polar reactions.34 Many
efficient catalysts have been introduced by researchers in the
past, but organo-photooxidative materials have been recently
explored because of their oxidative properties and stability.
They are usually nontoxic, inexpensive, robust, and inert
toward conditions like moisture and oxygen.35 Organo-
photooxidative material may be called organo-catalysts during
the use of small organic molecules to facilitate diverse
asymmetric transformations, providing a versatile approach to
compound synthesis in the presence of light.36 Among
asymmetric catalysis, biocatalysis, and transition metal
catalysis, it has gained fundamental importance and attracted
the attention of scientists because of its unique and interesting
properties.37 The 2021 Nobel prize in chemistry was presented
for a groundbreaking chemical discovery: “the development of
asymmetric organo-catalysis”.38 In the past, degradation of MB
was carried out by various catalysts, but the most effective and
green method to degrade the dye may be organo-photo-
oxidative. Organic molecules as oxidative materials, without
the involvement of inorganic elements, have emerged as a
rapidly growing field of chemical research. The application of
the organo-photooxidative method to dye degradation reduces
the environmental impact of synthetic dyes by improving
efficiency and sustainability.39 This method is more attractive
than other methods due to the lower cost of catalysts and the
use of renewable energy.40 There are various organo-
photooxidative materials for the degradation of azo dyes,
such as tartaric acid, oxalic acid, acetic acid, maleic acid, and
ascorbic acid (AA). Based on their photooxidative activity in
this work, L-ascorbic acid (AA) is used as a photooxidative
substance after screening several organic compounds for the
dye degradation of MB and can provide complete elimination
of pollutants from the environment; their chemical structures
are shown in Figure S1 (Supporting Information) due to the
higher degradation efficiency of this photooxidative substance.
The water-soluble organic photooxidative AA, also known as
vitamin C, can be an eco-friendly and hydrogen-bonding

material that has been used for a wide range of chemical
transformations over the years.41

Due to its versatility, availability, and ease of handling, it is a
highly appealing photooxidative compound.42 The main
purpose of this work was to examine the degradation ability
of AA to obtain a higher photooxidative degradation rate for
the removal of MB dye from wastewater. To calculate the
degradation time of azo dye under numerous conditions and to
analyze the concentration influences of acid and azo dye during
the organo-photooxidation reaction, a wide range of factors,
including various dye concentrations, photooxidative com-
pound dosages, and contact times, were used in the
experimental investigations to fully evaluate their impact on
color removal effectiveness and degradation performance.
There are many approaches to evaluate the organo-photo-
oxidation process which are dependent on the change of one
variable, such as dye concentration, photooxidative compound
dose, and time variation while keeping all other variables
constant. As the traditional methods are costly and time-
consuming, alternative statistical analysis RSM has been
utilized for the optimization of experimental design. Its main
purpose is to establish relationships between independent
variables and responses.

2. RESULTS AND DISCUSSION
2.1. Spectrophotometric Analysis. Degradation of MB

using AA as an organo-photooxidative material has been
examined under UV−visible light irradiations at the maximum
wavelength (λmax) 664 nm,43 and absorption spectra of pure
and degraded samples of MB is shown in Figure 1. Before

starting the experimental measurements, the radiation source
(100W tungsten bulb) was illuminated for some time to
maintain the temperature inside the photocatalytic box and the
photooxidative material and dye solution were kept 15 cm
from the light source.44 In the presence of a photooxidative
material, MB degraded slightly, which indicates that the
reaction is oxidation-assisted. After the time intervals of 60,
120, 180, and 240, the value of absorbance was calculated to
indicate that MB was degraded gradually with time in the

Figure 1. UV−visible absorbance spectra of pure MB alongside
degraded MB samples occurred at various time durations, ranging
from 0 to 240 min with intervals of 1 h in the presence of AA.
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presence of oxidative materials. The peak intensity decreases
with time, and the color of the dye also changes from time to
time. At the end of 240 min, the peak intensity was close to
zero and the characteristic color of the MB was due to the
presence of chromophore resulting in the breakdown of the
azo bond, indicating that dyes were degraded with time. The
results showed 95% of MB photooxidative degradation using
AA as an organo-photooxidative material.

2.2. Statistical Analysis. 2.2.1. RSM-Based Optimization
of Variables. The experimental design with experimental
values of the MB process was performed as shown in Table S1
(Supporting Information). To fit the experimental data, second
order polynomial model is used.45 It was determined by the
design expert that 135 sets of experiments (including with and
without addition of photoxidative agent) had their correspond-
ing response (% degradation). In Tables S1 and S2
(Supporting Information), the three independent variables
are listed along with their corresponding responses (%
degradation) and absorbance of blank MB. A model F-value
of 99.75 indicates that the model is significant. The probability
of a large F-value arising from noise is only 0.01%. The
significant model terms are A, B, C, AC, A2, and C2. Model
terms with values greater than 0.1 are not significant.

Table S1 (Supporting Information) shows the central
composite design (CCD) matrix of MB percentage degrada-
tion. MB percentage degradation is studied using quadratic
models in Table 1. Each coefficient was tested for significance
using the F test and p-value. For the model terms to be
significant, Prob > F must be less than 0.05 and greater than
0.1000.46 The value of R2 was 0.88, while the predicted R2 and
adjusted R2 were 0.85 and 0.87, respectively, which implies a
difference of less than 0.2. A comparison between the
coefficient of determination R2 and adjusted R2 is used to
estimate the model using AA; there was a stronger correlation
between the factors and predicted degradation of MB.

It is generally necessary to have a signal-to-noise ratio
greater than 4 to calculate an acceptable level of precision. In
this study, the degradation percentage of MB was measured
with a precision of 36.18. If the ratio exceeds 4, then, the
representative may be used to navigate the design space.47

A comparison of the experimental and projected degradation
values of MB with those of AA is shown in Figure 2. According
to the results, there is a large difference between the
experimental and predicted values for dye degradation, and
the current model is well-suited to fit the experimental results.
Accordingly, the model allows for the calculation of dye
degradation in the range of variables investigated.

The plot of residuals against the normal probability for MB
degradation is shown in Figure 3. In the plot, the resulting data
indicate a linear relationship, which shows an analysis of the
residual’s distribution. Consequently, the quadratic model
developed to parametrize the degradation of MB accurately
predicts the experimental results. Figure 4 also verifies that the
model has good predictability and requires no transformation
of model responses.

2.2.2. Estimation Method Based on Response Surface
Plotting. 2.2.2.1. Influence of Dye Concentration. As a
function of time and catalyst dose, Figure 5a shows the effect
of dye concentration at the initial stage on photodegradation
efficiency. When the dye concentration is low and the dose of
the photooxidative substance is increased from 0.004 to 0.006
g, degradation efficiency increases from 79 to 88% at a contact
time of 120 min, and by increasing dye concentration to 500
ppm, it decreases from 88 to 41%. Higher dye concentrations
may result in a decrease in degradation efficiency because
photon paths are shorter in highly colored solutions. This
resulted in fewer photons reaching the organic acid’s surface.48

2.2.2.2. Influence of Catalyst Dose. Figure 5b illustrates the
effect of the dosage of the photooxidative substance on

Table 1. Results of the ANOVA Study of the Quadratic Models for % Degradation of MB

source sum of squares df mean square F-value p-value

model 1.206 × 1005 9 13404.73 99.75 <0.0001 significant
A − concentration of dye 14591.13 1 14591.13 108.58 <0.0001
B − dose of photooxidative compound 6178.37 1 6178.37 45.98 <0.0001
C − time 84690.28 1 84690.28 630.23 <0.0001
AB 137.77 1 137.77 1.03 0.3132
AC 2630.76 1 2630.76 19.58 <0.0001
BC 0.5735 1 0.5735 0.0043 0.9480
A2 2803.40 1 2803.40 20.86 <0.0001
B2 21.75 1 21.75 0.1618 0.6882
C2 9588.50 1 9588.50 71.35 <0.0001
residual 16797.51 125 134.38
cor total 1.374 × 1005 134

Figure 2. Plot of the predicted versus actual % degradation efficiency.
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degradation efficiency when MB concentration is 300 ppm and
contact time is 240 min. AA dosage increased from 0.002 to
0.006 g, increasing degradation efficiency from 58 to 86% with
an increase in time. The percentage degradation efficiency
increased by increasing the active sites by improving the
photooxidative substance dosage.47

2.2.2.3. Influence of Time. Figure 5c shows the effects of
reaction time on MB degradation efficiency at 0.004 g dose
and 240 min reaction time. The degradation productivity
increases as time increases, but it decreases as the dye
concentration increases from 100 to 500 ppm. The results

showed that the degradation efficiency decreased as dye
concentration increased.49

2.3. FT-IR Analysis. Numerous bands are obtained in FT-
IR spectra of MB before and after degradation, as shown in
Figure 6 with patterns (a) and (b), respectively. The FT-IR
pattern of MB before degradation is shown in Figure 6a.
Notable bands can be observed at 3438, 2927, 1586, 1485,
1381, 1313, 1143, 880, and 665 cm−1. The absorption band at
3438 cm−1 corresponds to intermolecular hydrogen bonding,
involving O−H interactions within adsorbed water molecules
from the surrounding environment.50 The slight absorption
band at approximately 2927 cm−1 results from the stretching
vibration of C−H bonds in methylene.51 The strong
absorption band that appeared at 1586 cm−1 corresponds to
the stretching vibration of the skeletal structure of the benzene
ring.51 Additionally, absorption bands centered around 1485
and 1381 cm−1 indicate stretching vibrations involving C−N
bonds in aromatic amines, and this is no longer present in
degraded MB.52 The split band near 1313 cm−1 appeared due
to the symmetric and asymmetric stretching vibrations of
−CH3 groups.53 An absorption peak around 1143 cm−1

signifies the C−N bonds due to stretching vibration within
the aliphatic chain.54 The appearance of a peak at 880 cm−1 is
attributed to the characteristic absorption resulting from C−H
in-plane bending vibrations.55 Mostly, metal oxides have
absorption peaks in the fingerprint region, that is, below
1000 cm−1, due to interatomic vibrations.56 After the
degradation of MB, there were various peak differences
observed as shown in Figure 6b. Bands after the degradation
of MB are 3527, 3406, 3308, 3209, 3026, 2916, 1753, 1654,
1474, 1319, 1120, and 870 cm−1. A new absorption peak at
3527 cm−1is present and attributed to the stretching of the O−
H group in water molecules.57 A vibrational band at 3406 cm−1

in the degraded dye is present instead of pure dye due to -NH/
−OH overlapped stretching vibration.58 The absorption band
at 3308 appeared in degraded dye instead of pure dye due to
−OH stretching.59 The absorption bands at 3209 and 3026
cm−1 appeared in degraded dye due to stretching and bending
vibration of −NH in the amide group.60,61 The absorption
band at 2916 cm−1 identified the C−H antisymmetry being the
same as 2927 cm−1 before degradation, and a decrease in
wavenumber from 2927 to 2916 cm−1 indicates that the
blueshift changes into redshift.62 The less intense peak
disappeared in pure dye but was present in the degraded dye
at 1753 cm−1 due to heterocyclic aromatic C−N bonds.60 A
new highly intense peak appeared at 1654 cm−1 due to the OH
bending mode of the adsorbed water molecules on the
surface.63 The increase in wavenumber from 1586 to 1654
cm−1 indicates that the redshift changes into a blueshift
assigned to C�O.64 The decrease in wavenumber from 1485
to 1474 cm−1 and increase from 1313 to 1319 cm−1 attributed
to the bending of the O−H group and strong interaction
between the C�N functional group, respectively.65 The
absorption band appeared at 1120 cm−1 indicating that a
redshift occurred due to a decrease in the wavenumber from
1143 to 1120 cm−1 attributing to the aliphatic chain.54 The less
intense peak observed at 870 cm−1 as compared to 880 cm−1 in
pure MB indicates that a redshift occurs assigned to aromatic
C−H bending.66 Table S3 (Supporting Information) shows
the summary of all the characteristic bands observed along
with their wavenumber and functional groups.

2.4. HPLC- PDA Analysis of MB. Figure 7 shows the high-
performance liquid chromatography (HPLC) chromatogram

Figure 3. Illustration of the normal probability of raw residuals.

Figure 4. Box−Cox plot of the model.
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of MB. Figure 7a illustrates the chromatogram of the degraded
sample. Figure 7b shows a chromatogram of degraded samples
at 254 nm. Figure 7c depicts a chromatogram of the pure dye
sample at 670 nm. The HPLC chromatogram shows the

degradation of 1000 ppm MB by AA under 100 W of light for
4 h, recorded at 670 nm. In Figure 7a, two peaks were obtained
at different retention times of 670 nm. Peak A at 1.954 min
represents that the MB sample is degraded and a byproduct

Figure 5. Response surface (3D) and contour plots (2D) for the percentage photooxidative degradation of MB as a function of (a) A: dye
concentration (ppm) and B: dose of photooxidative compound (g) (at contact time = 120 min). (b) B: dose of photooxidative compound and C:
time (minute) (dye concentration = 300 ppm and reaction time = 240 min) and (c) A: dye concentration (ppm) and C: time (minute): dose =
0.004 g; reaction time = 240 min.
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was obtained. During the reaction, the N−C bond was
destroyed between the N atom and the methyl group, observed
by the conversion of dark-colored MB solution into a colorless
form.67 However, pure MB retention time was greater, as
shown in Figure 7a, than that of peak B. This peak is seen after
240 min of irradiation and the 2nd peak B can be visualized in
Figure 7c; the degraded products are depicted in Figure 7b.
These chromatographic variations provide evidence for the
organophotocatalytic degradation of MB into aromatic amines.
The presence of aromatic amines in the UV spectrum,
specifically the peak of N3,N3,N7,N7-tetramethyl-10H-phe-
nothiazine-3,7-diamine within the range of 254−259 nm,
indicated that MB is entirely transformed into aromatic
amines.68

2.5. GC-MS Analysis. This investigation was done to
unravel the chemical nature of metabolites produced from the
organo-photooxidation of MB (5000 ppm) solution irradiated
for 240 min with AA. GC-7890A and MS-5977A spectrometry
(Agilent, USA) models were used for the identification of
metabolites of MB degradation. Different degraded products
were identified at 20.89 min of elution time as shown in Table
2 with their mass-to-charge (m/z) ratio. This also enabled the
prediction of a suitable metabolic pathway for the degradation
of MB as shown in Figure 9. The high-intensity peak is
obtained in the gas chromatography−mass spectroscopy
(GC−MS) spectrum of degraded MB. Figure 8 shows the
mass spectrum of the identified intermediates at a retention
time of 20.89 min. A series of chemical steps led to the
degradation process, which produced a variety of degraded
products. Furthermore, AA was a key reducing agent involved
in transferring electrons, resulting in MB degradation.69

Through the reduction of MB by AA, this transformation led
to the oxidation of AA itself, which assisted in the reduction of
other reactants. Electrons were transferred from AA to MB’s
electrophilic nitrogen. This electron transfer then led to the
formation of leucomethylene blue (LMB) (m/z = 285), a
crucial intermediate in the degradation process.70 MB
degradation was further elucidated by the formation of nitrated
intermediates from protonated LMB in the presence of
nitrating agents.71 MB was identified as N3,N3,N7,N7-
tetramethyl-10H-phenothiazine-3,7-diamine by searching the
mass spectra library. Based on the GC−MS analysis, it was
observed that C�N in the MB molecule oxidized to form C�
O, in which AA may be involved, and the product 7-
(dimethylamino)-3H-phenothiazine-3-one was obtained (m/z
= 256). As shown in Figure 8, the intensity of the peak at (m/z
= 285) notably decreased, and the appearance of a new peak
has been observed. In the first reaction, sulfur is oxidized into
sulfone, phenyl rings are hydroxylated, and MB is N-
methylated. There is a possibility of being attacked by active

Figure 6. FT-IR spectra of MB (a) before and (b) after degradation.

Figure 7. HPLC chromatogram showing the degradation of MB. In (a), the chromatogram illustrates the MB degraded sample. In (b), the
chromatogram depicts MB after degradation at 254 nm. In (c), the chromatogram shows the peak before degradation at 670 nm.
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OH.72 When the dye molecule is photodegraded, the
photogenerated holes and hydroxyl radicals preferentially
attack the chromophore center. As a result of the amino
group cleavage, hydrogen radical saturation, demethylation
cleavage, release of one or more methyl group substituents on
the amine groups, and further oxidation, products with m/z =
230, 135, and 81 are formed.72−74 H2O and CO2 are easily
formed by oxidizing C�N and C−S bonds in MB.74−76 Figure
9 shows the proposed pathway of degradation of MB by using
AA as an organo-photooxidative compound based on GC-MS
supported by HPLC.

2.6. GC−MS and HPLC Support the Proposed
Degradation Mechanism of MB by AA. 2.7. Computa-
tional Details for the Supporting Mechanistic Study.
The purposed mechanism of the MB degradation process is
supported by this DFT study. The studied compounds were
computed by Gaussian 09 program (1). The geometries of
studied compounds were optimized using the B3LYP/6-31G
(d,p) level basis set. The HOMO−LUMO bandgap energy
and the contour of the molecular electrostatic potential (MEP)
were also calculated at the same level of theory. Figure 10
illustrates the optimized structures of MB dye (a) and AA (b).

2.7.1. FMO Analysis. The reactivity of the molecules is
explained by the energy gap between the HOMO and LUMO.
Figure 11 shows the energies of the HOMO and LUMO and
the band gap. The HOMO energy level correlates with
nucleophilicity, while the LUMO energy level correlates with

electrophilicity.77 HOMO energy represents the ability to
donate an electron, while the LUMO energy represents the
ability to receive an electron. A large HOMO−LUMO gap
indicates low reactivity and high chemical stability.78 Kineti-
cally, AA is more stable as compared to MB due to its large
energy band gap (0.04662 eV), and MB is less stable due to
the small energy gap (0.0425). The possibility of a chemical
reaction between MB and AA can be described by the chemical
potential (μ) values of the dye and acid. A molecule that has a
small value of μ predicted more negative potential. This means
more difficulty to lose an electron but easier to gain an
electron.79 The μ values of AA and MB are −0.21485 and
−0.13952 eV, respectively. The low chemical stability and low
ionization potential value of methylene predict that MB
behaves as an acceptor in degradation reaction, while the high
chemical stability and high chemical potential value of AA
show that AA acts as a donor in reaction. The HOMO−
LUMO, band gap energy, and chemical potential value of MB
and AA are given in Table 3.

2.7.2. MEP Analysis. Electronic cloud surfaces, also known
as MEPs,80 consist of three zones: blue, red, and neutral. Green
indicates neutral electrostatic potential, while blue means
electron poor (strong positive electrostatic potential), and red
means electron rich (weak negative electrostatic potential),81,82

as shown in Figure 12. The potential increases from blue >
green > yellow > orange > red.77 The MEP surface of AA is
shown in Figure 12a, which illustrates that the negative

Table 2. Literature-Supported Intermediate Products of MB Degradation

Figure 8. GC−MS spectrum mass peaks of organophoto-oxidatively degraded products of MB by AA.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c09989
ACS Omega 2024, 9, 12069−12083

12075

https://pubs.acs.org/doi/10.1021/acsomega.3c09989?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09989?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09989?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09989?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09989?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09989?fig=fig8&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c09989?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


electrostatic potential was scattered over oxygen atoms, and
Figure 12b predicts that the blue electrostatic potential was
found over all MB molecules. Accordingly, the nitrogen atom
in MB is the site for nucleophilic attack, while oxygen atoms in
AA are sites for electrophilic attack.

3. CONCLUSIONS
The area of organo-photooxidation is a frontier of research,
offering new opportunities and transformative new reactions.
In this study, the basic need to extend the attention of
scientists toward a new, eco-friendly, and cost-effective
approach was used to address the critical issue of MB
degradation. It is a highly toxic compound that is often
released by industrial processes and poses a significant
environmental threat to aquatic ecosystems and potable
water sources. AA was used as an organo-photooxidative
compound for its degradation in the developed photocatalytic
box. This research focuses on elucidating the impact of AA on
the degradation of MB, in the presence of light, and its
potential to enhance the degradation process. Remarkably,

results revealed a substantial increase in degradation efficiency,
escalating from a modest 42% to an impressive 95% within a
240 min contact time. The optimal conditions for MB
degradation were 0.004 g dosage of AA and 100 ppm
concentration of MB at a contact time of 240 min with
maximum efficiency. To substantiate these outcomes, an array
of characterization techniques, including FT-IR, HPLC, GC-
MS, and DFT studies, was employed to confirm the identity of
the degraded products. LMB, a colorless product, was
identified as a degraded product, confirmed by characterization
techniques. Three variables were discussed by using the RSM
statistical tool to optimize these parameters and further elevate
the degradation efficiency. The degradation of various azo dyes
such as reactive blue (RB), reactive black-5, eriochrome black
T (EBT), and methyl orange (MO) was also done. In
summary, the basic purpose of the study not only advances the
understanding of the organo-photooxidation process but also
underscores its potential as a sustainable and efficacious
solution for wastewater treatment. This research contributes to

Figure 9. Proposed mechanism of MB degraded by AA was based on GC−MS.
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the ongoing pursuit of environmentally responsible strategies
for safeguarding water quality and aquatic ecosystems.

4. MATERIALS AND METHODS
This study includes MB (C16H18ClN3S), MO, EBT, RB, and
reactive black-5 azo dyes and organo-photooxidative com-
pounds such as AA (C6H8O6), oxalic acid, tartaric acid, and
citric acid of analytical grade, purchased by Sigma-Aldrich and
used without further purification. For solution preparation,
distilled water was used throughout the experiment. A
photoreactor box was designed for the photooxidation process.

Table S4 (Supporting Information) shows some chemical
characteristics of MB.

4.1. Development of an Economical photoreactor
Box for Photooxidation. The box includes a light source,
which is essential for initiating photochemical reactions. It

Figure 10. Optimized structures of (a) AA and (b) MB.

Figure 11. Pattern of the HOMO and LUMO frontier molecular orbital surfaces.

Table 3. Calculated HOMO-LUMO and Chemical Potential
Value of AA (a) and MB (b)

molecules EHOMO (eV) ELUMO (eV) μ (eV)

ascorbic acid −0.23816 −0.19154 −0.21485
methylene blue −0.16077 −0.11827 −0.13952

Figure 12. Distribution of electron density on the optimized
molecular geometries of AA (a) and MB (b).
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consists of a 100 W tungsten filament bulb. The bulb is fitted
centrally in the reactor box for effective light utilization. This
photoreactor box was made from a cardboard box, having
dimensions 13 × 12 × 14 in, wrapped from all sides with
another sheet to prevent external light from interfering with
the reaction. Coating the inner walls with aluminum foil
enhances the enclosure’s reflective properties, reducing the
absorption of external heat or light. Moreover, the use of an
aluminum foil lining in the box enhanced the symmetry of light
within the box. The reflective nature of aluminum foil
contributes to thermal insulation, acting as a barrier against
dust, dirt, and other particulates from contacting the enclosed
items or surfaces. This self-made photoreactor box includes
monitoring features, allowing real-time observation of reaction
parameters and progress. The specific design and components
of the photoreactor box are eco-friendly and lightweight as
shown in Figure S2 (Supporting Information).

4.2. Sample Preparation. In this study, the initial step
involved washing all of the equipment with methanol and
distilled water. Subsequently, different concentrations of MB
were prepared in distilled water, including 100, 300, and 500
ppm. The degradation process was facilitated by introducing
photooxidative compound doses of 0.002, 0.004, and 0.006 g,
respectively, for each concentration of dye. After this, all the
samples were put into the photoreactor box for degradation.
For the analysis of the degraded material using HPLC and
GC−MS, it was found that the concentration of MB needed to
be higher, specifically at 5000 ppm, to analyze the material in
powder form. On the other hand, the dose of the photo-
oxidative compound for the organo-photooxidative process
was kept at a minimum, with only 0.2 g being used. After
sample degradation, the maximum amount of solvent was
evaporated by using a rotary evaporator, which enables the
removal of excess solvent and the acquisition of the desired
powdered form for further analysis.

4.3. Organo-photooxidative Activity. The prepared
samples of different concentrations were photooxidized using
different doses of photooxidative compounds. There were
three levels of sample concentration and three levels of
photooxidative compound dose. To start the experiment, the
mixture was stirred for 3−5 min after which the reaction
mixture was exposed to visible light in a reactor box. The
samples of MB were taken after 60, 120, 180, and 240 min,

respectively, and the absorbance of MB after each time interval
was tested at 664 nm (λmax) using a UV−visible spectropho-
tometer (VIS-1100). Similarly, the degradation process of all
solutions of MB was determined with three replicate sets. The
reference sample was also tested under the same conditions
but without catalyst loading. Scheme 1 shows the activity of
the organo-photooxidation process.

The degradation of the MB dye by using a photooxidative
compound and its efficiency was determined by the following
eq 1:

= ×A A
A

Degradation Efficiency (DE) 100o

o (1)

Ao: initial absorbance of MB; A: final absorbance of MB;
The optimal conditions for MB degradation from our study
were 0.004 g of dosage from AA and 100 ppm concentration of
MB at a contact time of 240 min.

4.4. Statistical Analysis and Response Surface
Design. The response surface methodology (RSM) consists
of mathematical and statistical tool, which is used to determine
how various parameters affect the outcome.45 According to
RSM design principles, the CCD model was used to study and
optimize the effects of three experimental factors on the
percentage degradation efficiency of MB by using Stat-Ease
Design Expert 13.0. The concentration of dye (ppm), dose of
photooxidative compound (g), and reaction time (min) were
calculated. A total of 135 experiments were conducted in this
study. Three levels were defined for dye concentration and the
dose of a photooxidative compound, while four levels were
defined for time. These values were designed by the −1, 0, and
+1 codes. To evaluate the outcome, analysis plots, coefficients
of determination, and analyses of variance were used. When
the P-value obtained is less than 0.05, the results are
considered significant. The general form of the quadratic
model is shown as follows in eq 2:

= + + +
= = = =

b b x b x b x x
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1 1

2

1
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where η is the response variable, bo is the coefficient constant,
bi is a linear coefficient, bii is the quadratic coefficient, bij is the
interaction coefficient, and the coded values are xi and xj of the
parameters.83,84,85

Scheme 1. Schematic Representation of the Activity of Organo-Photooxidation
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In eq 3, % (η) is the percentage degradation response, and
X1, X2, and X3 are the corresponding independent parameters
such as concentration of dye (ppm), dose of photooxidative
compound (g), and reaction time (min) respectively.

By using ANOVA, regression factor values were measured.
An established predictive model was evaluated using the
correlation coefficient R2, modified R2, p-value, and lack of fit
to assess its validity and suitability. Independent variables were
assessed by using the 95% confidence level to determine their
relevance to the MB degradation process.

4.4.1. Factors Affecting Different Levels and Their
Significance. The designed statistical model is used to
determine which coefficient does not influence each of the
responses. It is possible to improve the quality of statistical
models by removing coefficients that do not affect all
responses. The experimental ranges and levels of the effective
variables are listed in Table 4.

4.5. Computational Study. In the first step, chemical
structures of the dye and acid were drawn and files were saved
using Gauss view 6.0.86 Then, we added the instructions for
DFT calculations. The job type basis set, calculation method,
functionals, and keywords were selected.87 Based on the 6-31G
(d,p) basis set, MB and AA were optimized using DFT with
the B3LYP functional (44).88 All the calculations were done in
Gaussian 0989 after the file was terminated normally, and the
result files/log files were analyzed again in Gauss view 6.0.90

The optimized structures were calculated from log files and the
HOMO−LUMO values from CHK files.91 An optimized
geometry of the compounds was used to develop the MEP
surface.92
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