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SUMMARY
Selecting the right immunosuppressant to ensure rejection-free outcomes poses unique challenges in pedi-
atric liver transplant (LT) recipients. A molecular predictor can comprehensively address these challenges.
Currently, there are no well-validated blood-based biomarkers for pediatric LT recipients before or after
LT. Here, we discover and validate separate pre- and post-LT transcriptomic signatures of rejection. Using
an integrative machine learning approach, we combine transcriptomics data with the reference high-quality
human protein interactome to identify network module signatures, which underlie rejection. Unlike gene
signatures, our approach is inherently multivariate and more robust to replication and captures the structure
of the underlying network, encapsulating additive effects. We also identify, in an individual-specific manner,
signatures that can be targeted by current anti-rejection drugs and other drugs that can be repurposed. Our
approach can enable personalized adjustment of drug regimens for the dominant targetable pathways before
and after LT in children.
INTRODUCTION

Ensuring lifelong graft survival is challenging for pediatric liver

transplant (LT) recipients.1,2 Selection of anti-rejection drugs

from a limited list of options is an empiric process.3 For example,

these pediatric transplant (Tx) recipients receive tacrolimus, a

calcineurin inhibitor that predominantly suppresses cytokine

production by T cells but can cause hypertension, renal failure,

diabetes, and post-Tx lymphoma.4 Steroids can cause weight

gain, diabetes, and hypertension. Acute cellular rejection associ-

ated with cytotoxic T cells occurs most often in the first 90 days

after LT and requires higher-dose steroids.5 Steroid-resistant

rejection is treated with lymphocyte-depleting agents.6 Myco-

phenolate mofetil, a purine antimetabolite drug that acts as an

antiproliferative agent, may be added subsequently as a ‘‘third’’

agent.7 If this drug is not tolerated, another purine antimetabo-

lite, azathioprine, or a mammalian target of rapamycin (mTOR)

inhibitor, rapamycin, can be added to tacrolimus and steroids.

Some regimens also include interleukin-2 (IL-2) receptor-block-

ing or lymphocyte-depleting antibodies from the time of LT.8,9

Time-dependent protocols are used to reduce tacrolimus and
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steroid doses, based on the likelihood of rejection at various

times after Tx. Such reductions can precipitate rejection in

some individuals. Growth and changing metabolism also affect

immunosuppressant doses in children.10 A high incidence of

non-compliance during adolescence adds to these chal-

lenges.11 As a result, surveillance biopsies performed after the

first year after Tx can reveal fibrosis, antibody-mediated chronic

allograft injury; this can be with or without cellular infiltrates and

circulating donor-specific antibodies.12–14

These findings suggest that, if rejection is unchecked, then

graft loss is the inevitable outcome.15 Current non-invasive liver

function testing establishes whether graft function is normal.

Biopsies confirm whether rejection is the cause of graft dysfunc-

tion. Multi-gene blood tests have predicted acute cellular rejec-

tion (ACR) and tolerance in adult LT recipients but have only been

used in research settings in some children.16–21 The cell-based

Pleximmune test predicts rejection with a calculated index of

donor-reactive T-cytotoxic memory cells.22 Although useful for

surveillance, this test cannot aid drug selection. These needs

can be addressed by a non-invasive blood-based diagnostic

that can predict, before LT or early within 90 days after LT, the
eports Medicine 3, 100605, April 19, 2022 ª 2022 The Author(s). 1
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occurrence of LT rejection in children. An ideal diagnostic would

categorize risk, be reproducible across cohorts, and identify

druggable immune mechanisms underlying rejection. Current

biomarkers are primarily focused on the adult population, often

non-blood-based, and primarily correlative and do not identify

underlying mechanisms. Peripheral and tissue transcripts asso-

ciated with rejection of a given organ can vary, as can signatures

associated with rejection of different organs or rejection that oc-

curs at different time periods within the same type of organ Tx.

Herewe address these key challenges by developingmolecular

signatures for ACR after pediatric LT using blood-based transcrip-

tomics data. Two distinct approaches were used. First, we identi-

fied traditional signatures using differentially expressed genes

(DEGs) in rejectors compared with non-rejectors. Next we used

an integrative approach with a modern machine learning pipeline

to combine the blood-based transcriptomics data with the high-

quality reference human protein interactome network to identify

network module signatures for pre- and post-Tx samples. These

modulesmake up the protein interactome network and also incor-

porate additive effects. We also identified specific network mod-

ules that could be targeted by current anti-rejection drugs or other

repurposed drugs. Our integrative framework is broadly appro-

priate for contexts where DEGs in the peripheral blood transcrip-

tome have small effect sizes. In this setting, a multivariate network

module-basedsignature ismore likely tobe robust tocross-valida-

tion and informative of underlyingmolecular phenotypes that drive

differences across the clinical outcomes.

RESULTS

Biomarkers and molecular signatures of LT outcomes
To predict rejection outcomes after Tx, several molecular signa-

tures have been developed. These signatures consist of blood-

based genes with significant differential expression (DEGs) in

rejection compared with non-rejection. In these signatures,

genes are considered to be independent entities. However,

genes are not independent. Proteins encoded by these genes

are part of a complex underlying molecular network: the

protein-protein interaction network.23 The structure of this

network has been implicated in many disease contexts23 and

can contribute to the rejection process, an attribute not consid-

ered in the design of prevailing blood-based multi-gene assays.

We and others24,25 have recently developed a new conceptual

paradigm where we overlay expression data onto the underlying

reference protein network and identify expression modules that

can discriminate between clinical outcomes (Figures 1A and 1B).

The underlying network used in the framework is an unbiased

context-independent reference map of all high-quality protein-

protein interactions that have been validated by multiple inde-

pendent assays.26 Overlaying context-specific expression data

onto this reference map helps us identify functionally connected

subnetworks or modules that discriminate between clinical out-

comes (Figure 1B). Key advantages of the network-based

approach include encapsulating additive effects of genes in

modules. This biologically motivated dimensionality reduction

avoids overfitting and captures underlying molecular signatures

that drive the bifurcation of clinical outcomes beyond simple cor-

relates of outcome (Figure 1B).
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Here we apply both approaches, gene-centric and network-

centric, to identify signatures of LT rejection. Three separate sig-

natures are developed; the first uses single pre-Tx samples from

75 children with LT, the second uses early post-Tx samples

from 55 children with LT, and the third uses late post-Tx samples

from 55 children with LT (STAR Methods). Children experiencing

rejection within 90 days after LT were termed early rejectors (Rs).

Early non-rejectors (NRs) did not experience rejection during this

period. For the late post-Tx period, samples were collected be-

tween years 2 and 5. Outcomes were recorded for 90 days after

sampling. All rejection events were identified based on for-cause

biopsies, so all R subjects are BPAR (biopsy-proven ACR). There

were no significant differences in distribution of gender or time to

rejection between Rs and NRs (STAR Methods).

Gene-based signatures of LT outcomes
Using a cohort of 75 pre-Tx individuals, we first sought to

develop a standard gene-based signature to discriminate be-

tween Rs and NRs. Raw RNA sequencing (RNA-seq) data

were processed using a standard analytic pipeline comprising

quality control, alignment, and quantification (STAR Methods).

Using a linear model adjusting for gender, age, and drug use,

we identified significantly DEGs (p < 0.05) between R and NR in-

dividuals. We converged on a 125-gene signature, of which 55

had a univariate area under the ROCcurve (AUC) of 0.6 or greater

(Figure 2A). In a cross-platform validation of these 55 genes on

the Fluidigm platform, only 12 achieved significant differential

expression in Rs compared with NRs with an AUC of 0.65 or

greater (Figure 2B). This low technical replication rate on a

different platform is expected and may result from low effect

sizes, large between-sample variation in expression, and

considering these genes independent.

We used a similar approach on a cohort of 55 early post-Tx in-

dividuals. A linear model adjusted for gender, age, and drug use

(STARMethods) identified significant DEGs (p < 0.05) between R

and NR individuals. We converged on a 65-gene signature, of

which 50 had a univariate AUC of 0.6 or greater (Figure 2C). In

a cross-platform validation of these 50 genes on the Fluidigm

platform, only 6 achieved significant differential expression in

Rs compared with NRs with an AUC of 0.65 or greater (Fig-

ure 2D), likely because of the abovementioned factors.

We also used a similar approach on a cohort of 55 late post-Tx

individuals. A linear model adjusted for gender, age, and drug

use (STAR Methods) identified significant DEGs (p < 0.05)

between R and NR individuals. We honed in on a 55-gene

signature, of which 36 had a univariate AUC of 0.6 or greater (Fig-

ure 2E). In a cross-platform validation of these 36 genes on the

Fluidigm platform, only 9 achieved significant differential expres-

sion in Rs compared with NRs with an AUC of 0.65 or greater

(Figure 2F), likely for similar reasons.

A network-based signature of pre-LT outcomes
The expression dataset is high dimensional; the number of tran-

scripts far exceeds the number of samples. So, a traditional

multivariate model that does not account for this is likely to suffer

from overfitting. We accounted for this in two ways. First, using a

network-based approach, we used modules as features instead

of genes; this takes into account the topology of the underlying



Figure 1. Uncovering biomarkers and molecular signatures of LT outcomes

(A) Conceptual overview of gene- and network-centric approaches to identify biomarkers and molecular signatures, respectively, of pediatric LT outcomes

(generated using BioRender).

(B) Schematic summarizing keys steps of the network-based approach: construction of expressionmodules followed by LASSO-based feature selection to iden-

tify network modules driving LT outcomes (generated using BioRender).
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network. Second, we used an L1 regularization-based machine

learning approach (a statistical approach that helps avoid over-

fitting) on the module-centric features.

The high-quality human reference protein interactome

network26 was clustered into modules using a well-established

topological clustering approach, ClusterOne.27 First, we overlaid

expression data from the 75 pre-Tx individuals on these subnet-

works to generate expression module-based features. Using

least absolute shrinkage and selection operator (LASSO)-based

feature selection, we then identified aminimal subset of modules

that met an effect size threshold and were discriminative of R

versus NR outcome in a cross-validation framework. This

approach achieves dimensionality reduction biologically by clus-

tering genes into modules and statistically using L1 regulariza-

tion (LASSO).

To evaluate the performance of our approach, we used

rigorous k-fold cross-validation and permutation testing as

described previously.28,29 The network module signature we

identified had a median AUC of �0.7 across 100 replicates of
10-fold cross-validation and was significantly better at predict-

ing rejection than a model built on permuted data (negative con-

trol) in a matched 10-fold cross-validation framework (Figure 3E;

STAR Methods). Interestingly, a model built on the pre-Tx signa-

ture comprising 65 DEGs was not significantly better than the

negative control across 100 replicates of 10-fold cross-valida-

tion (Figure 3A; STAR Methods). A model built with 12 DEGs

down-selected by cross-platform (Fluidigm) validation was also

not significantly better than a model built with permuted

data (Figure 3B; STAR Methods). As an additional control, we

also built models using pathway signatures. Specifically, we

identified Hallmark pathways in which the DEGs were

over-represented and constructed corresponding pathway-

centric features using a strategy analogous to themodule-based

feature construction strategy. Interestingly, this model was not

significantly better than the negative control across 100 repli-

cates of 10-fold cross-validation (Figure 3C). A similar result

was observed with Kyoto Encyclopedia of Genes and Genomes

(KEGG)-based pathway signatures (Figure 3D). The network
Cell Reports Medicine 3, 100605, April 19, 2022 3
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Figure 2. Gene-based biomarkers of LT outcomes identified using pre- and post-LT transcriptomics datasets

(A) Heatmap illustrating the 55 DEGs with AUC greater than 0.6 identified using pre-LT transcriptomics data.

(B) Heatmap with a subset of the DEGs in (A) that pass Fluidigm validation.

(C) Heatmap illustrating the 50 DEGs with AUC greater than 0.6 identified using early post-LT transcriptomics data.

(D) Heatmap with a subset of the DEGs in (C) that pass Fluidigm validation.

(E) Heatmap illustrating the 36 DEGs with AUC greater than 0.6 identified using late post-LT transcriptomics data.

(F) Heatmap with a subset of the DEGs in (E) that pass Fluidigm validation.
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approach is likely more successful than the pathway approach

because it allows identification of specific subnetworks

from the entire reference human network in a data-dependent

fashion, allowing discovery of non-intuitive associations. On

the other hand, the pathway approach captures only

known gene sets and is often overbroad. Thus, the network

approach provides a way to leverage the combinatorial effect

sizes of genes in functionally related processes or modules to

come up with a set of modules as biomarkers of outcome. The

combined use of biologically inspired dimensionality reduction

(genes > modules) coupled to statistically driven dimensionality

reduction (use of L1 regularization) in the network approach

allows simultaneous prevention of overfitting and identification

of interpretable signatures of pediatric LT outcomes.

To test how sensitive the approach is to the specific summa-

rization approach used to capture combinatorial effects, we

used three different strategies to capture the additive effects of

genes within modules (STAR Methods). Irrespective of the sum-

marization method, the network approach remained significantly

predictive (Figure S1). Thus, the concept of network-based inte-

gration, rather than a specific implementation strategy, holds the

key for building a molecular signature that can distinguish be-

tween R and NR individuals.

In addition to being predictive, the identified network module

biomarkers (Figures 3F and 3H) also encapsulate details of mo-

lecular mechanisms not easily captured by signatures incorpo-

rating individual DEGs. Unlike the pre-LT gene-based signature,

the network signature (Figures 3F and 3H) identified several

known as well as putative novel molecular mechanisms underly-

ing predisposition to rejection. Several type I interferon (IFN) and

complement genes as well as those in mTOR modules were up-
4 Cell Reports Medicine 3, 100605, April 19, 2022
regulated in Rs, suggesting primed innate immune signaling in

these individuals. In contrast, modules involved in basic cellular

processes, including DNA replication, cell proliferation, and

adhesion, had lower expression in NRs compared with Rs, sug-

gesting a dysregulation of replication and cellular maintenance

mechanisms in those likely to experience rejection. Our results

suggest that higher inflammatory signaling coupled to a disrup-

tion in basic cellular processes underlies predisposition to rejec-

tion in pediatric LT recipients.

Finally, we visualized the down-selected network modules

(Figure 3F) using partial least-squares discriminant analyses

(PLS-DA). We observed that the overall set of down-selected

modules has different profiles in R and NR subjects (Figure 3G).

The earlier cross-validation-based analyses demonstrate the

predictive power of the identified network modules with data

held out. This analysis helps us visualize a signature from the

whole dataset that can be utilized in downstream applications

and could be extrapolated to other cohorts. Interestingly, there

was lower variance across the profiles for R subjects than for

NR subjects, suggesting that there are many ways to stay rejec-

tion free, and a series of specific dysregulation events that pre-

dispose LT recipients to experience rejection (Figure 3G). Our

network approach identifies robust signatures that are predictive

and provide molecular insights into the mechanisms underlying

rejection before Tx.

Identifying a network signature of early post-LT
outcomes
Next we utilized the same network approach on the expression

data from 55 early post-LT individuals. Here, too, the network

module signature we identified had a median AUC of �0.65
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Figure 3. Network-based molecular signatures of outcomes identified by combining pre-LT transcriptomics data with the reference human

protein interactome network

(A) Evaluation of the predictive power of the gene signature from Figure 2A, evaluated in a cross-validation framework with permutation testing. ‘‘Actual’’ denotes

the performance of the model, built on real data, across replicates of k-fold cross-validation. ‘‘Permuted’’ denotes performance of the model on shuffled data in a

matched cross-validation framework (negative control).

(B) Evaluation of the predictive power of the gene signature from Figure 2B, evaluated in a cross-validation framework with permutation testing. ‘‘Actual’’ denotes

the performance of the model, built on real data, across replicates of k-fold cross-validation. ‘‘Permuted’’ denotes performance of the model on shuffled data in a

matched cross-validation framework (negative control).

(C) Evaluation of the predictive power of a signature consisting of Hallmark pathways in which the DEGs are over-represented, evaluated in a cross-validation

framework with permutation testing. ‘‘Actual’’ denotes the performance of the model, built on real data, across replicates of k-fold cross-validation. ‘‘Permuted’’

denotes performance of the model on shuffled data in a matched cross-validation framework (negative control).

(D) Evaluation of the predictive power of a signature consisting of KEGG pathways in which the DEGs are over-represented, evaluated in a cross-validation

framework with permutation testing. ‘‘Actual’’ denotes the performance of the model, built on real data, across replicates of k-fold cross-validation. ‘‘Permuted’’

denotes performance of the model on shuffled data in a matched cross-validation framework (negative control).

(E) Evaluation of the predictive power of the network-based molecular signatures in a cross-validation framework with permutation testing. The network-based

signatures are identified by LASSO-based feature selection on expression modules constructed by combining pre-LT transcriptomics data with the reference

(legend continued on next page)
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across 100 replicates of 10-fold cross-validation and was

significantly better at predicting rejection than a model built

on permuted data (negative control) in a matched 10-fold

cross-validation framework (Figure 4E; STAR Methods). A

model built on the early post-Tx gene signature was somewhat

more accurate than the negative control across 100 replicates

of 10-fold cross-validation but did not achieve significance

(Figure 4A; STAR Methods). A gene-based model was also

not significantly better than a model built with permuted data

in a cross-validation framework (Figure 4B; STAR Methods).

Here, too, as an additional control, we built models using

pathway signatures. Specifically, we identified Hallmark

pathways in which the DEGs were over-represented and con-

structed corresponding pathway-centric features using a strat-

egy analogous to the module-based feature construction strat-

egy. Interestingly, this model was not significantly better than

the negative control across 100 replicates of 10-fold cross-vali-

dation (Figure 4C). A similar result was observed with KEGG-

based pathway signatures (Figure 4D).

As with the pre-Tx network-based signature, the early post-Tx

signature is also predictive (Figures 4F and 4H), and captures

mechanistic details. As with the pre-LT signature, irrespective

of the summarization method, the network approach remained

significantly predictive (Figure S2). However, the predictive po-

wer is slightly lower at the post-Tx time point compared with

the pre-Tx time point. This is likely due to the immunosuppres-

sive effect of drugs. However, this reflects an overall immuno-

suppressive effect and not any specific drug-specific effect. As

further confirmation of this, the transcriptomics signatures could

not stratify those that did/did not receive thymoglobulin (Fig-

ure S3). Thus, the dampening of the predictive effect reflects

successful immunosuppression rather than a drug-specific bias.

The early post-Tx signature (Figures 4F and 4H) also provides

insights into the ‘‘temporal shift’’ in host defenses. Although

specific components of innate immune signaling pre-dispose re-

cipients to rejection before LT, a combination of innate and

adaptive mechanisms underlies rejection after LT. The early

post-LT signature comprises a DNA damage repair module

induced by activation-induced cytidine deaminase (AID).30 A

key component of the AID module, IGLL5, is overexpressed in

NRs. IGLL5 negatively regulates AID, which likely impairs B cell

maturation into antibody-producing cells.31 This may explain

the absence of rejection, which is mediated by cellular and

humoral mechanisms. DNA damage indicated by the second

module is a component of B cell maturation and rejection-asso-

ciated cell death and injury. The module with histone deacety-

lase genes mediates epigenetic and transcriptional regulation.32

Here, too, we visualized the down-selected modules using

PLS-DA and observed that R andNR subjects have different pro-

files (Figure 4G). Again, there was lower variance across the pro-

files for R subjects than for NR subjects (Figure 4G), providing
human protein interactome network. ‘‘Actual’’ denotes the performance of the mo

denotes performance of the model on shuffled data in a matched cross-validatio

(F) Visualization of the network module signatures from the model in (E). Red den

expression in NR subjects.

(G) PLS-DA using only the network module signatures from the model in (E) to d

(H) Heatmap visualizing the variation of the module-specific features across R an
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support to our hypothesis that there are many ways to remain

rejection free and a series of specific molecular events that

contribute to rejection.

Paired and unpaired pre- and early post-LT samples
Within the 75 pre- and 55 early post-LT subjects, we have 32

pairs; i.e., 32 pre-Tx matched to 32 early post-Tx. We carried

out analyses only using this subset of paired samples to uncover

how signatures evolve longitudinally from pre-to early post-Tx.

We constructed features using differentials between the early

post-LT and pre-LT time points. The corresponding network

module signature we identified was significantly more predictive

than a model built on permuted data across 100 replicates of

10-fold cross-validation (Figure S4A). The identified network

modules (Figure S4B) include signatures identified earlier, such

as DNA repair, as well as novel functions, such as MYC and

TCF signaling. These results suggest that, although specific

modules at the pre- and early post-LT time points as well as

module-based features capturing differentials are independently

predictive of LT outcome, the functional signatures are unique,

reflecting an evolution of the molecular basis of risk of rejection

across time.

Next, to systematically evaluate whether there are differences

in predictive performance between paired and unpaired sam-

ples, we trained a model using only the unpaired samples and

then tested on the paired samples. For the pre-LT samples,

this cross-prediction had an AUC of �0.8, and for early post-

LT samples, the cross-prediction AUC was �0.6 (Figures S4C

and S4D). These analyses demonstrate that there is no bias in

prediction performance across paired and unpaired samples

and trajectories from before LT to after LT are also independently

predictive (in addition to the before and after time points) of LT

outcomes.

Identifying a network signature of late post-LT
outcomes
Finally, we utilized the same network approach on the expres-

sion data from 55 late post-LT individuals. Here, too, the network

module signature we identified had a median AUC of �0.65

across 100 replicates of 10-fold cross-validation and was signif-

icantly better at predicting rejection than a model built on

permuted data (negative control) in a matched 10-fold cross-

validation framework (Figure 5E; STAR Methods). A model built

on the late post-Tx gene signaturewas somewhatmore accurate

than the negative control across 100 replicates of 10-fold cross-

validation but did not achieve significance (Figure 5A; STAR

Methods). A model built with genes down-selected by cross-

platform validation was also not significantly better than a model

built with permuted data (Figure 5B; STAR Methods). As for pre-

and early post-Tx, models built using Hallmark and KEGG

pathway signatures were not significantly better than the
del, built on real data, across replicates of k-fold cross-validation. ‘‘Permuted’’

n framework (negative control).

otes higher median expression in R subjects, and blue denotes median higher

iscriminate between R and NR subjects.

d NR subjects.
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Figure 4. Network-based molecular signatures of outcomes identified by combining early post-LT transcriptomics data with the reference

human protein interactome network

(A) Evaluation of the predictive power of the gene signature from Figure 2C, evaluated in a cross-validation framework with permutation testing. ‘‘Actual’’ denotes

the performance of the model, built on real data, across replicates of k-fold cross-validation. ‘‘Permuted’’ denotes performance of the model on shuffled data in a

matched cross-validation framework (negative control).

(B) Evaluation of the predictive power of the gene signature from Figure 2D, evaluated in a cross-validation framework with permutation testing. ‘‘Actual’’ denotes

the performance of the model, built on real data, across replicates of k-fold cross-validation. ‘‘Permuted’’ denotes performance of the model on shuffled data in a

matched cross-validation framework (negative control).

(C) Evaluation of the predictive power of a signature consisting of Hallmark pathways in which the DEGs are over-represented, evaluated in a cross-validation

framework with permutation testing. ‘‘Actual’’ denotes the performance of the model, built on real data, across replicates of k-fold cross-validation. ‘‘Permuted’’

denotes performance of the model on shuffled data in a matched cross-validation framework (negative control).

(D) Evaluation of the predictive power of a signature consisting of KEGG pathways in which the DEGs are over-represented, evaluated in a cross-validation

framework with permutation testing. ‘‘Actual’’ denotes the performance of the model, built on real data, across replicates of k-fold cross-validation. ‘‘Permuted’’

denotes performance of the model on shuffled data in a matched cross-validation framework (negative control).

(E) Evaluation of the predictive power of the network-based molecular signatures in a cross-validation framework with permutation testing. The network-based

signatures are identified by LASSO-based feature selection on expression modules constructed by combining post-LT transcriptomics data with the reference

human protein interactome network. ‘‘Actual’’ denotes the performance of the model, built on real data, across replicates of k-fold cross-validation. ‘‘Permuted’’

denotes performance of the model on shuffled data in a matched cross-validation framework (negative control).

(F) Visualization of the network module signatures from the model in (E). Red denotes higher median expression in R subjects, and blue denotes median higher

expression in NR subjects.

(G) PLS-DA using only the network module signatures from the model in (E) to discriminate between R and NR subjects.

(H) Heatmap visualizing the variation of the module-specific features across R and NR subjects.
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Figure 5. Network-based molecular signatures of outcomes identified by combining late post-LT transcriptomics data with the reference

human protein interactome network

(A) Evaluation of the predictive power of the gene signature from Figure 2E, evaluated in a cross-validation framework with permutation testing. ‘‘Actual’’ denotes

the performance of the model, built on real data, across replicates of k-fold cross-validation. ‘‘Permuted’’ denotes performance of the model on shuffled data in a

matched cross-validation framework (negative control).

(B) Evaluation of the predictive power of the gene signature from Figure 2F, evaluated in a cross-validation framework with permutation testing. ‘‘Actual’’ denotes

the performance of the model, built on real data, across replicates of k-fold cross-validation. ‘‘Permuted’’ denotes performance of the model on shuffled data in a

matched cross-validation framework (negative control).

(C) Evaluation of the predictive power of a signature consisting of Hallmark pathways in which the DEGs are over-represented, evaluated in a cross-validation

framework with permutation testing. ‘‘Actual’’ denotes the performance of the model, built on real data, across replicates of k-fold cross-validation. ‘‘Permuted’’

denotes performance of the model on shuffled data in a matched cross-validation framework (negative control).

(D) Evaluation of the predictive power of a signature consisting of KEGG pathways in which the DEGs are over-represented, evaluated in a cross-validation

framework with permutation testing. ‘‘Actual’’ denotes the performance of the model, built on real data, across replicates of k-fold cross-validation. ‘‘Permuted’’

denotes performance of the model on shuffled data in a matched cross-validation framework (negative control).

(E) Evaluation of the predictive power of the network-based molecular signatures in a cross-validation framework with permutation testing. The network-based

signatures are identified by LASSO-based feature selection on expression modules constructed by combining late post-LT transcriptomics data with the refer-

ence human protein interactome network. ‘‘Actual’’ denotes the performance of the model, built on real data, across replicates of k-fold cross-validation.

‘‘Permuted’’ denotes performance of the model on shuffled data in a matched cross-validation framework (negative control).

(F) Visualization of the network module signatures from the model in (E). Red denotes higher median expression in R subjects, and blue denotes median higher

expression in NR subjects.

(G) PLS-DA using only the network module signatures from the model in (E) to discriminate between R and NR subjects.

(H) Heatmap visualizing the variation of the module-specific features across R and NR subjects.
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negative control across 100 replicates of 10-fold cross-valida-

tion (Figures 5C and 5D).

As with the early post-Tx network-based signature, the late

post-Tx signature is also predictive (Figures 5F and 5H) and cap-

tures mechanistic details. Here, too, we visualized the down-

selected modules using PLS-DA and observed that R and NR

subjects have different profiles (Figure 5G). Again, there was

lower variance across the profiles for R subjects than for NR sub-

jects (Figure 5G), providing support to our hypothesis that there

are many ways to remain rejection free and a series of specific

molecular events that contribute to rejection. Our results with

the pre-LT, early post-LT, and late post-LT data provide key

insights into why network module signatures may have advan-

tages over gene-centric signatures. Our two-step approach

achieves inherent dimensionality reduction from genes to

modules via incorporation of the topological structure of the un-

derlying network and objective feature selection on this dimen-

sionality-reduced feature set using the LASSO.

Druggability of the identified network modules
The set of network modules also enables rigorous druggability

analyses taking into account the underlying molecular mecha-

nisms of rejection. Suchmodule-centric analyses have been car-

ried out previously from tissue-based biomarkers. For example,

a common rejection module consisting of 11 overexpressed
genes was identified in meta-analyses of eight studies conduct-

ed on kidney, lung, heart, and LT biopsies.33 Anchored bySTAT1

and NFKB1, this module was associated with ACR in all organs.

Genes in this module included known targets of bortezomib, a

proteasomal inhibitor used for antibody-mediated rejection

(PSMB9), the anti-inflammatory drug sunlindac (CXCL9), the

anti-rejection drug mycophenolate mofetil (INPP5D), the antileu-

kemia receptor tyrosine kinase inhibitor dasatinib (LCL), the anti-

biotic doxycycline (BASP1), and the commonly used atorvastatin

(CXCL10).33 Drugs identified by such network module analyses

have been shown to be effective; in a mouse model of allogeneic

heart Tx, atorvastatin reduced graft infiltration by T cells and low-

ered rejection rates.33 In a study of 2,515 kidney Tx recipients,

1,566 of whom received a statin, statin use was significantly

associated with reduced graft loss within 180 days after Tx.33

Such analyses to look for drug targets have not been conducted

previously on blood-based gene expression signatures of rejec-

tion. We extrapolated this conceptual framework to the modules

identified by our network approach.

Using DrugBank, we identified several pre-LT modules that

can be targeted by currently approved drugs, such as mono-

clonal antibodies, mTOR/KICSTOR inhibitors, and calcineurin

inhibitors (Figure 6), a few of which are already part of current

immunosuppression strategies.34 The IFN type 1 and comple-

ment pathways suggest primed innate immune signaling among
Cell Reports Medicine 3, 100605, April 19, 2022 9
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Rs that are druggable by known complement inhibitors or drugs

that suppress IFN receptor signaling. Tacrolimus and cyclo-

sporine target calcineurin signaling (Figure 6). Rapamycin and

everolimus could be used to target mTOR signaling (Figure 6).

The complement signaling modules can be targeted by mono-

clonal antibodies like eculizimab, which is used in refractory anti-

body-mediated rejection, or other anti-inflammatory molecules

(Figure 6). Alfacon 1 targets IFN alpha and beta receptors 1

and 2, which mediate type 1 IFN signaling, and the recently

approved anifrolumab is a type I IFNR blocker, making the

corresponding module also druggable (Figure 6). Lcn2 can

be targeted by carboxymycobactin and associated esters (Fig-

ure 6). In addition to these direct drug-gene associations from

DrugBank, purine antimetabolites, azathioprine, or mycopheno-

late mofetil can target other discriminatory modules in the pre-Tx

signature, including pathways involved in cell proliferation, such

as cell cycle signaling, cell proliferation, metabolic reprogram-

ming, cell adhesion/proliferation, and mitochondrial synthase

signaling. Overall, our approach can enable selection of a com-

bination of immunosuppressants most suited for that recipient.

In the post-LT signature, the module enriched for epigenetic

and transcriptional regulation can be targeted by a range of his-

tone deacetylase modulators, such as valproic acid (Figure S5).

The oxidative DNA demethylase ALKBH3 can be targeted by

molecules such as ascorbic acid (Figure S5). In addition to these

direct drug-gene associations from DrugBank, AID-induced

DNA damage repair is essential for maturation of B cells into anti-

body-producing cells. B cell-associated mechanisms, including

humoral mechanisms, can be targeted by several drugs. These

druggability analyses demonstrate the value of the network-

based discriminatory signatures identified in this study.

Beyond identifying overall group-specific profiles, these ana-

lyses also provide insights into specific dysregulated molecular

profiles on a per-individual basis. For example, at the pre-Tx

time point, within the identified predictive module biomarkers,

subject 56 only had higher module-specific scores for comple-

ment, IFN, and mTOR/KICSTOR signaling at the pre-Tx time

point. This suggests that addition of a third agent, such as rapa-

mycin, may have prevented rejection for this subject. Subject 60

only had higher module-specific scores for complement and IFN

signaling aswell as cell cycle/DNA replication. This suggests that

titrating the dosage of an existing immunomodulatory drug (e.g.,

CellCept) may reduce the risk of rejection for this subject. On the

other hand, subject 72 had higher scores across many different

modules, suggesting that the subject may have been prone to

rejection irrespective of the choice of small-molecule immuno-

suppressive regimen. Such a signature may indicate a need to

deplete all lymphocytes with a polyclonal agent like rabbit anti-

human thymocyte globulin. Thus, our analyses identify clinically

actionable intervention strategies on a per-individual basis at the

pre-Tx time point. Implementation of these strategies can

dramatically improve current clinical practice because ACR

(especially in a pediatric context), unlike antibody-mediated

rejection, cannot be screened for using human leukocyte antigen

(HLA) cross-matches or other related markers. Importantly,

these suggested intervention strategies are based on immuno-

suppressive drugs currently in use; hence, they can be imple-

mented readily.
10 Cell Reports Medicine 3, 100605, April 19, 2022
DISCUSSION

Avoiding rejection with predictive diagnostics can have long-

term benefits for graft health and quality of life. Early acute

rejection predicts infection,35 graft loss, and death in adults36

and late T cell-mediated rejection.37 In this study, we demon-

strate the advantages of using a network-based signature to

distinguish between pediatric LT recipients who are predis-

posed to rejection or rejection-free outcomes. Our approach

captures the additive effect of genes within a module, which

is greater than that of individual genes. This overcomes the

small effects of individual genes in the blood transcriptome,

which limit replication of blood-based gene signatures. Genes

within a module can be differentially expressed to different

extents, and individual genes do not need to pass univariate

significance thresholds. Rather, the significance of the multi-

variate signature is evaluated in a rigorous cross-validation

framework with permutation testing. Finally, the predictive

modules identified in the network-based analyses capture

disease phenotypes that are inherently tied to molecular phe-

notypes.23 Consistent with these advantages, the network-

based signatures, but not the gene-centric signatures for the

pre-LT and post-LT time points, are significantly predictive of

LT outcome. Interestingly, for the network-based signatures,

although we tried a range of feature construction strategies,

different strategies performed almost equivalently. This is likely

due to each having specific advantages. This suggests that a

higher sample size (i.e., better power), rather than alternate

feature construction strategies, is important to come up with

a more discriminative signature. These signatures also provide

insights into the molecular mechanisms underlying rejection.

These advantages can be leveraged in an actual clinical

setting to predict rejection severity and identify drugs that

can be repurposed to aid prevention and treatment of

rejection.

In our study, network-based signatures also capture a mech-

anistic shift in mechanisms from the pre- to the post-LT periods.

Modules seen in the pre-LT signature are not seen in the post-LT

one, suggesting that currently used anti-rejection drugs may

have suppressed these mechanisms. Modules in the pre-LT

signature captured altered innate immune signaling and disrup-

ted cellular processes as underlying predisposition to rejection.

However, in the post-LT signature, the modules included differ-

entially engaged humoral mechanisms, a hallmark of adaptive

immune signaling. They also included rewired epigenetic and

transcriptional regulation, likely brought about by Tx of an organ

from another individual. Together, these modules support a shift

to adaptive immune signaling after LT. This shift is not apparent

in gene signatures that characterize pre- and post-LT time

points. Thus, the network signatures are more predictive than

the gene signatures and encapsulate functional processes un-

derlying rejection.

The modules also capture, at a per-individual level, dominant

druggable mechanisms. Some of these mechanisms, particu-

larly at the pre-LT time point, are targets of current immunomod-

ulatory drugs, including addition of a third agent. Thus, our

analyses identify clinically actionable intervention strategies on

a per-individual basis. Implementation of these strategies



Article
ll

OPEN ACCESS
can dramatically improve current clinical practice because ACR

(especially in a pediatric context), unlike antibody-

mediated rejection, cannot be screened for using HLA cross-

matches or other related markers. Importantly, all of our sug-

gested intervention strategies are based on currently used

immunosuppressive drugs and can be implemented directly.

The network-based approach may also support a change in

maintenance regimens to better address mechanistic shifts in

rejection-prone individuals, from a primed innate immune

system before LT to one enriched for adaptive immune

signaling after LT. There is additional evolution of the adaptive

immune signature in late Rs to one that is accompanied by

donor-specific antibodies. Overall, our novel framework pro-

vides a proof of concept for an approach that can simulta-

neously identify blood-based module biomarkers of pediatric

LT outcomes at different time points and home in on corre-

sponding druggable mechanisms. A number of these can be

relatively easily implemented by modulating existing immuno-

suppression strategies.
Limitations of the study
An important limitation of our cross-sectional study is the variety

of mostly congenital diseases that cause liver failure and require

LT. These diseases could have variable effects on the peripheral

blood transcriptome. Because these diseases are rare, it would

be difficult to assemble a large enough cohort of a single liver dis-

ease to develop a rejection predictor. A follow-up study is being

planned to evaluate pre- and post-LT signatures in paired sam-

ples frompediatric LT recipients. Another limitation of our current

study is identification of the dominant druggablemechanismwell

after the rejection event has occurred. Future studies may want

to apply the pre-LT network modules in a prospective fashion.

The model predictions can be used to target immunosuppres-

sion strategies in a personalized fashion.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Whole blood from pediatric liver transplant recipients University of Pittsburgh N/A

Critical commercial assays

TaqMan gene expression assays TaqMan gene expression assays N/A

PAxgene tubes BD Biosciences N/A

PAXgene Blood RNA Kit Qiagen N/A

TruSeq Stranded Total RNA with Ribo-Zero Globin Illumina N/A

Deposited data

Bulk RNA-seq data This study GEO accession number GSE200340,

https://github.com/jishnu-lab/LT_Mdx

Software and algorithms

R Statistical Computing Environment R Statistical Computing Environment https://www.r-project.org/

STAR STAR https://github.com/alexdobin/STAR

DESeq2 DESeq2 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

ClusterOne ClusterOne http://www.paccanarolab.org/cluster-one/

Other

Biomark instrument Fluidigm N/A
RESOURCE AVAILABILITY

Lead contact
Requests for data and code used for the study should be directed to and will be fulfilled by the Lead Contact Jishnu Das

(jishnu@pitt.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Data: RNA-seq data (raw and processed) have been deposited in the Gene Expression Omnibus (GEO accession number:

GSE200340) and are publicly available as of the date of publication. Processed RNA-seq datasets and associated documentation

are also available at https://github.com/jishnu-lab/LT_Mdx. A corresponding stable release can be accessed at https://doi.org/

10.5281/zenodo.6345680.

Code: Detailed code, documentation and relevant datasets are available at https://github.com/jishnu-lab/LT_Mdx. A correspond-

ing stable release can be accessed at https://doi.org/10.5281/zenodo.6345680

General statement: Any additional information required to reanalyze the data reported in this work paper is available from the lead

contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cohort details
Blood samples were obtained from 98 children with LT at the UPMC-Children’s Hospital of Pittsburgh (CHP) after informed consent

approved by the University of Pittsburgh Institutional Review Board (NCT #01163578). The mean age of LT recipients was 6.8 years

(with a SEM of 0.7 years) and recipients were approximately equally (46% male, 54% female) distributed by biological sex. 56 of

98 children were rejection-free during the 90-day period of transplantation and were termed as non-rejectors (NR). 42 of 98 children

experienced acute cellular rejection within the 90-day period of transplantation and were termed as rejectors (R). From this cohort,

75 blood samples were obtained before LT (pre-LT), of which 45 corresponded to NR and 30 to R. 55 blood samples were obtained

during the first 90 days after LT (post-LT) of which 32 corresponded to NR and 23 to R. For the 23 rejectors in the post-LT cohort,
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sample collection occurred on average 10 days (with a SEM of 2.2 days) before the rejection event. We also obtained 55 samples at a

late-post-Tx timepoint (2–5 years). These samples consist of recipients who experienced late rejection within the 90-day period after

sampling and non-rejectors that did not experience rejection at the late timepoint. Several patients contribute samples to both the

early-post-LT and late-post-LT timepoints; however, not all the early-post-LT and late-post-LT samples are paired. Further among

the 55 post-late-LT subjects (24 R, 31 NR), 17/24 R subjects had a history of prior rejection. However, 0/31 NR subjects had a history

of prior rejection. Details of the primary indication for LT are included in Table S1.

METHOD DETAILS

Sample collection and RNA-seq
Blood samples were collected in PAxgene tubes (BD Biosciences, SanJose, CA), before LT (pre-LT, n = 75), within 90 days after LT

(early post Tx, n = 55), and within 2–5 years LT (late post Tx, n = 55). RNA was extracted using PAXgene Blood RNA Kit (Qiagen,

Valencia, CA). RNA libraries generated using TruSeq Stranded Total RNA with Ribo-Zero Globin (Illumina, San Diego, CA) according

to the manufacturer’s protocol. The libraries were validated using Fragment Analyzer (Agilent, Santa Clara, CA) and sequenced using

Nextseq 500 platform (Illumina, San Diego, CA) to generate 75 bp paired end reads, up to 40 million reads per sample.

RNA-seq analyses
The generated reads were pre-processed using FastQC (v0.10.1) and aligned to the human reference gtf annotation file (GRCh37.68)

using STAR.38 Transcript abundances were quantified and normalized using RSEM. The DESeq239 negative binomial distribution

was used to identify DE genes using an effect size i.e., fold change threshold of 1.2 and a significance i.e., FDR (P value adjusted

for multiple comparisons using Benjamini-Hochberg multiple testing correction) threshold of %0.05. For the pre-Tx (30R vs

45NR), early-post-Tx (23R vs 32NR), and late-post-Tx (24R vs 31NR) samples, sets of 125, 65, and 36 DE genes were identified

respectively.

Validation of DE genes by Taqman qRT-PCR using Fluidigm platform
Of the 125, 65, and 55 DEG genes identified above, a subset of target genes, 55, 50, and 36 respectively, were down-selected based

on an AUC cutoff of 0.6. TaqMan gene expression assays (Thermo Fisher, Grand Island, NY) for these 55, 50, and 36 target genes (for

the pre-LT and post-early-LT, post late-LT cohorts respectively) and 11 housekeeping genes were performed at the Q2 solutions

laboratory (Morrisville, NC) using Fluidigm Biomark instrument (South San Francisco, CA). 12 of 55 DEGs, and 6 of 50 DEGs, and

10 of 36 DEGs in the pre-LT cohort, post early-post-LT, and late-post-LT cohorts were validated by TaqMan qRT-PCR on the Fluid-

igm platform where cross-platform reproducibility was defined based on stringent criteria – AUC > 0.65 and consistent fold change

directionality when compared to RNA seq.

QUANTIFICATION AND STATISTICAL ANALYSES

DEG-based machine learning models
Weanalyzed the pre-LT, early-post-LT, and late-post-LT cohorts separately. Within each cohort, we also generated separatemodels

to discriminate between R and NR, using the DE genes before and after Fluidigm validation. In each case, the features were the

normalized expression values. The classification models comprised two steps – feature selection using LASSO,40 followed by

classification using the down-selected features using a support vector machine (SVM) model.

Network-based machine learning models
We clustered a reference high-quality human interactome26 into overlapping modules using ClusterOne.27 Generating overlapping

modules incorporates pleiotropy because proteins can be involved in multiple functions/modules. For each module, using available

transcript abundances (retaining modules where at least 3 proteins had corresponding transcript abundance values available), we

constructed gene- and module-level summary statistics.

First, for each patient, we computed gene-specific scores:

ðgiÞ2
mi;Rmi;NR

where gi is the expression values of the gene i. mi;R; mi;NR are the mean expression levels of that gene within R and NR subjects,

respectively. We then summarized the gene-specific scores into a module-specific score for each patient based on the following

summarization strategy:

Fk =
XM
i = 1

ln

 
1 +

ðgiÞ2
mi;Rmi;NR

!
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where |M| is the number of genes in that specific module. It is important to note that for all model performance evaluations using

cross-validation, the relevant means were calculated only using the fold-specific training data. The use of ln (1+x) ensures that all

module-specific scores are positive. The feature construction encapsulates gene-level deviations from average R and NR profiles

as well as the additive effects of genes within a module. However, to ensure that the results are robust to the choice of a specific

heuristic, we also explored 2 alternate summarization strategies.

In a first variation of the proposed method, we calculated the module specific score as

Pk =
XM
i = 1

�����log2

 
ðgiÞ2

mi;R; mi;NR

!�����
This was thenmultiplied by the ‘‘dominant’’ direction of geneswithin themodule calculated based on themajority vote of the sign of

log2

�
ðgiÞ2

mi;R ; mi;NR

�
. This. variation takes into account potentially different directions of genes within the same module. The second vari-

ation uses, a construction of z-score like summary statistics as described earlier.24 Here, there are 2 features per module – ‘‘z-score

based summary statistic quantifying deviation from a typical R profile’’ and ‘‘z-score based summary statistic quantifying deviation

from a typical NR profile’’.

These module-specific scores served as input features for the corresponding machine learning models. We built a LASSO/SVM

model, as previously described,41–43 on the module-specific scores. The use of LASSO (L1 regularization) is especially important

here as it helps prevent over-fitting on high dimensional data. The performance of all models were evaluated in a rigorous 10-fold

cross validation framework, and the significance of the models was quantified using permutation testing.44 The overall framework

is analogous to what has been previously described.41–43 Briefly, the dataset was split into 10 subsets – 9 subsets are used for

training while the 10th subset is used for testing. Each subset served as the test set once, therefore each individual was in the test

fold exactly once for each cross-validation run. For each test fold, LASSO-based feature selection was performed using the nine

training folds. The coefficient for the LASSO penalty term (i.e., lambda for regularization) was determined via a second internal

cross-validation using only the fold-specific training dataset.

A fold-specific SVM model was built using the LASSO-selected modules that passed an effect size threshold of 10% (calculated

using only the training data for that fold). This fold-specific classifier was subsequently used to predict the labels for the individuals in

the test set for that fold. This process was repeated for each of the ten folds to generate a set of predicted clinical outcomes for each

individual. This was then compared to the true set of clinical outcome labels to calculate a classification accuracy for that cross-vali-

dation replicate. We performed 100 independent ten-fold cross-validation replicates, to account for different ways in which the

training and test folds can be split. This is a stringent and appropriate way of performing cross-validation, as both steps involved

in the model (feature selection and subsequent classification using the selected features) are performed in a cross-validation setting

with data held out. The significance of model performance was evaluated using permutation testing,44 by randomly shuffling the data

with respect to the arm labels, within the cross-validation framework described above (i.e., a cross-validation framework matched to

the actual model). We defined a model to be significant if the performance on the real data was significantly better than the

performance on the permuted data at a P < 0.01 threshold, and there was an AUC difference of at least 0.15 between the median

performances of the actual and permuted models across 100 replicates of 10-fold cross-validation. The use of both a statistical sig-

nificance and an effect size threshold is the most stringent way to evaluate the performance of these models in a cross-validation

framework.

To visualize the modules selected by the LASSOmodel, we used PLS-DA. We carried out separate PLS-DA analyses using down-

selected modules for the pre-LT and post-LT signatures.

Pathway-based machine learning models
For the pathway-based analyses, we identified which KEGG or Hallmark pathways the DEGs were enriched in using representation

analysis (ORA). We then constructed pathway-centric features analogous to howmodule-centric features were constructed. Predic-

tive performance of these pathway-based models was computed in a k-fold CV framework with permutation testing as described

above.

Druggability of the identified network modules
We examined if there are known FDA-approved drugs or experimental molecules from DrugBank45 that are known to target one or

more components of the network module signatures that discriminate between R and NR subjects. Specifically, we examined if one

or more genes in the discriminatory modules are known to be targets of approved or experimental drug molecules cataloged in

DrugBank.
e3 Cell Reports Medicine 3, 100605, April 19, 2022


	A network-based approach to identify expression modules underlying rejection in pediatric liver transplantation
	Introduction
	Results
	Biomarkers and molecular signatures of LT outcomes
	Gene-based signatures of LT outcomes
	A network-based signature of pre-LT outcomes
	Identifying a network signature of early post-LT outcomes
	Paired and unpaired pre- and early post-LT samples
	Identifying a network signature of late post-LT outcomes
	Druggability of the identified network modules

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Cohort details

	Method details
	Sample collection and RNA-seq
	RNA-seq analyses
	Validation of DE genes by Taqman qRT-PCR using Fluidigm platform

	Quantification and statistical analyses
	DEG-based machine learning models
	Network-based machine learning models
	Pathway-based machine learning models
	Druggability of the identified network modules




