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Stroke is one of the leading causes of death and disability. Despite the high prevalence

of stroke, characterizing the acute neural recovery patterns that follow stroke and

predicting long-term recovery remains challenging. Objective methods to quantify and

characterize neural injury are still lacking. Since neuroimaging methods have a poor

temporal resolution, EEG has been used as a method for characterizing post-stroke

recovery mechanisms for various deficits including motor, language, and cognition as

well as predicting treatment response to experimental therapies. In addition, transcranial

magnetic stimulation (TMS), a form of non-invasive brain stimulation, has been used

in conjunction with EEG (TMS-EEG) to evaluate neurophysiology for a variety of

indications. TMS-EEG has significant potential for exploring brain connectivity using

focal TMS-evoked potentials and oscillations, which may allow for the system-specific

delineation of recovery patterns after stroke. In this review, we summarize the use of

EEG alone or in combination with TMS in post-stroke motor, language, cognition, and

functional/global recovery. Overall, stroke leads to a reduction in higher frequency activity

(≥8Hz) and intra-hemispheric connectivity in the lesioned hemisphere, which creates

an activity imbalance between non-lesioned and lesioned hemispheres. Compensatory

activity in the non-lesioned hemisphere leads mostly to unfavorable outcomes and

further aggravated interhemispheric imbalance. Balanced interhemispheric activity with

increased intrahemispheric coherence in the lesioned networks correlates with improved

post-stroke recovery. TMS-EEG studies reveal the clinical importance of cortical reactivity

and functional connectivity within the sensorimotor cortex for motor recovery after stroke.

Although post-stroke motor studies support the prognostic value of TMS-EEG, more

studies are needed to determine its utility as a biomarker for recovery across domains

including language, cognition, and hemispatial neglect. As a complement to MRI-based

technologies, EEG-based technologies are accessible and valuable non-invasive clinical

tools in stroke neurology.
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IMPACT STATEMENT

EEG has been used to characterize post-stroke recovery
mechanisms and to predict natural recovery and treatment
response to experimental therapies. Transcranial magnetic
stimulation (TMS) is a valuable add-on tool coupled with
EEG (TMS-EEG) to explore effective and dynamic functional
connectivity through TMS-evoked potentials (TEP) and
oscillations. This review provides an in-depth summary of
the use of EEG alone and combined with TMS in post-stroke
motor, language, cognition, and functional/global recovery.
Overall, stroke leads to a reduction in higher frequency activity
(≥8Hz) and intra-hemispheric connectivity in the lesioned
hemisphere, which creates an activity imbalance between non-
lesioned and lesioned hemispheres. Compensatory activity in
the non-lesioned hemisphere leads to unfavorable outcomes
and further aggravated interhemispheric imbalance. The main
recovery mechanisms are (1) restoring interhemispheric balance
(2) increasing intrahemispheric functional connectivity in
the lesioned networks. TMS-EEG studies reveal the clinical
importance of cortical reactivity and effective connectivity
within the sensorimotor cortex for motor recovery after stroke.
EEG-based technologies are particularly promising as diagnostic
or predictive biomarkers for individual patients.

INTRODUCTION

Stroke is a leading cause of functionally limiting neurological
impairment and mortality in the United States, and many
stroke survivors suffer from impairments of varying degrees
and durations (1, 2). Predicting recovery after stroke remains a
challenge (3–5). Accurately predicting post-stroke recovery at an
individual level is crucial in determining the treatment needs of
patients, both to improve the functional outcome for the patients
and properly allocate increasingly scarce healthcare resources (6).

Electroencephalography (EEG) is a non-invasive technique
that measures cortical brain activity with a high degree of
temporal resolution (7). The use of high-density EEG (e.g., >60
channels) now provides a greater degree of spatial resolution
(8). In addition to its clinical use in epilepsy, sleep disorders,
and dementia with Lewy bodies (8, 9), EEG has been used
to investigate cortical activity and functional connectivity in
stroke (10, 11), consciousness disorders (12), Alzheimer’s disease
(13), Parkinson’s disease (14), schizophrenia (15), and mood
disorders (16).

In addition, EEG can be used to assess electrical responses as
the brain is perturbed. Transcranial magnetic stimulation (TMS)
is a non-invasive stimulation method whereby brief magnetic
pulses generate focal electrical currents in the cortex. These
electrical currents induce evoked potentials in focal brain areas.
TMS pulses can temporarily disrupt local neural processing and
help establish causal relationships between given brain areas and
a person’s functions (17). When used with EEG to measure
the TMS-EEG evoked potentials (TEPs), TMS-EEG can identify
changes to neural networks in neuropsychiatric conditions,
including stroke (18).

In this review, we first summarize studies in which EEG
alone was used to predict recovery after stroke. We then discuss
TMS-EEG and its potential for elucidating natural recovery
patterns and predicting treatment responses in stroke recovery.
We conducted our literature review in Embase, PubMed,
Scopus, and ScienceDirect websites with keywords; “stroke,”
“recovery,” “EEG,” and/or “transcranial magnetic stimulation.”
No publication date filters were applied.

EEG FUNCTIONAL AND EFFECTIVE
CONNECTIVITY ANALYSES

Functional connectivity in EEG is defined as the temporal
correlation of the neurophysiological activity between spatially
remote areas (19). Primary functional connectivity analyses
include linear and non-linear methods and information-based
techniques (20). Linear brain connectivity methods use temporal
cross-correlation of EEG signals in different frequency bands
to estimate coherence between different brain regions (19).
Techniques include power spectral analysis and bandwidth
coherence (a measure based on the coupling range in time
and frequency). The most common technique in stroke
EEG studies is the power spectral analysis technique that
quantifies coherence between spatially remote regions in different
frequency band powers (often defined as delta 0.5–4Hz, theta 4–
8Hz, alpha 8–13Hz, beta 13–30Hz, gamma >30Hz). In stroke
studies, delta and theta waves were defined as low frequency
activity and alpha, beta, gamma as high frequency activity. As
complementary techniques to linear connectivity analyses, non-
linear and information-based are alternative methods (21). These
techniques were not commonly used in stroke EEG studies.
Therefore, we refer the reader to a detailed review by Sakkalis
that contains further details on different functional connectivity
techniques (20). In TMS-EEG section, we also highlighted the
studies investigating effective connectivity. Effective connectivity
in EEG is a metric of activity-dependent or stimulation evoked
connectivity that provides a dynamicmodel of causal interactions
between brain regions (22).

EEG STUDIES IN STROKE RECOVERY

EEG has been used to predict post-stroke recovery (23–25),
identify pathological alterations in large-scale neural networks
(26), and monitor the effect of experimental therapies in different
functional domains (27–29).

We review EEG studies in various behavioral systems such as
motor, language, cognition, and functional/global systems since
the post-stroke recovery patterns might differ by system.

Motor System and Recovery
Table 1 summarizes the post-stroke studies of motor functioning
and recovery. In most studies, bilateral sensorimotor cortices
were the main region of interest, and the Fugl-Meyer
Assessment (FMA) was the primary outcome measure. FMA
is a comprehensive, stroke-specific assessment that quantifies
and characterizes sensorimotor impairment in the affected
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TABLE 1 | EEG studies of motor recovery.

References N, Stroke

patients

Stroke acuity at

EEG collection

EEG data

collection,

timing design

N, EEG

channels

Patient State

during EEG

recordings

EEG

connectivity

technique

Networks/regions

investigated

Clinical scores

collected

Main findings

Giaquinto et al.

(23)

34 Subacute Longitudinal 16 Resting PSA Bilateral hemispheres BI In patients with the greatest recovery,

inter-hemispheric EEG balance increased

over time.

Gerloff et al.

(30)

11 Chronic Cross-Sectional 28 Behavioral-

Triggered

PSA Bilateral hemispheres,

sensorimotor cortex focus

MRC, manual

muscle testing

In patients who recovered well from

capsular stroke, connections within motor

were reduced in the stroke/lesioned

hemisphere but increased in the

contralesional hemisphere.

Kaiser et al.

(31)

29 Subacute to

chronic

Cross-sectional 61 Behavioral-

triggered

ERD, ERS LC M1s ESS, MRC, MAS Motor impairment correlated with

contralesional ERD. Lesioned ERD

correlated with spasticity. Lesioned ERS

correlated with both motor impairment

and spasticity.

Fallani et al.

(27)

20 Subacute Cross-sectional 61 Behavioral-

triggered

SWI, imaginary

coherence

analysis during

rest and MI

Bilateral hemispheres FMA Lesioned hemispheres showed a

reduction in SWI scores and reduced local

efficiency. Inter-hemispheric imbalance

related to greater motor impairment.

Wu et al. (32) 12 Subacute to

chronic

Longitudinal 256 Resting PSA Interhemispheric

connections between M1s,

lesioned connectivity in

sensorimotor network

FMA-UE. At baseline, connectivity in lesioned M1 is

marker of motor status. Increase in

connectivity in lesioned M1 biomarker of

motor recovery. Lesioned M1–SMA

connectivity increased and M1–parietal

connectivity decreased in parallel with

motor gains,

Bönstrup et al.

(33)

12 Acute to chronic Longitudinal 64 Behavioral-

Triggered

PSA Sensorimotor network FMA-UE NHPT,

grip strength

Initial up-regulation of brain activity after

stroke correlates with neuronal

reorganization for post-stroke recovery

Pichiorri et al.

(28)

28 Subacute Cross-sectional 61 Behavioral-

triggered

PSA, PDC Bilateral hemispheres FMA-UE Post-BCI MI training desynchronized alpha

and beta activity, which correlated with

motor improvement.

Thibaut et al.

(34)

55 Chronic Cross-Sectional 128 Resting PSA Bilateral frontal, central and

parietal networks

FMA Patients with balanced interhemispheric

beta activity experienced greater motor

function recovery.

Philips et al.

(35)

30 Chronic Longitudinal 58 Behavioral-

Triggered

GMA and

Network

Based Analysis

Bilateral hemispheres FMA-UE Reduced contralesional intradensity and

high initial values of local lesioned

efficiency predicted better motor recovery.

Agius Anastasi

et al. (36)

10 Subacute Longitudinal 32 Behavioral-

triggered

BSI Bilateral hemispheres Motricity index,

FMA

Baseline BSI higher in stroke and more

pronounced in the cortical stroke and

predicted FMA.

Chen et al. (37) 37 Subacute Cross-sectional 32 Behavioral-

triggered

DCM, PSA SMA and bilateral M1s WMFT, FMA-UE, Beta plus gamma or theta network

features predicted good recovery.

(Continued)
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TABLE 1 | Continued

References N, Stroke

patients

Stroke acuity at

EEG collection

EEG data

collection,

timing design

N, EEG

channels

Patient State

during EEG

recordings

EEG

connectivity

technique

Networks/regions

investigated

Clinical scores

collected

Main findings

Pichiorri et al.

(38)

30 Subacute Cross-sectional 64 Resting PDC-

connectivity

Sensorimotor network TMS-CST

integrity,

European stroke

scale and FMA

Inter-hemispheric coupling was higher in

patients with preserved CST integrity.

Lower sensorimotor beta coupling

correlated with clinical impairment.

Vecchio et al.

(39)

139 Acute Cross-sectional 27 Resting SWI Bilateral hemispheres NIHSS, BI, and

ARAT

NIHSS, Barthel, and ARAT scores

correlated with SWI. Baseline gamma SWI

predicted final NIHSS.

Eldeeb et al.

(40)

3 Chronic Longitudinal 15 Behavioral-

triggered

PDC-based

network

connectivity

Sensorimotor cortex FMA-UE, grip

strength.

An NIBS intervention led to improvement

in PDC; improvements in PDC correlated

with improvements in hand function.

Bönstrup et al.

(41)

30 Chronic Cross-sectional 64 Behavioral-

triggered

PSA Lesioned parietofrontal

motor network

UEFM, NHPT,

grip strength

Parietofrontal coupling was stronger in

stroke patients and correlated with

residual motor impairment.

Saes et al. (42) 21 Chronic Cross-sectional 64 Resting PSA Bilateral hemispheres FMA-UE Stroke patients showed higher BSI scores

between M1s, with activity differences

most pronounced in delta and theta

frequency bands. In the delta and theta

bands, BSI negatively associated with

FM-UE.

Bönstrup et al.

(43)

33 Acute to

subacute

Longitudinal 64 Behavioral-

triggered

PSA SMA, M1 FMA-UE, NHPT,

grip strength

Acute stroke–lesioned brains failed to

generate the LFO signal. LFOs

progressively increased at 1 and 3

months. Re-emergence of the LFO

correlated with motor recovery.

Bartur et al.

(44)

14 Subacute Cross-sectional 64 Behavioral-

triggered

ERD Bilateral M1s FMA, BBT Lesioned ERD positively correlated with

residual motor function and the magnitude

of EMG in the hand.

Cassidy et al.

(45)

62 Acute, subacute,

chronic

Longitudinal 256 Resting PSA Interhemispheric

connections between M1s

and intra-hemispheric motor

connections

FMA-UE. Greater coherence between

inter-hemispheric delta M1 activity

correlated with poorer motor status.

Decreases in inter-hemispheric coherence

between lesioned M1 and contralesional

M1 correlated with better motor recovery.

Romagosa

et al. (46)

36 Acute to

subacute

Cross-sectional 16 Resting BSI, LC Bilateral hemispheres FMA, BBT,

NHPT, MOCA,

BI.

BSI correlated with FMA-UE, but not with

FMA-LE. Laterality coefficient correlated

with FMA-UE and FMA-LE.

Kawano et al.

(47)

40 Subacute Cross-sectional 19 Resting Phase

synchrony

index

Inter-hemispheric

connections between M1s

and intra-hemispheric motor

connections

FMA-UE The inter-hemispheric motor cortical

alpha-band PSI was lower in stroke

patients and correlated with UEFM.

Contralesional central theta-band PSI was

higher in patients, and correlated with

improvements in FMA-UE.

(Continued)
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upper and lower limbs (50). Most studies utilized power spectral
analysis, event-related (motor task) oscillations, and various
methods to quantify functional connectivity in neural networks.
In this section, studies are summarized in four sections (1)
EEG-motor performance correlation, (2) EEG as a predictor
of motor recovery, (3) experimental therapies such as motor
imagery (rehearsal-based therapy), brain machine interface,
neurostimulation, and EEG, and (4) intense physical therapy
and EEG.

EEG was used to characterize neural networks for motor
deficits and to correlate with motor performance. Kaiser and
colleagues used high-density EEG recordings during a motor
task (31). They found that event-related desynchronization of
EEG waves in the contralesional motor areas and event-related
synchronizations of EEG waves in the lesioned motor areas
correlated with poor motor outcomes. These findings were
replicated by Bartur, who showed that the magnitude of event-
related desynchronization in the lesioned motor areas positively
correlated with residual motor functions and EMG activity of the
paretic arm (44). Dubovik et al. similarly identified specific neural
networks by using alpha oscillation synchrony between various
regions as a biomarker in subacute stroke (51). Interhemispheric
balance and coupling between sensorimotor areas were also
found to be associated with higher corticospinal tract integrity
and better clinical outcomes (38). Beyond interhemispheric
coupling, parietofrontal coupling was also associated with better
finger dexterity in chronic stroke patients (43). Kawano et al.
described another methodology termed phase synchrony index
to study the resting state cortical connectivity and found that
compared to controls, stroke patients with poor motor function
have lower interhemispheric connectivity betweenmotor cortices
in the alpha band (47). In summary, EEG-motor performance
correlation studies showed EEG could be reliably used to
understand the neurophysiology of the motor system further.

EEG has also been used to predict recovery following stroke.
Giaquito et al. studied low-density EEG longitudinally (3–10
recordings) in subacute middle cerebral artery stroke and showed
that the initial asymmetry in high frequency activity (≥8Hz)
between hemispheres diminished over time, accompanied by
improvement in motor scores (23). Similarly, better motor
performance was associated with more balanced high-frequency
activity between hemispheres (34, 49), especially in primary
motor cortices (37, 48). Bönstrup et al. similarly showed that
early transient over-activation in motor areas after stroke might
play a role in post-stroke motor recovery (33). A brain symmetry
index was established as a biomarker of motor functionality
(42) and recovery (36), with higher scores indicating increased
asymmetry in cross-cortical activity. This index was higher in
acute stroke patients, especially in cortical stroke, and normalized
over time with spontaneous recovery (36). The same index
correlated with upper limb motor function but not lower limb
function for unclear reasons (46). As another marker, low-
frequency oscillations (3–5Hz) were studied in stroke patients,
and the re-emergence (43) or presence (45) of these oscillations
in the lesioned hemisphere was accompanied by better motor
performance and favorable recovery in various motor functions.
Interestingly, contrary to other studies, it was shown that patients
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who recovered from stroke favorably after a capsular infarct
had increased cortico-cortical connectivity in motor areas of the
contralesional hemisphere, suggesting a potential compensatory
mechanism for the recovery (30). The role of the contralesional
hemisphere in recovery is likely not always deleterious and might
vary depending upon stroke type and deficits. In sum, these
studies indicate that balanced alpha and beta frequency activity
between bilateral motor areas was a predictor of favorable motor
recovery after stroke.

There are currently various experimental therapies that have
been proven to be effective in modulating cortical neural patterns
after stroke, such as those based on brain-machine interfaces
(52), neuro-stimulation either with electrical stimulation (53, 54)
or with transcranial magnetic stimulation (55), motor imagery
training (rehearsal-based intervention) (27). These methods
were tested to enhance motor recovery after stroke, and the
effects of these interventional on network connectivity in stroke
patients have been studied with EEG. In a group of patients
with subacute stroke, Fallani et al. showed that the lesioned
hemisphere exhibited reduced small-world index (a surrogate
marker for density, cohesion, and integrity of local network
activity) and local efficiency in connectivity during motor
imagery (27). These changes were simultaneously associated with
abnormally increased interhemispheric connectivity. Fugl Meyer
scores were only associated with intra-hemispheric connectivity
in the lesioned hemisphere, so the role of the contralesional
hemisphere during motor imagery remained unclear (27). The
small-world index was also used in the acute stroke period,
and increased local connectivity was found to positively predict
overall recovery (39). Pichiorri et a. also studied the effects of
motor imagery following training with brain-computer interfaces
(BCI) and observed stronger desynchronization of EEG waves
in the motor areas and attributed this pattern as an underlying
mechanism for motor recovery in patients with subacute stroke
(28). Another study utilizing BCI based movement training in
patients with chronic upper limb weakness after stroke showed
a stronger desynchronization of alpha wave at the beginning of
training was associated with a good motor recovery (52) In brief,
EEG was able to capture the effects on functional connectivity
induced by experimental therapies.

Similar to experimental therapy studies, EEG was studied
before and after intensive physical therapy, which often
leads to better clinical outcomes. Wu et al. investigated this
phenomenon using EEG-based connectivity metrics in stroke
patients undergoing upper limb intense motor therapy for 28
days (32). Reduced local connectivity in the lesioned cortex
was not only a robust marker of lower scores in the FMA
upper limb but also predicted good arm and hand recovery after
arm training. Philips et al. also studied the effects of intensive
therapy on functional connectivity by using global and local
efficiency (surrogate marker for degree of cohesion of functional
connectivity) metrics (35). They found that higher local efficiency
in lesioned motor networks predicted favorable motor recovery.
Decreases in contralesional functional connectivity and high-
frequency activity (≥8Hz) in motor areas and entire hemisphere,
which led to balanced activity between hemispheres, were also
associated with good motor recovery. In brief, resting and

dynamic state connectivity in lesioned motor networks and
balanced activity between hemispheres predicted a positive
response to intensive therapies.

Although this review article focuses on studying post-stroke
brain activity and its fluctuations measured by EEG, stroke and
its effects go beyond the brain deficits and affect subcortical
structures, such as brainstem, spine and muscles, producing
imbalanced neural activations. Previous studies in healthy
controls showed in the lower beta-band (14–17Hz) activity
in the bilateral sensorimotor circuits and upper beta-band
(20–24Hz) activity in the unilateral corticospinal circuits are
crucial for corticospinal gain modulation (56). This potentially
provides neuroscientific evidence supporting that these bands
can influence cortico-muscular and/or muscular ocortical neural
transmission (57).

Overall, balanced inter-hemispheric activity and increased
coherence in the lesioned motor networks were found to
positively predict good motor functioning and recovery. This
suggests that during recovery, lesioned networks may need to
increase both local and inter-hemispheric connectivity in the
acute phase and then progressively become re-lateralized as
behavioral performance improves.

Language System and Recovery
Studies of post-stroke aphasia have heavily utilized power
spectral analysis to calculate asymmetry indices between
hemispheres (29, 58) and have mainly focused on left-
hemispheric language networks. Although the type of language
assessment varied across studies, most studies used language
batteries that assessed the major components of language,
including comprehension, fluency, and naming (see Table 2).
This section organized the studies in (1) EEG predictor
of language recovery in cross-sectional studies, (2) EEG in
longitudinal language studies, (3) EEG as a biomarker for
treatment response to language therapies.

Language impairments and recovery after stroke were studied
in various studies with a cross-sectional design. Qualitatively
normal EEG was associated with good language recovery,
whereas severe generalized slowing (<4Hz) was associated with
a poor recovery in an early study (65). Similarly, theta frequency
activity (4–7Hz) was more often observed in patients with post-
stroke aphasia compared to healthy subjects, and it was associated
with poorer performance on a measure of communication
success (66). Furthermore, balanced, symmetric delta and theta
activity between speech-relevant regions in the right and left
hemispheres correlated with favorable language recovery (67),
as did the resolution of inter-hemispheric imbalance over time
(68). In another study, aphasic patients were found to have
higher perilesional delta activity compared to healthy subjects,
and this correlated with language impairment (69). The same
group also observed topographical patterns of specific low-
(<8Hz) or high-frequency (≥8Hz) activity that depended upon
different linguistic tasks. Together, these studies delineated the
functionality of several components of large-scale language
networks. In brief, cross-sectional post-stroke language studies
revealed increased low-frequency activity (<8Hz) in the lesioned
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TABLE 2 | EEG language studies.

References N, stroke

patients

Controls Stroke acuity at

EEG collection

EEG data

collection

N, channels State in EEG

collected

EEG connectivity

technique

Networks/regions

investigated

Collected

clinical scores

Main findings

Jabbari et al.

(65)

53 No Acute Cross-sectional 16 Resting Semi quantitative

analysis of slowing

Language network PICA Patients with pronounced slow wave

activity (<8Hz) had no or poor language

recovery.

Szelies et al.

(67)

23 Healthy Subacute Longitudinal 19 Resting LC and PSA Bilateral hemispheres Token test Low laterality coefficient in speech

relevant regions of delta- and theta-band

activity predicted good recovery.

Hensel et al.

(25)

11 Healthy Subacute and

chronic

Longitudinal 30 Behavioral-

triggered

Delta amplitude,

delta dipole location

and strength

Bilateral frontoparietal

networks

AAT Decreased left hemisphere delta-band

activity corresponded to language

recovery in the first year post-stroke, but

not in the second year post-stroke.

Spironelli and

Angrilli (69)

17 Healthy Chronic Cross-sectional 19 Behavioral-

triggered

PSA Bilateral hemispheres AAT Delta-band activity in language areas was

higher in aphasics. Differential slow wave

activity in various language tasks.

Spironelli et al.

(125)

11 Healthy Chronic Cross-sectional 38 Behavioral-

triggered

High-beta band

(21–28Hz), an index

of cognitive cortical

arousal

Bilateral hemispheres

clustered as anterior,

central, posterior

AAT Phonological task; controls showed

greater beta-band activity on the left

hemisphere compared to right, whereas

patients had an inverted pattern of

lateralization. Reduced beta activity in

perilesional areas.

Stojanovic

et al. (68)

32 Healthy Subacute Cross-sectional 32 Resting PSA Bilateral frontoparietal

networks

BDAE Increased asymmetry in patients but

decreased after 2 months of treatment in

the subgroup of patients with good

recovery.

Iyer et al. (29) 10 Healthy Chronic Longitudinal 128 Behavioral-

triggered

Dynamic causal

modeling for Event

related potentials

Language Network

(aMTG, pSTG, IFG,

IPG, OTG)

Picture naming Pre-treatment DCM coupling between left

IPG and IFG correlated with naming

improvement after treatment. Aphasics

with good recovery had reduced coupling

in contralateral regions post-treatment.

Dalton et al.

(66)

21 Healthy Chronic Longitudinal 64 Resting PSA Bilateral hemispheres WAB-AQ Greater theta and lower beta in patients.

Theta negatively correlated with language

performance.

Kawano et al.

(58)

31 Healthy Subacute Cross-sectional 19 Resting Phase synchrony

index (PSI)

Fronto-

temporoparietal

language network

Standard

Language Test of

Aphasia

The frontofrontal PSI was lower in

aphasics and correlated positively with

aphasia scores, whereas the right

frontotemporal PSI was higher in

aphasics and correlated negatively with

aphasia scores.

*Nicolo et al.

(70)

24 Healthy Subacute Longitudinal 128 Resting FC mapping with the

open-source toolbox

NUTMEG

Connectivity in M1s in

bilateral IFG

Geneva Bedside

Aphasia Score,

Nine Hole Peg,

FMA-UE

Baseline beta in lesioned motor

correlated with motor recovery, Beta at

Broca correlated with language recovery.

Global recovery associated with

contralesional theta.

*Combined language and motor systems.

AAT, Aachen Aphasia Test; aMTG, anterior middle temporal gyrus; BDAE, Boston Diagnostic Aphasia Examination; Chronic, 6 or more months post-stroke; CNV, Contingent Negative Variation; Acute, 0–2 weeks post-stroke; IFG, inferior

frontal gyrus; IPG, inferior parietal gyrus; OTG, occipitotemporal gyrus; pSTG, posterior superior temporal gyrus; Subacute, 2 weeks-6 months post-stroke; WAB-AQ, Western Aphasia Battery-Aphasia Quotient; PICA, Porch Index of

Communicative Ability.
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TABLE 3 | EEG studies of cognition.

References N, stroke

patients

Controls Stroke acuity at

EEG collection

EEG data

collection

N, channels State in EEG

collected

EEG connectivity

technique

Networks/Regions

investigated

Collected

clinical scores

Main findings

Gur et al. (24) 200 No Acute Cross-sectional 18 Resting Qualitative EEG Bilateral hemispheres Presence of

clinically

diagnosed

dementia

Increased slow wave activity is an

indicator of subsequent cognitive decline.

Scleiger et al.

(59)

20 No Acute Cross-sectional 8 Resting PSA Bifrontal FIM with cognitive

subset

Frontal DAR and global, relative

alpha-band activity positively correlated

with cognitive outcomes.

Song et al. (60) 105 No Chronic Cross-sectional 16 Resting BRF and relative δ, θ,

α, and β band power

Bilateral hemispheres MOCA The risk of developing cognitive

impairment is 14 times higher for those

with low BRF power.

Aminov et al.

(61)

24 No Acute Cross-sectional 1 Resting DAR and DTR FP1 MOCA DTR within 24 h is the predictor of MOCA

scores at 90 days.

Swatridge

et al. (62)

9 No Chronic Longitudinal 64 Behavioral-

triggered

Event related

potential (P300)

Bilateral hemispheres modified Eriksen

Flanker (attention

and inhibition)

P300 amplitude latency is shorter after

exercise (increased cortical activity). No

improvement in cognitive control.

Petrovic et al.

(63)

10 Healthy Chronic Cross-sectional 19 Resting PSA and αAVG Four lateral frontal,

and corresponding

lateral posterior

MOCA Frontal inter-hemispheric alpha activity

may be a permanent consequence of

asymptomatic cognitive impairment.

Romeo et al.

(64)

38 Healthy Subacute to

chronic

Cross-sectional 64 Resting Resting state

network analysis;

temporal ICA for

mapping in

networks previously

identified in fMRI

Bilateral hemispheres FIM, attentional

matrices

Tested feasibility of 10min and map

cognitive functions in resting state

networks. Visuo-spatial and motor

impairments were primarily associated

with the dorsal attention network.

*Dubovik et al.

(51)

20 Healthy Subacute Cross-sectional 128 Resting Adaptive spatial filter

and imaginary

component of

coherence was

calculated as an

index of FC.

Bilateral hemispheres VF, VWM, SWM,

NHPT, STREAM,

FMA.

FC in contralesional hemisphere

negatively correlated with cognitive

performance. Decreases in alpha-band

coherence between a given node and the

rest of the brain predicted deficits,

independent of anatomical lesions.

Increased alpha activity in the right IFG

areas correlated negatively with VF.

*Combined motor and cognition study.

NHPT, Nine Hole Peg test; STREAM, Stroke; Rehabilitation Assessment of Movement; VFF, Verbal phonetic fluency; VWM, verbal working memory; SMW, spatial working memory tests; ICA, independent component analysis; fMRI,

functional magnetic resonance imaging; FIM, Functional Independence Measure; BRF, Background rhythm frequency; PSA, Power Spectral Analysis; DAR, Delta alpha ratio; DTR, delta/theta ratio; MOCA, Montreal Cognitive Assessment;

αAVG, the weighted average of alpha frequency; Acute, 0–2 weeks after stroke; Subacute, 2weeks-6 months after stroke; Chronic, 6 months and beyond.
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hemisphere, which led to inter-hemispheric imbalance, was a
predictor of worse language deficits and unfavorable recovery.

In a longitudinal study, decreases in dominant left-
hemispheric delta activity during the first year after stroke
predicted significant language recovery but not the second year
after stroke (25). Similarly, another longitudinal study revealed
a correlation between favorable language and motor recovery
and early subacute increases in beta activity in the lesioned
motor and language areas, along with increased theta activity
in contralesional homologs. However, this pattern was much
less pronounced in the late subacute period (70). These studies
emphasized the importance of early interventions to enhance
post-stroke language recovery.

Similar to subacute studies, EEG was also studied in chronic
post-stroke aphasia. Iyer et al. tested the utility of high-density
EEG in a cohort of patients with chronic post-stroke aphasia
undergoing 12 session-long naming therapy and used dynamic
causal modeling (DCM) analysis to predict treatment response
(29). DCM quantifies effective connectivity (spatiotemporal
propagation of the evoked responses) between brain regions
(71). Baseline functional integrity assessed via DCM coupling
of the connections between left inferior parietal lobe and
inferior frontal gyrus predicted an effective response to a
semantic-approach naming treatment. Additionally, patients
with favorable response to naming treatment overall were found
to have reduced coupling in the contralesional hemisphere after
therapy, suggesting the deleterious effects of the right hemisphere
in picture naming recovery (29). Kawano and colleagues reported
similar findings, observing increased functional connectivity,
which led to an inter-hemispheric imbalance in the contralesional
frontotemporal correlated negatively with aphasia scores (58).

In summary, although most post-stroke aphasia and EEG
studies included relatively small sample sizes, increased alpha and
beta (8Hz and above) activity and/or preserved connectivity in
the left-hemispheric language areas were predictors of favorable
language functioning and recovery. Taken together, post-stroke
language studies generally show that patients with more severe
language impairments, poorer recovery from post-stroke aphasia,
or lower treatment response to aphasia therapies were found
to have increased delta and theta frequency EEG activity and
reduced intra-hemispheric connectivity in the lesioned speech
and language networks. Also, compensatory but ineffective
activity in the right hemisphere was associated with less favorable
language performance and recovery.

Cognitive System and Recovery
Recent neuroimaging studies have allowed an analysis of the
relationship between vascular-related cognitive impairment and
dementia (see Table 3). In particular, MRI and PET have been
studied to predict cognitive impairment after stroke (72). As
an alternative or complement, neurophysiological measurements
of cortical activity and connectivity through EEG can also
elucidate changes in cognition following stroke and predict
patient recovery (73).

Gur et al. conducted an EEG-based qualitative assessment in
a large cohort of patients with an acute stroke which showed that
increased focal or global delta-theta activity (<8Hz) could be

a predictor of subsequent cognitive impairment (24). Similarly,
increased delta-theta background activity (<8Hz) activity (60,
61, 63) or reduced frontal and global alpha activity (59) were each
associated with an increased risk of cognitive decline in a group
of patients with acute (59, 61) and chronic (60) stroke.

Romeo et al. tested the feasibility of using high-density
EEG in studying neurophysiological functional connectivity in
large-scale resting-state networks defined by functional MRI
(fMRI). They also correlated the functional connectivity in
these networks with cognitive tests. They demonstrated that the
assessment of EEG-based connectivity was broadly feasible and
specifically that connectivity in the dorsal attention network
correlated with visuospatial task activity (64). In a small cohort
of patients with chronic stroke, Swatridge et al. studied the effects
of one-time aerobic exercise on cortical reactivity and cognitive
control (62). Following exercise, the P300 component of the
event-related potential had a shorter latency in the central frontal
lead as it suggests increased cortical reactivity as a potential
marker of improvement. However, there was no improvement in
cognitive control after aerobic exercise.

Notably, EEG studies to date have generally explored post-
stroke cognitive impairment using cross-sectional studies of
cortical neurophysiology with small sample sizes. Longitudinal
data collection with larger sample sizes is needed to conclusively
demonstrate the predictive ability of EEG in post-stroke
cognitive recovery.

Functional/Global Recovery
EEG-based power density maps for high (≥8Hz)—and low-
frequency (<8Hz) bands with asymmetry indices have also been
used to predict global and functional recovery and explore other
domains, such as post-stroke neglect (74). Most studies used
EEG in the acute setting to predict global recovery-measured
by the National Institute of Health Stroke Scale (NIHSS) and
functional recovery-measured by modified Rankin Scale (mRS)
in the subacute and chronic stages. Critical studies are also
summarized in Table 4.

Cross-sectional studies showed that reduced high-frequency
activity (≥8Hz) and increased low-frequency activity (<8Hz)
in the lesioned hemisphere predicted poor functional long-term
outcomes as quantified by the modified Rankin Scale (mRS)
(75, 76, 81, 83, 88). Brain asymmetry indices that quantify inter-
hemispheric imbalance at the acute stage of recovery also reliably
predicted long-term functional and global recovery (77, 78, 84,
86, 90). Increased beta activity in the contralesional motor areas,
which created an inter-hemispheric imbalance, also predicted
greater global impairment and worse recovery (75).

Studies investigating global recovery quantified by NIHHS
showed ratios of low-to-high frequency activity, such as a
delta/alpha ratio (85) or delta/theta to alpha/beta ratio (77, 86),
predicted a poor global recovery. Interestingly, an increase in
alpha activity in the lesioned hemisphere within the first 24 h
after the stroke predicted a late improvement in the NIHSS
score (10).

Some groups utilized qualitative and pattern-based analysis
and concluded that certain EEG patterns also predicted
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TABLE 4 | EEG studies for functional and global recovery.

References N, stroke

patients

Controls Stroke acuity at

EEG collection

EEG data

collection

N, channels State in EEG

collected

EEG connectivity

technique

Networks/regions

investigated

Collected

clinical scores

Main findings

Cillessen et al.

(75)

55 No Acute Longitudinal 21 Resting PSA Bilateral hemispheres mRS Absence of slow activity predicted a good

outcome

Cuspineda

et al. (76)

28 No Acute Cross-sectional 19 Resting AE for each

frequency band and

total power

Bilateral hemispheres mRS Alpha and theta AE were the best

predictor for short-term outcome and

delta AE for long-term outcome.

Sheorajpanday

et al. (77)

110 No Acute Cross-sectional 19 Resting PSA, DTABR, pdBSI Bilateral hemispheres mRS The pdBSI and DTABR correlated with

mRS at 6 months. Dependency and

mortality at 6 month were independently

predicted by DTABR.

Xin et al. (78) 22 No Acute Cross-sectional 19 Resting PSA, BSI Bilateral hemispheres mRS BSI at admission correlated with mRS at

28 days.

Su et al. (79) 162 No Acute Longitudinal 11 Resting Qualitative analysis

of EEG

Bilateral hemispheres mRS EEG grading system including low

frequency (<8Hz) activity and

suppression patterns without reactivity

metrics predicted poor outcome.

Lima et al. (80) 157 No Acute Cross-sectional 19 Resting Qualitative analysis

of EEG

Bilateral hemispheres mRS Presence of epileptiform activity

associated with poor outcome.

Bentes et al.

(81)

151 No Acute Longitudinal 64 Resting PSA, DTABR, rAP Bilateral hemispheres mRS High frequency activities (≥8Hz)

associated with good outcome whereas

low frequency activities with poor

outcome. rAP and DTABR most reliable

predictors for good recovery.

Van Kaam

et al. (82)

18 Healthy Acute Cross-sectional 21 Resting DAR, MSC and

WPLI

Bilateral hemispheres mRS DAR bilaterally higher in patients than in

controls, MSC and WPLI in the alpha and

beta frequency bands bilaterally lower in

patients.

Rogers et al.

(83)

16 No Acute Cross-sectional 1 Resting PSA Left frontal lead mRS Acute theta values associated with good

outcomes, with good positive and

negative predictive values

Finnigan et al.

(10)

11 Healthy Acute Longitudinal 64 Resting PSA, aDCS Bilateral hemispheres NIHSS aDCS correlated with the 30-day NIHSSS

and 15-h DWI lesion volume.

van Putten and

Tavy (84)

21 No Acute Longitudinal 16 Resting PSA, BSI Bilateral hemispheres NIHSS cEEG feasible. BSI correlated with

NIHSS.

Finnigan et al.

(85)

13 No Acute Cross-sectional 62 Resting DAR, rAP Bilateral hemispheres NIHSS DAR and rAP at baseline correlated with

30-day NIHSS score

Sheorajpanday

et al. (86)

60 No Acute Cross-Sectional 19 Resting PSA, DTABR, BSI Bilateral hemispheres NIHSS, mRS DTABR predicted unfavorable outcome at

day 7 in lacunar strokes but not in

posterior circulation syndromes

Assenza et al.

(87)

42 Healthy Acute Cross-sectional 19 Resting PSA homologous MCA

regions

NIHSS Delta and theta band powers higher

bilaterally in stroke and correlated with

NIHSS in both hemispheres.

Contralesional delta power the only valid

predictor of effective recovery.

(Continued)
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poor functional recovery: epileptiform activity, abnormal low-
frequency activity (<8Hz), or generalized and burst suppression
without reactivity (79, 80). Another study studied topographical
maps of distinct types of patterned activity, i.e., negative or
positive signal orientations in various regions in the brain.
Using global field analysis, the results showed that positive
signal orientations in the left occipitoparietal region and negative
orientations in the right fronto-central predicted better global
recovery (89). These studies emphasized the importance of
identifying patterns of good recovery in addition to power
density map quantifications.

Lesion location is known to affect the recovery after stroke.
Following a subacute stroke, a notable discrepancy in activity
levels was also observed between cortical and subcortical strokes
in the lesioned and contralesional hemispheres: Patients with
subcortical strokes were found to have higher alpha activity in the
affected hemisphere and lower beta activity bilaterally compared
to those with cortical strokes (90).

In sum, EEG obtained in the acute setting was a reliable
alternative method to immediate post-stroke functioning to
predict favorable functional and global recovery after stroke.

The only EEG study to date that investigated post-
stroke neglect characterized the temporal-spectral evolution of
event-related synchronization and desynchronization (74). The
results showed that patients with neglect exhibited pathological
suppression of the right hemispheric activity in preparation for
an upcoming spatial task compared to patients with no neglect
or healthy controls. The degree of pathological suppression
correlated with poorer performance in tests of neglect.

EEG COMBINED WITH TMS

TMS can elicit behavioral (e.g., finger twitches) and EEG
responses by depolarizing the neurons in focal regions of the
brain (91). Simultaneous EEG recording during TMS offers new
avenues to explore brain connectivity and recovery patterns for
functional networks after stroke.

Quantifiable measurement of the behavioral responses
triggered by TMS remains limited to the motor system as the
primary output measure has been motor-evoked potentials
(MEPs) recorded through electromyography (EMG) (92).
Combining TMS with real-time EEG measurements provides
an alternative immediate, direct, and quantifiable measure
of the cortical activity induced by TMS that can be applied
throughout the cortex and include networks of language and
cognition (93). By capturing real-time cortical reactivity to TMS
evoked potentials (TEPs) and TMS-related cortical oscillations,
TMS-EEG allows for the characterization of dynamic and causal
functional connectivity within various large-scale networks (94).

Technical Challenges
While promising, TMS-EEG is not without technical challenges,
and limitations and artifacts present significant technical
challenges. One of the main artifacts in TMS-EEG sessions is
induced eye blinks, and contractions of scalp muscles, especially
for TMS applied to fronto-lateral brain regions (95). Offline
artifact clearance can remove some artifacts from the EEG data,
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but this method may also remove TMS-induced changes in
cortical activity (95). Hypothesis-driven approaches (such as a
priori cortical activity in specific networks after TMS pulses)
can be beneficial to differentiate TMS-induced responses from
muscle artifacts (18).

Another common artifact is termed TMS-induced decay
artifact, which arises from the effects of TMS-induced
electromagnetic fields and vibrations on the EEG electrodes
(96). Strategies for overcoming this artifact include using TMS-
compatible EEG electrodes (96), placing foam under the TMS
coil to prevent contact between the TMS coil and electrodes (97),
and positioning electrode wires perpendicular to the TMS coil
(98, 99). Lastly, the auditory clicking of active TMS can lead to
evoked potentials in the auditory cortex, which can be limited by
using headphones and playing white noise (100).

TMS Evoked EEG Potentials (TEPs)
TEPs are characterized by positive and negative (“peak and
valley”) waveforms following TMS and can measure the
functional integrity of cortical structures (101). Depending on the
cortical cytoarchitecture of the stimulated areas, TEPs can lead to
waveform activity with different amplitude latencies for positive
(P) and negative (N) deflections (102). Typically, TEPs are well-
characterized for primary motor cortex as well as dorsolateral
prefrontal cortex. TEPs over the primary motor cortex are N15,
P30, N45, P55, N100, P180, and N280 and TEPs over dorsolateral
prefrontal cortex are N40, P60, N100, and P185 (101, 103, 104).
More research is needed to reliably characterize TEPs over other
regions. Evoked cortical activity can be quantified in a variety of
ways, including amplitude, frequency, and area under the curve
and clustered by electrodes of interest or brain area (105).

Compared to measures of MEP (motor evoked potentials),
measures of TEP may offer the following advantages: whereas
MEPs are also affected by the brainstem, spinal cord, or even
peripheral nerve pathologies (106), TEPs can in principle directly
measure cortical reactivity, without being influenced by more
distal components of the nervous system. TEPs can also elucidate
responses below the resting motor threshold, in contrast to MEPs
(103). Additionally, TEPs can study both motor and non-motor
systems, while MEP measurements are limited to the motor
system (107). Finally, the effects of TEPs can also be studied
in distal cortical electrodes (108) while MEP measurements are
restricted to the primary motor cortex.

TMS Evoked Cortical Oscillations and
Analysis of Functional Connectivity in
Networks
Vascular insults can lead to pathological alterations of baseline
oscillation patterns, as described earlier in this review. Like
TEPs, specific oscillation patterns that follow TMS pulses can
provide additional information that can be used to characterize
the functionality of cortical regions in dynamic or active
states (109). A TMS-evoked oscillation can be classified as an
evoked oscillatory response or a total oscillatory response (110).
Additional methods for quantifying TMS-evoked oscillations
measure the coherence at a single electrode in a phase-locked

manner across TMS trials or to measure the cross-coherence
between electrodes following a single TMS trial (111).

Following a TMS pulse, signal propagation patterns between
cortical regions can serve as valuable metrics for effective
functional connectivity within large-scale networks (112).
Compared to the resting-state connectivity in EEG, TMS-evoked
functional connectivity provides a better signal-to-noise ratio
and offers causal insights into the associations between different
cortical regions (113). In healthy subjects and patients with
epilepsy, studies have quantified TMS-evoked spatiotemporal
distributions, propagation of cortical potentials, and effective
connectivity (112–114).

Combined TMS and EEG in Stroke
TMS-EEG studies are summarized in Table 5. Most studies
utilize single-pulse TMS rather than other protocols such as
paired- or repetitive-pulse TMS. Low-density EEG was more
commonly used, and sample sizes across the studies are typically
small (n < 20). The majority of studies targeted lesioned and
contralesional primary motor cortex.

In a small cohort with post-stroke aphasia, Cipollari et al.
studied TEP latency and amplitude measurements before and
after anodal transcranial direct current stimulation, which is
often thought to be excitatory, to the right inferior frontal gyrus.
Reduced latency or increased amplitude of TEP were considered
as markers of increased cortical excitability or reactivity. They
showed that 3 weeks of language therapy with either active or
sham stimulation increased the TEPs amplitude in the right
inferior gyrus at 87ms. In contrast, only active stimulation
increased the TEP amplitude in the same region at 118ms (115).
They also observed improvements in language outcomes in both
sham and active treatments, though improvements with the
active treatment were significantly greater. This study suggests a
potential association between increased cortical excitability and
behavioral outcome after brain stimulation.

Cross-sectional post-stroke motor studies particularly focused
on different components of TEP of the lesioned motor cortex.
The main TEP components are P30, N45, P60, N100, P180,
and N280. Hordacre and colleagues showed that chronic stroke
patients had a globally larger amplitude for the P30 compared
to healthy subjects (120). Likewise, significantly P30 increased
amplitude and delayed latency were observed in stroke patients
compared to healthy subjects, and delay in P30 was associated
with poorer hand function (118). Mangonatti et al. studied the
predictive utility of the N100 component of TEPs and MEPs
to predict motor recovery following acute ischemic stroke and
found that the ability to elicit (presence of) TEP N100 in
the lesioned motor cortex alone could reliably predict a good
recovery (116). Interestingly, patients with brainstem infarcts had
no elicitable MEPs but normal TEPs, suggesting that TEPs are a
measure of cortical reactivity that can be preserved even when the
corticospinal tract is severely injured at subcortical levels. This
is an important finding, as TEPs are specific markers of cortical
reactivity. In contrast, MEP measurements can also be affected
by non-cortical structures such as the spinal cord and brainstem
even peripheral nerves, as previously mentioned.
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TABLE 5 | TMS-EEG studies in stroke.

References N of

subjects

N of

channels

TMS-EEG

type

Region of

interest (Stim)

Stimulation

intensity per

resting MT

EEG connectivity

technique

Networks/regions

investigated

Main findings

Cipollari et al.

(115)

6 20 Single pulse Right IFG Subthreshold TEP Right Broca homolog TEP amplitudes increase with anodal tDCS and

melodic intonation therapy.

Manganotti et al.

(116)

9 29 Single pulse Left M1 Subthreshold TEP N100

component

M1 Presence of TEP N100; predictor of good

recovery.

Borich et al.

(117)

10 64 Single pulse Bilateral M1s Suprathreshold TEP M1, Interhemispheric

connections between

M1s

Increased interhemispheric beta coherence in

stroke and related to motor impairment

Gray et al. (118) 13 32 Single pulse M1 Suprathreshold TEP M1 Higher amplitude and delayed latency of P30

associated with poorer hand function

Pellicciari et al.

(119)

13 29 Single pulse M1 and parietal

cortex

Subthreshold TEP, TMS evoked

oscillations

Sensorimotor networks Clinical improvement associated with increased

TMS-evoked alpha oscillations, which also

predicted significant motor recovery

Hordacre et al.

(120)

8 64 Single pulse M1 Threshold TEP M1 Higher amplitude of P30 in chronic stroke pts

Palmer et al.

(121)

19 32 Single pulse M1 Suprathreshold TEP, TMS evoked

oscillations

M1, Interhemispheric

connections between

M1s

Evoked interhemispheric coherence correlated

negatively with upper limb function.

Tscherpel et al.

(122)

28 64 Single pulse Lesioned M1 Threshold TEP M1, Interhemispheric

connections between

M1s

Less complex, slower, and more local

responses to TMS in severely affected pts.

Casula et al.

(123)

19 29 Single and

paired pulse

M1 Suprathreshold TEP, TMS evoked

oscillations

M1, Interhemispheric

connections between

M1s

Better recovery associated with balanced TEPs

between hemispheres

Rolle et al. (124) 14 64 Single pulse Bilateral M1s Suprathreshold TEP, TMS evoked

oscillations

Sensorimotor networks Stroke pts with higher TMS-evoked functional

connectivity had better motor performance.

M1, Primary motor cortex; TEP, Transcranial magnetic stimulation (TMS) evoked potentials (TEP); N, Negative; P, Positive; MT, motor threshold; tDCS, transcranial direct current stimulation.
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Interhemispheric connections and balance were also
investigated with TMS-EEG motor studies. In a study in which
interhemispheric functional connectivity in EEG was not
apparent at rest, TEPs were used to unmask interhemispheric
functional connectivity in chronic stroke patients (117). Casula
et al. observed that single-pulse TMS pulses on contralesional
created a significant interhemispheric imbalance, which led
to suppression of the activity in the lesioned hemisphere
(123). Furthermore, patients who later experienced a better
recovery showed more balanced TMS-evoked activity between
hemispheres. In post-stroke patients, Palmer and colleagues
also investigated TMS-evoked interhemispheric beta coherence
during rest and active muscle contraction (121). They showed
single-pulse TMS on the lesioned hemisphere during an active
motor task failed to evoke intrahemispheric connections.
The evoked interhemispheric coherence by TMS on the
lesioned hemisphere during the active task also correlated
negatively with upper limb functions. Stroke-induced changes
to interhemispheric interactions are an active area of research.
Although the role of the contralesional hemisphere in stroke
recovery remains controversial, TMS-EEG studies reliably
revealed ineffective compensatory activity of the contralesional
hemisphere activity during motor system recovery. The
combination of TMS and EEG offers a new degree of fidelity
in characterizing the interactions between hemispheres and
elucidating their significance to post-stroke motor recovery.

TMS-evoked alpha oscillations in different EEG bands are
used as markers for effective connectivity. In addition to cross-
sectional studies, Pellicciari et al. utilized a robust longitudinal
design and measured the evolution of TMS-evoked activity over
days in patients with motor impairments arising from subacute
stroke (119). Participants underwent TMS-EEG 20, 40, 60, and
180 days post-stroke, and those with clinical improvement were
found to have increased TMS-evoked oscillations. TMS-evoked
alpha oscillations at baseline also predicted significant motor
recovery at 40 and 60 days. In another longitudinal study,
Tscherpel et al. investigated brain responsivity as a potential
biomarker for motor recovery after stroke (122). Compared
to healthy controls and minimally affected patients, severely
affected patients were found to have less complex, slower, and
more local responses to TMS. This pattern reliably predicted
motor recovery at 3 months. Also, in patients with no MEPs,
TEP additionally predicted good motor recovery in a subgroup
of patients.

The TMS-evoked activity was also studied in a state-
dependent fashion—at rest and during an active motor task—in
post-stroke patients and healthy controls (124). When analyzed
as a group, healthy controls showed an increase in TMS-evoked
functional connectivity during the motor task compared to rest,
while stroke patients did not. Stroke patients with higher resting
TMS-evoked functional connectivity performed better on the
Fugl Meyer upper limb assessment.

Most TMS-EEG studies in the post-stroke period that we
identified have focused on the motor system. These studies
offered valuable insight into how the functionality of motor
networks after the vascular insult. Higher cortical reactivity
with faster and more complex evoked oscillatory activity

and increased evoked functional connectivity in the lesioned
motor areas reliably predicted favorable motor recovery after
stroke. Studies investigating post-stroke language, cognition,
neglect, and swallowing impairments are additionally needed to
understand better the utility of TMS-EEG as a biomarker of
recovery across multiple domains.

DISCUSSION

We have reviewed key studies in the stroke literature that
either utilized EEG alone or in combination with TMS to
delineate pathological alterations in neurophysiology. These
studies focused on TMS-induced activity changes in the
lesioned and contralesional hemispheres, and analyses tended
to relate significant changes to post-stroke recovery across
different functional domains. As a complement to MRI-based
technologies, EEG-based technologies are particularly promising
as diagnostic or predictive biomarkers for individual stroke
patients. The bihemispheric power spectral analysis has been the
most reliable analysis technique in stroke EEG studies. Although
the data for functional and effective connectivity measures seem
promising, given the heterogeneity of the analysis methods and
small sample in the studies, more research is needed to identify
reliable biomarkers that can be used widespread.

It is crucial to utilize normative data to understand
neurophysiological alterations in both hemispheres after stroke.
Recent studies have included age-matched healthy controls and
provided further insight into stroke-induced changes (39, 42,
43). Notably, these studies revealed that substantial pathological
alterations occur in the ipsilesional hemisphere as well as in
the contralesional hemisphere when compared to healthy age-
matched controls (58). This suggests that despite its relative
distance from the focus of stroke insult, the contralesional
hemisphere cannot necessarily be considered “healthy” or
“unaffected.”

Recent studies have also begun to utilize high-density EEG
(39, 40, 64). Although several studies have demonstrated
that low density (85) and single-electrode designs (61, 83)
provide valuable information in predicting recovery for global
functions, as assessed by the mRS or total Montreal Cognitive
Scale (MOCA) scores, high-density EEG increases spatial
resolution and can lead to more detailed characterization of
complex networks.

Additionally, there has been a trend in stroke research toward
collecting longer-term longitudinal data such as at least a year
after stroke to characterize the temporal evolution of cortical
activity following stroke (45, 119). Some studies have shown
that certain EEG patterns are only significant and diagnostic in
specific time windows (70, 119), indicating the importance of
longitudinal data collection.

EEG alone (34, 47, 48) or TMS-EEG (118, 120) have focused
primarily on motor system networks/recovery or utilized global
scales such as the modified Rankin Scale and National Institute of
Health Stroke Scale, where scores of the motor system contribute
extensively to the total score. Unlike studies of MEPs or visual
or auditory evoked potentials, TMS-EEG paradigms enable the
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analysis of functional systems such as cognition and language
without requiring sensory input or motor output measures.
As cognitive and language impairments are also common after
stroke (2, 72), well-designed studies are also needed in these areas
to inform new treatment strategies such as neuromodulation and
pharmacotherapeutics, increase the efficacy of existing behavioral
therapies, and illuminate the underlying neural networks of the
recovering post-stroke brain.

In conclusion, post-stroke EEG studies showed a reduction
in intrahemispheric functional connectivity in various networks
of the lesioned hemisphere after stroke, and this pattern
was associated with poor functioning. Studies also revealed
more pronounced low-frequency activity (delta or theta
frequency activity) in the lesioned hemisphere and higher
frequency activity (alpha or beta activity) in the contralesional
hemisphere, which created an interhemispheric imbalance. A
higher interhemispheric imbalance was associated with poor
function, and restoration of the balance was associated with
improved recovery after stroke. Other good recovery patterns
included an increase in local intrahemispheric functional
network connectivity and high-frequency activity (≥8Hz) in the
lesioned hemisphere. TMS-EEG studies revealed that increased

cortical reactivity to TMS pulses and a higher evoked functional
connectivity in the lesioned cortical networks were associated
with improved recovery and function.
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