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Nonlinear effects in Thomas 
precession due to the interplay 
of Lorentz contraction 
and Thomas–Wigner rotation
Antonio Di Lorenzo

It is demonstrated that the 3-vector S currently associated to the spin in an inertial frame does not 
contract, but rather dilates, in the direction of the velocity. The correct vector T  is individuated. The 
equation of motion for the two vectors is shown to contain two terms, a common linear rotation, 
identified with Thomas precession, and also a nonlinear rotation depending on the direction of the 
spin itself.

Often, particles carry with themselves properties, e.g. charge, mass, magnetic moment, electric dipole moment. 
While the motion of a particle O′ is described in a simpler form in an inertial reference frame, the evolution of 
physical quantities transported along O′ appears simpler when described in the comoving frame, even though 
it is an accelerated frame. Think, for instance, of a gyroscope attached to a car, which may accelerate, make a 
curve, brake, etc. Meanwhile, the car is being carried by Earth, which is spinning and rotating around the Sun, 
which in its turn is rotating around the center of the Galaxy. Even though the interior of the car is not an iner-
tial reference frame, it is much easier to describe the motion of the gyroscope in such noninertial frame, after 
introducing noninertial forces that one attributes to gravitational fields, rather than describe its motion relative 
to the fixed stars. However, if from the car you look out of the window, all bodies not being transported along 
with you—trees, mountains, the Sun, the planets, the stars in the night sky—will appear to follow complicated, 
inexplicable motions, and there are no masses around compatible with the noninertial effects that you believed 
to be gravitational. If you want to simplify the description of the outside universe you should eventually switch 
to an inertial reference frame. The equations relating the change of the angular momentum of the gyroscope with 
the applied forces and torques should then be written back in an inertial frame, in which the movement of the 
origin of the gyroscope can be explained causally, i.e. all accelerations can be associated to other bodies, which 
are usually limited to nearby bodies due to the short range of all forces except gravity.

In a given reference frame, physical quantities are described by scalars, three-dimensional vectors, and 3× 3 
matrices. The special theory of relativity, despite its name, allows to describe the equations of physics in an 
absolute form, by making use of abstract mathematical objects in Minkowski space, which encompasses space 
and time. Such objects—scalars, four-dimensional vectors, more generally tensors—describe absolute quantities. 
One can then deduce the physical quantities in any reference frame as representations of these absolute objects.

In our example, the angular momentum of the gyroscope, in the reference frame inside the car, is represented 
as a 3-vector S′ , which is a representation {0, S′1, S′2, S′3} of the abstract 4-vector S that is being transported along 
the car. In another reference frame, the same 4-vector is represented differently, as {S0, S1, S2, S3} . Here, the first 
component is the time component.

Results
With reference to Fig. 1 we ask: given the 4-vector field St transported along a worldline O′ in Minkowski space, 
normally to the world line, so that it is represented as a purely spatial vector, a 3-vector, in the comoving frame 
S

′ , how is it represented, as a 3-vector, in an inertial frame S ? what are the equations of motion for the new 
representation, supposing the equations in the comoving frame to be known? These questions are particularly 
relevant in atomic physics, since an electron orbiting an atom carries an intrinsic magnetic moment.

Our first result is that the relativity of simultaneity implies that the spin, as a 3-vector in the lab frame, is not 
the one which has appeared so far in the literature, consisting in the spatial part S of the 4-vector representation 
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{S0, S} . Indeed, S does not undergo Lorentz contraction in the direction of motion, as a properly defined 3-vector 
should. On the contrary, it dilates in the direction of motion.

The correct 3-vector to describe the spin in the lab frame, instead, is T = S − S0v/c2 . Because the 
spin is normal to the world line of the particle, in an inertial frame, S0 = v·S , while in a general frame 
S0 = (v −�× r)·S/[(1− g·r)2 − (�× r)2 + (�× r)·v] , with g the equivalent gravitational field, � the gravi-
magnetic Coriolis field, and r the position of the spin. The combinations θ = 1− g·r and w = �× r are to be 
identified with the scalar and the vector potential of the gravitational field.

The previous literature uses S as the spin, and it is common to indicate as V  the spatial components of a 4-vec-
tor �V  , hence we are keeping the symbol S for the conventional spin for ease of comparison. We shall also write 
formulas for both the spin definitions. We shall see later on that, irrespectively of the procedure used, the linear 
rotation, seen in an inertial reference frame, of the 3-vectors S and T is the same.

Our second result is that both vectors S and T , in the lab frame, obey a differential equation which contains a 
linear rotation term and also a nonlinear term. The linear term, which we identify with Thomas precession, dif-
fers from the accepted value. We explain that the difference is due to the fact that the accepted value of Thomas 
precession does not describe the rotation of the spin in the lab frame, but rather is the rate of the Coriolis rotation 
of an auxiliary frame which is purely rotating relative to the lab.

Detailed results. Let us provide more details. According to a naive approach, which takes into account 
only the relativistic transformation of the electromagnetic field, the spin-orbit term in the Hamiltonian for the 
electron should be about twice as large as the one observed. A full relativistic treatment, however, reproduces 
the correct spin-orbit coupling, as shown by  Thomas1,2. The additional precession, due exclusively to relativistic 
effects for an accelerated frame, has been calculated in various ways, and there are some discrepancies in the 
literature. The common value accepted for the precession  is2,3

with v and a the Newtonian 3-velocity and 3-acceleration, c the speed of light, and γ = (1− v2/c2)−1/2 the 
Lorentz factor. There are several other expressions for Thomas precession in the literature, some even with 
opposite signs, due mainly to some different interpretation or downright  misinterpretation4,5. While the work 
of  Malykin4 reports exhaustively and critically the values that have been proposed, it ends up agreeing on the 
value as proposed by  Thomas2. In the following, we shall show that the accepted factor is incorrect, in the sense 
that Eq. (1) does not describe the precession of the spin as seen in an inertial frame, e.g. the lab frame: because 
of Lorentz contraction, the spin of an accelerated particle makes a complicated motion, which is not a simple 
precession. Instead, we prove that Eq. (1) describes rather the rotation, relative to the lab frame, of the axes of 
a rotating frame (whose origin coincides with that of the lab frame). The relative rotation rate is thus a Coriolis 
rotation. This fact has been occasionally pointed out in the  literature6–8.

We show that, in the lab frame, the motion of the direction of the spin

contains a linear kinematic rotation,

(1)ωTh ?=− γ − 1

v2
v × a = − γ 2

(γ + 1)c2
v × a,

(2)
d

dt
Ŝt = [ωTh(t)+ ωnl(t, Ŝt)] × Ŝt

Figure 1.  A vector field (arrows, sampled at discrete times) is being transported along an accelerated worldline 
O
′ (red) as represented by an inertial observer O (blue). Its tip traces a line (black) close to O′ . The vector field 

is normal to the worldline O′ in the Minkowski metric, hence it does not appear as orthogonal in our Euclidean 
space representation.
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but also an additional nonlinear precession, which, for a planar motion, is

Here κ is the curvature, v̂ the tangent, n̂ the normal, and b̂ = v̂ × n̂ the binormal of the trajectory described 
in the lab frame. The nonlinearity is a consequence of splitting the motion of the spin in an equation for its norm 
and an equation for its direction, as detailed in the “Methods” section. The overall equation for the spin vector, 
however, is linear, and it is but the Bargmann–Michel–Telegdi  equation9 represented in the lab frame. The pres-
ence of a nonlinearity was found out by  Stepanov8 in a particular case, and also by Kholmetskii and  Yarman10.

Furthermore, we shall prove that for a uniform circular motion, for which the linear precession rate (3) is 
constant, the average contribution of the nonlinear term (4), when added to the linear term yields Eq. (1). This 
apparently fortuitous occurrence may be at the origin of the unquestioned standing of Eq. (1).

Our Eq. (3) has a simple geometrical interpretation for planar motions: the angle of linear precession during 
a time T is equal to the area swiped by the celerity γ v divided by c2 . The corresponding lowest order limit, with 
the factor γ = 1 , was mentioned by  Borel11,12 already in 1913. Thus, apparently, Borel had derived at least an 
approximate expression for Thomas precession, using merely geometrical considerations.

In solving the problem of Thomas precession, we used a coordinate-free approach to the problem, which 
allows us to identify a skew-symmetric tensor B , the generator of Fermi–Walker transport, depending only 
on the intrinsic geometry of the worldline of the accelerated particle, which describes a kinematic rotation in 
Minkowski space. The coordinate-free approach is extremely valuable, in that it is robust against error, and in 
that it provides a manifestly invariant picture, in the spirit of  Minkowski13 and of the reference book by Misner, 
Thorne, and  Wheeler14. Often we read that the equations of physics must be covariant. Actually, covariance 
implies already the choice of a representation, where the physical quantities are represented by lists with upper 
or lower indexes, which transform contravariantly or covariantly. However vectors and tensors are invariant 
objects, only their representations are contravariant or covariant.

In the lab frame, the motion of the spin is dictated by 

 
Equation (5a) is the spatial part of the Bargmann–Michel–Telegdi equation represented in the lab frame. 

Here, the term not multiplied by gL , (q/m)St ·Gt vt , identifies the kinematic contribution due to the spin 
being accelerated; the other terms are due to the direct coupling with the electromagnetic field. The 3-vector 
G = γ

[

E − (E·v/c2)v + v × B
]

 is the simultaneity-corrected Lorentz force per unit charge.

Case studies. Consider a particle making a planar motion, as described in an inertial frame by the trajec-
tory rt . Let v̂t , n̂t , b̂ the Frenet–Serret apparatus for the curve rt . As shown in the “Methods” section, the sim-
plest description of the motion of the spin is that in the comoving frame whose axes are Fermi–Walker (FW) 
 transported15,16. The FW axes can be calculated, in the lab frame representation, for a general two-dimensional 
motion, as 

 where ψt is the angle ψt =
∫ t

γtκt vtdt , with κt the curvature of rt . The Thomas–Wigner rotation Rt can be 
calculated explicitly in this case,

where αt =
∫ t

κt vtdt is the Darboux rotation angle, i.e. the angle that the tangent v̂t makes with the X axis.

(3)ωTh = − γ 2

2c2
v × a,

(4)ωnl = γ 2

c2

[

v·a v̂·Ŝ n̂·Ŝ + 1

2
κv3

(

n̂·Ŝ n̂·Ŝ − v̂·Ŝ v̂·Ŝ
)

]

b̂.

(5a)∂tSt =
q

m

{

gL

2γt
[St × Bt + St ·vt Et]−

( gL

2
− 1

)

St ·Gt vt

}

,

(5b)∂tT t =
q

m

{

gL

2γt
[T t × Bt − T t ·Et vt]+

( gL

2
− 1

)

T t ·vt Gt

}

.

(6a)�e ′(1) =
(

γt cos (ψt)vt
γt cos(ψt)v̂t − sin (ψt)n̂t

)

,

(6b)�e ′(2) =
(

γt sin (ψt)vt
γt sin (ψt)v̂t + cos (ψt)n̂t

)

,

(6c)�e ′(3) =
(

0

b̂

)

,

(7)Rt =
(

cos(ψt − αt) − sin(ψt − αt) 0
sin(ψt − αt) cos(ψt − αt) 0

0 0 1

)

,
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Uniform circular motion. Let us consider the simple case of a particle, carrying an intrinsic angular momentum 
S , in uniform circular motion, so that γ = const and κ = const . The Thomas–Wigner rotation Rt in this case is

while the FW axes are 

 Thus, for a motion with frequency ω , a vector S = X ′
t′e(1) + Y ′

t′e(2) + Z′
t′e(3) with components X ′

t′ ,Y
′
t′ ,Z

′
t′ 

with respect to the FW basis yields in the lab frame a vector moving according to: 

 where t ′ = τ(t) = t/γ.
We fixed the origin of time so that

Spin with no magnetic moment. We shall consider � = 0 , so that the spin of the particle does not couple to the 
field causing the motion, and thus only the kinematic term contributes to its time evolution. Then, the terms 
X ′,Y ′,Z′ in Eqs. (10) are constant.

A parametric plot of this solution is provided in Fig. 2. The squared norm T2 of the simultaneity-cor-
rected spin oscillates between the maximum, intrinsic value of the spin, X ′2 + Y ′2 + Z′2 and the mini-
mum [X ′2 + Y ′2]/γ 2 + Z′2 , obtained when the in-plane component is parallel to the velocity; correspond-
ingly, the squared norm S2 of the conventional spin reaches a minimum X ′2 + Y ′2 + Z′2 and a maximum, 
γ 2[X ′2 + Y ′2] + Z′2 , as illustrated in Fig. 3.

For the external electrons orbiting a nucleus the velocity is approximately v ≃ Zeff (n)αc/n , where α ≃ 1/137 
is the fine structure constant, n the principal orbital number, and Zeff (n) the effective nuclear number seen in 
the orbital n because of the screening. The contraction effect is very small, of order 5×10−5 . For inner shell 
electrons of a heavy nucleus, where the effective charge of the nucleus is increased up to Z, the effect is a little 
larger, reaching 1 part in 1000.

The solution S is provided  in 14 (pp. 175–176), as an exercise. The authors  of14 arrive to the conclusion that 
the precession rate is (γ − 1)ω = γ 2v2ω/[c2(γ + 1)] , by splitting the oscillation in a steady precession and a 
term that, it is argued, averages to zero.

Indeed, according to the decomposition outlined in the “Methods” section, the linear part of the angular 
velocity is ωTh = ωThb̂ , with ωTh = −(γ 2 − 1)ω/2 , while the nonlinear part for the conventional ( + sign) and 
the simultaneity-corrected (− sign) spin is ωnl,± = ωnl,±b̂ with

(8)Rt =
(

cos[(γ − 1)ωt] − sin[(γ − 1)ωt] 0
sin[(γ − 1)ωt] cos[(γ − 1)ωt] 0

0 0 1

)

,

(9a)�e ′(1) =
(

γ cos(γωt) v
γ cos(γωt)v̂t − sin (γωt)n̂t

)

,

(9b)�e ′(2) =
(

γ sin(γωt) v
γ sin (γωt)v̂t + cos (γωt)n̂t

)

,

(9c)�e ′(3) =
(

0

b̂

)

.

(10a)S = γ
[

X ′
t′ cos(γωt)+ Y ′

t′ sin(γωt)
]

v̂t −
[

X ′
t′ sin(γωt)− Y ′

t′ cos(γωt)
]

n̂t + Z′
t′ b̂ ,

(10b)T = γ−1
[

X ′
t′ cos(γωt)+ Y ′

t′ sin(γωt)
]

v̂t −
[

X ′
t′ sin(γωt)− Y ′

t′ cos(γωt)
]

n̂t + Z′
t′ b̂,

(11)v̂t = cos(ωt)ı̂ + sin(ωt)̂ , n̂t = − sin(ωt)ı̂ + cos(ωt)̂ .

Figure 2.  The parametric plot of the in-plane components T‖(t) of the spin T carried along a point making a 
uniform circular motion, as seen from an inertial observer at the center of the motion. We used v = 3c/5.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16757  | https://doi.org/10.1038/s41598-022-20942-w

www.nature.com/scientificreports/

with tan(φ) = Y ′/X ′ and P̂± the unit vector of the in-plane component of the spin. Thus ωnl oscillates with a 
fundamental frequency 2γω . The average value over a period is

thus it contributes a higher order correction, with respect to the linear term, in the non-relativistic limit. Remark-
ably, the average contribution is the same for both the conventional and the simultaneity-corrected spin.

When this average correction is added to the linear part, we get, for a lucky coincidence, the accepted value 
of Thomas precession,

Thus, we can say that the accepted result for Thomas precession holds, as an average, for uniform circular 
orbits, when adding the constant linear and the average nonlinear contribution to the precession.

Spin with magnetic moment in a cyclotron. In the lab frame, let B = Bb̂ a uniform magnetic field and let the 
electric field E = 0 . Let the lab frame the frame in which the particle is making a uniform circular motion (and 
not a helix) with cyclotron frequency ω = −qB/γm (a positive charge will rotate clockwise as seen from the 
positive semi-axis of the magnetic field, hence the minus sign). Contrary to the previous case, we do not put 
� = 0 , but rather � = gLq/2m , so that the term due to the magnetic field now contributes as well to the time-
evolution of the spin. This case is relevant for muon and electron  experiments17–19.

In the comoving FW frame the electromagnetic field is

with Rt′ given in Eq. (8). Thus

From the point of view of the particle, the force qE′ due to the electric field is compensated by the force mg due 
to the local gravitational  field20 g = −a′prop , where a′prop is commonly called the proper acceleration (the particle 
however, does not feel an acceleration, since it is by definition at rest in its comoving frame: it feels a gravitational 
field, which has the dimension of an acceleration due to the equivalence of inertial and gravitational mass).

(12)
ωnl,± = ±γ 2

2
[at ·P̂

±
t P̂

±
t × vt + vt ·P̂

±
t P̂

±
t × at ]·b̂

= ±γ 2 − 1

2

(γ±2 + 1) cos2(γωt − φ)− 1

(γ±2 − 1) cos2(γωt − φ)+ 1
ω,

(13)ωnl,± = (γ − 1)2

2
ω ,

(14)ωtot = −1

2

[

γ 2 − 1− (γ − 1)2
]

ωb̂ = −(γ − 1)ωb̂.

(15)B′ = γB, E′ = Rt′(γ vt × B),

(16)E′ = γ vB[sin(γωt)ı̂ − cos(γωt)̂ ].

Figure 3.  The variation in time of the total spin squared S2 and T2 divided by �2 . For the sake of comparison, 
we considered the values X ′ = 1/

√
2,Y ′ = 0,Z′ = 1 , as  in14 (pp. 175–176). We put v = 3c/5 to make the effect 

of Lorentz dilation/contraction evident. As discussed in the text, in an atom the speed of the orbiting electrons is 
too small compared to c to allow to detect the effect.
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In the comoving FW frame, according to Eq. (43) derived in the “Methods” section, the spin precesses with 
angular velocity gLγ 2ω/2 , 

 with S′� =
√
X ′2 + Y ′2 =

√
S′2 − Z′2 the constant in-plane component of the spin, and φ a constant depending 

on the initial conditions. Replacing these equations in Eq. (10), with t = γ t′ , we obtain the time evolution in the 
lab frame for a magnetic moment in a cyclotron, 

 with a = (gL − 2)/2 the g-factor anomaly. Thus, if the g-factor were exactly 2, i.e. a = 0 , the spin would stay 
rigidly fixed with respect to the Frenet–Serret apparatus formed by the tangent, the normal, and the binormal 
of the trajectory.

The linear precession rate is

while the nonlinear precession rate is

where as in the previous case P± stands for the conventional or the simultaneity corrected spin, depending on 
the index being + or −, respectively.

After replacing Eq. (18) into Eq. (20), we have

A time-average over a period T = π/aγω yields

so that the overall average precession is

As in the former case, this is the value obtained using the incorrect formula for Thomas precession.
The fluctuations are

Non‑circular orbits. For a general orbit where the linear precession rate (γ 2
t /2)vt × at is not constant, adding 

an average contribution ωnl can not lead to the accepted formula ωtot = −[γ 2
t /(γt + 1)]vt × at . As an example, 

we take the relativistic orbits in a Coulomb potential, as discussed by Darwin and  Sommerfeld21,22.
For simplicity, we will consider � = 0 . After a few calculations, the Thomas precession term is found to be

where ρ the distance from the center r in units of the electron radius, R0 = e2/mc2 . while h is the angular 
momentum L in units of mR0c , with e the charge of the electron, and m its mass.

The non-linear precession has a more involved expression, which we will provide for the simultaneity-cor-
rected spin only:

(17a)X ′
t′ = S′� cos

( gL

2
γ 2ωt′ + φ

)

,

(17b)Y ′
t′ = S′� sin

( gL

2
γ 2ωt′ + φ

)

,

(17c)Z′
t′ = Z′

0,

(18a)S = S′�
[

γ cos(aγωt + φ)v̂t + sin(aγωt + φ)n̂t
]

+ Z′b̂ ,

(18b)T = S′�
[

γ−1 cos(aγωt + φ)v̂t + sin(aγωt + φ)n̂t
]

+ Z′b̂ ,

(19)ωTh = [1+ 1
2 (γ

2 + 1)a]ωb̂,

(20)ωnl,± = ∓1

2
(γ 2 − 1)aω

(v̂t ·P̂
±
t )

2 − (n̂t ·P̂
±
t )

2

(v̂t ·P̂
±
t )

2 + (n̂t ·P̂
±
t )

2
b̂,

(21)ωnl,± = ∓1

2
(γ 2 − 1)aω

(γ±2 + 1) cos2(aγωt + φ)− 1

(γ±2 − 1) cos2(aγωt + φ)+ 1
b̂.

(22)ωnl± = −1

2
a(γ − 1)2ωb̂,

(23)ωtot = (1+ aγ )ωb̂.

(24)�ω =
√

γ

2
(γ − 1)aω.

(25)ωTh = − h

2ρ3
= − Le2

2m2c2r3
,
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where u = 1/ρ , ǫ is the total energy in units of the rest energy mc2 , while Q∗
u = ǫ2 − 1+ 2ǫu+ (1− h2)u2 is a 

quadratic form in u, and

Discussion
In conclusion, the accepted value for the Thomas precession stems from confusing it with the rate of 
Thomas–Wigner rotation, which applies in a rotating frame possibly convenient but of no physical significance.

Instead, we wish to know the equations of motion of the spin either in the comoving frame the axes of which 
undergo FW transport, or in the lab frame. In the former frame, the equation takes its simplest form, Eq. (43), 
in the latter frame either Eq. (44a) or (44b) holds, depending if one is using the conventional definition of spin 
S or the simultaneity-corrected one T.

The reason behind the complicated motion in the lab frame is that a Lorentz boost introduces a rotation: 
indeed, if a vector S′ stays constant in the rest frame of the particle, when going to the lab frame one has to 
apply a Thomas–Wigner rotation and a boost. The boost changes the component of S along the velocity, thus 
the vector will undergo an additional rotation. This rotation is nonlinear, as it depends on the orientation of S′ 
relative to the velocity. In Section C of the Supplemental Materials we show in detail how the contribution of the 
Thomas–Wigner rotation and the contribution of Lorentz contraction get twined.

In a uniform circular motion, the effect of the Lorentz contraction averages out, because the Lorentz contrac-
tion factor is constant and because the spin, over time, points in all directions. This exceptional case, however, has 
been mistaken for the norm, since the uniform circular motion is the simplest curvilinear accelerated motion, 
and hence is the go-to case when treating Thomas precession.

While in the lab frame the spin does not undergo a simple precession, we have shown how to extract univo-
cally from the equation of motion a linear rotation term, which we identify with the Thomas precession, and a 
nonlinear rotation term, due to the interplay of Lorentz contraction and Thomas–Wigner rotation.

In perspective, it is interesting to consider the expansion of the present results to the general relativistic case, 
along the lines of Ref. 23, where the Thomas precession combines with de Sitter and Lense–Thirring precession.

Methods
Relativity of simultaneity. Given the 4-vector field St along the trajectory of a particle O′ , what is the 
spin, as a three-dimensional vector, that an observer O will assign? The conventional procedure is to consider 
the representation, in the frame of O, �S = {S0, S} , and take the spatial part S as the spin. (We have introduced the 
symbol �S for the contravariant representation, in a given reference frame, of the abstract vector S . We shall keep 
the concepts of a vector and of its representation distinct, as explained in the Supplemental Materials.) However, 
since O and O′ are in relative motion, the relativity of simultaneity applies, which results in a different 3-vector 
T to be associated by the observer O.

To illustrate this point, we consider an infinitesimal vector in Minkowski space, δXt′ , transported along O′ . 
The tip of this vector points to P′t′ = O′

t′ + δXt′ from the point O′
t′ . The tip of the vector thus traces a curve P′ 

close to O′ . For an inertial observer O, whose worldline is a straight line, the spatial vector to associate is δYt , 
obtained by intersecting the two curves O′ and P′ = O′ + δX  with a hyperplane of simultaneity t = const , then 
considering the infinitesimal vector from the intersection O′

t to the intersection P′t . By construction, in the inertial 
frame the representation of δYt is purely spatial �δY = {0, δY t}.

If δX  is a rod of intrinsic length δl = √
δX·δX  carried by the accelerated observer, the corresponding vec-

tor δY  describes a rod contracted by the Lorentz factor |δY | = δl/γ . If, instead, we applied the conventional 
procedure to a rod, rather than contracting, it would dilate in the direction of motion, |δX| = γ δl , as illustrated 
in Fig. 4.

The procedure accounting for the relativity of simultaneity applies to any vector field transported normally to 
a worldline O′ . We shall refer to it as the simultaneity-corrected procedure. Two other important vector fields nor-
mal to the worldline of a particle are its 4-acceleration and the Lorentz 4-force on it. In a frame where their repre-
sentation is {A0,A} and {F0, F} , the 3-vectors conventionally associated with these fields are A = γ 2a + γ 4

c2
a·v v 

and f = F/γ = E + v × B . We note how the definitions are mutually inconsistent, due to the extra 1/γ factor 
in the force f  , which is introduced in order to keep the form of Newton’s second law f = d

dt p.
The simultaneity corrected 3-vectors are instead Asim = γ 2a and G = γ

[

E − E·v v
c2

+ v × B
]

 , with E,B the 
electric and magnetic field. Newton’s second law becomes then: qG = mAsim.

In the case of spin, we opt for the simultaneity-corrected procedure because the intrinsic magnetic moment 
of the electron, in the Gilbert model, might be due to two equal and opposite magnetic monopoles separated 
by a small distance. (Precisely, if we take into account Dirac’s quantization and take the monopoles to be 

(26)ωnl,− = −u2

2

hu
(ǫ+u)2

cos2 ψu − hu sin2 ψu + 2

√
Q∗
u

(ǫ+u)3
sinψu cosψu

1
(ǫ+u)2
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,

(27)
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√
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√
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elementary, the separation explaining the observed magnetic dipole moment is the classical radius of the elec-
tron δr = e2/(mc2) .) Thus, the magnetic moment should behave as a rod.

If instead the magnetic moment is due to the rotation of a charge, as in the Ampère model, consider the fol-
lowing: a distributed charge is making a circular motion around its center of mass in a given frame. In a frame 
where the center of mass moves with speed v normal to the plane of circular motion, the charges will make a 
helical trajectory, while their angular speed is reduced by a factor γ due to the dilation of time, and the magnetic 
moment is reduced correspondingly.

The magnetic moment, therefore, decreases by a factor 1/γ in the direction of motion, irrespective of the 
underlying model.

A further argument in favour of using the simultaneity-corrected spin T is the following. The magnetic dipole 
moment M is obtained by the integration over space of the magnetic dipole density m . The latter is a 3-vector, 
which, together with the electric dipole density p , forms the skew-symmetric electromagnetic dipole tensor 

d = (p,m) :=
(

0 ptr

p m ·J
)

 . (We are representing d as a matrix, dαβ , i.e. a contravariant-covariant tensor, thus the 

skew-symmetry is not reflected in the components mixing time and space). The electric and magnetic dipole 

density 4-vectors are obtained by d and its dual ∗d =
(

0 mtr

m − p ·J
)

 by contraction with the 4-velocity, 

pα = dαβU
β , mα = ∗dαβUβ , hence they are automatically normal to the 4-velocity. In the rest frame of the electron 

p′ = 0 , as no intrinsic electric dipole of the electron has been observed so far. Therefore, in the lab frame, recall-
ing that the Lorentz transformation from the lab frame to the electron rest frame includes the Thomas–Wigner 
rotation, Lt = RtB[vt ] ,  with B[v] a Lorentz boost, the magnetic dipole moment density is 
m = Rtr

t m
′ − (γt − 1)v̂t × (v̂t ×Rtr

t m
′) . The component of Rtr

t m
′ parallel to the velocity is unaffected by the 

Lorentz contraction, v̂t ·m = v̂t ·(R
tr
t m

′) , while the component perpendicular to the velocity is multiplied by a 
factor γ . Upon integration over the volume occupied by the electron, we get finally

Thus, the total dipole magnetic moment contracts by a factor γ in the direction of the velocity. In the rest 
frame of the electron M′ = �S′ , with � = gLe/(2m) , e = −|e| being the signed charge of the electron. In order 
for the same proportionality to apply in the lab frame, we must have M = �T , i.e. the simultaneity-corrected 
spin must be used.

As a test of which definition is relevant, consider a beam of electrons at relativistic speed. It is possible to 
polarize the electrons longitudinally, so that their spin is parallel to their velocity and their magnetic moment is 
antiparallel to it. If the beam enters a region of magnetic field B parallel to the spin, a Zeeman splitting occurs, 
with the electrons in the upper level, along with a reduction of the initial speed due to the magnetic field gradient. 

(28)
M =

∫

dVm =
∫

dV ′

γt
[Rtr

t m
′ + (γt − 1)v̂t × (v̂t ×R

tr
t m

′)]

=Rtr
t M

′

γt
+ γt − 1

γt
v̂t × (v̂t ×R

tr
t M

′).

Figure 4.  There are two procedures that an inertial observer can use to build a vector field normal to the 
worldline O from the vector field normal to O′ (black arrow): by projecting it on the simultaneity eigenplane 
passing through the origin of the vector (orange), or by building a vector joining the points at which the 
hyperplane of simultaneity crosses O′ and the line traced by the tip. We note that the time component gives a 
negative contribution to the squared length of a vector, thus the orange vector is larger than the black vector 
(by a Lorentz factor γ , to be precise). On the other hand, the shortening in space of the green vector more than 
compensates for its increase due to the suppression of the time component, yielding a contraction by a factor γ 
instead.
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If the spin, and hence the magnetic moment, were increased by a factor γ , then the deceleration of the electrons 
should be accordingly large, and also the frequency of the photons emitted in the relaxation to the lower Zee-
man state should be large. For instance, in a 1GeV linear accelerator, electrons can reach a factor γ ≃ 2× 103 , 
making the effect, or the lack thereof, easily detectable.

We denoted the 3-dimensional vector field constructed according to the relativity of simultaneity as T,

From here on, we shall use units where c = 1 . We also note that, in an inertial frame, the scalar product of the 
two definitions yields the constant squared norm of the spin

Fermi–Walker transport. Fermi–Walker (FW)  transport15,16 has a crucial role in the following. We illus-
trate it right away.

Consider a particle, having a velocity vt0 , relative to an inertial frame S , at time t0 in the inertial frame. Let 
us pick an inertial reference frame S′

t0
 where the particle is at rest at time t0 , and let t ′0 the proper time. At an 

infinitesimally later time δt′ in S′
t0

 , the velocity of the particle changes by δv′ = a′
t′0
δt′ , with a′

t′0
 the proper accel-

eration. Now, there are infinitely many different inertial reference frames where the particle is at rest at time 
t ′0 + δt ′ , which can be obtained by applying an infinitesimal Lorentz boost followed by an arbitrary rotation of 
the spatial axes. A Lorentz boost does not rotate the spatial axes normal to the velocity, and it rotates the time 
axis and the spatial axis parallel to the velocity in their common plane. It is therefore the simplest Lorentz trans-
formation. (Lorentz boosts are the transformations often presented in introductory texts on special relativity as 
the Lorentz transformations tout court. Actually, they form a subset, which is not a subgroup, of Lorentz trans-
formations: in special relativity, the 3D space is a hyperplane normal to the worldline of the origin of a reference 
frame. Two reference frames in relative motion will thus have different 3D spaces. These spaces, however, will 
share a common plane. Lorentz boosts are transformations between reference frames in which two of the spatial 
axes, usually the Y and Z axes, belong to the common plane and coincide between the two frames.)

Thus, let us consider, among these infinitely many frames, the one which is obtained by a pure infinitesimal 
boost with velocity δv′ . Let us repeat the procedure at another infinitesimal time δt′′ , etc. The sequence of infini-
tesimal boosts defines FW transport. Since the boosts do not form a subgroup, their product is a general Lorentz 
transformation, which can be written as the product of a 3D rotation and a boost.

In particular, if the spatial axes of the reference frame comoving with the particle are FW transported, they 
individuate a special accelerated reference frame, the FW frame, which is non-rotating. This means that, if we 
spin three gyroscopes attached to the particle, then accelerate the particle without applying any torque to the 
gyroscopes, the axes of these will be FW transported. While the gyroscopes do not rotate in the sense that a 
simple Lorentz boost is applied from an instantaneous comoving frame to the next, when viewing them from the 
initial reference frame S , they will make a complicated motion in which we shall individuate a linear precession 
term, the Thomas precession. It is erroneous, however, to state that the gyroscope will just appear as precessing 
in the lab frame. On one hand, Lorentz contraction will affect the gyroscopes, on the other hand, due to the rela-
tivity of simultaneity, the angles among them will appear to change in time in the lab frame, as shown in Fig. 5.

In any other accelerated frame following the same worldline, but with axes not being FW transported, an 
additional Coriolis rotation term appears, causing an apparent precession of the gyroscopes in the accelerated 
frame in absence of external torques. In this sense, the FW frame is minimally non-inertial. The Fermi–Walker 
(FW) reference frame, S′

t , thus has a special status among the frames comoving with an accelerated particle: no 
Coriolis forces appear in it. More details can be found in the Supplemental Materials.

The Lorentz transformation from the lab frame to the FW frame LFW can be decomposed either as RTW(t)B[vt ] 
or as B[RTW(t)vt ]RTW(t) . The 4× 4 matrix RTW(t) is a rotation in 3D space, the Thomas–Wigner rotation, its 
nontrivial part being the 3× 3 orthogonal matrix RTW(t) . The 4× 4 matrix B[vt ] is a Lorentz boost.

While the matrix RTW(t) is the same in both decompositions, it represents two distinct physical rotations.
In the decomposition LFW = RTW(t)B[vt ] , the rotation is applied after the Lorentz boost, hence it represents 

the rotation of the axes of the FW frame relative to another frame, comoving with the particle, defined by the 
application of Lorentz boosts from the lab frame: the boosted rest frame, S′∗

t  . The rate of rotation �′ is obtained 
by differentiating in the proper time t ′ , ddt′RTW(τ−1(t′)) = �′(t′)RTW(τ−1(t′)).

In the decomposition LFW = B[RTW(t)vt ]RTW(t) , the rotation is applied before the Lorentz boost, hence it 
represents the rotation of the axes of a frame whose origin is at rest in the lab frame, and whose axes are rotating 
relative to the lab frame. The rotation rate, as measured in the lab frame, is the skew-symmetric matrix � defined 
by ddtRTW(t) = �(t)RTW(t) . The two rotation rates satisfy �(t) = �′(τ (t))/γ (t).

The relation between the proper time t ′ of the accelerated particle O′ and the time t of the lab is given, up to 
arbitrary choices of initial time, by the well known time dilation formula dt′/dt = γ−1

t  , where γt = [1− v2t ]−1/2 
is the Lorentz contraction factor. For a given motion of O′ , one finds, after integrating, t ′ = τ(t) , and upon 
inversion t = τ−1(t′) . Relativistic invariant formulas are independent of the reference frame, hence they are 
expressed in terms of proper time. We will use the time dilation formula and pass to the inertial time t when 
representing the formulas in the lab frame, as we did in the preceding paragraph. Sometimes, we will write 
equations depending on t ′ on one side and on t on the other side. In these cases, for brevity, we will sometimes 
omit to write t = τ−1(t′) or t ′ = τ(t).

(29)T = S − S0v = S − S·v v .

(30)S·T = S·S = 3

4
�
2.
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The 3-vector corresponding to the skew-symmetric matrix �′
t′ = ω′∗

t′ ·J  , with J  the three (3× 3) generators 
of rotations in 3D, is

where v′∗t′  is the velocity of the lab frame relative to the boosted frame, γt′ is the corresponding Lorentz factor, 
and a′∗t′  is the proper acceleration of the boosted frame. The second equality specifies the rotation in terms of 
quantities measured in the lab frame.

The vector associated to the skew-symmetric matrix �t is

We recognize in Eq. (32) the accepted value for the Thomas precession: it is not, therefore, an additional rota-
tion of the spin in the lab frame, but rather the rotation of an auxiliary purely rotating reference frame.

Equation of motion for the spin. Invariant equation. The fundamental invariant equation for S must be 
determined. In the following, a double underline indicates a rank-2 tensor, e.g. F . A rank-2 tensor accepts two 
vectorial arguments, one to the left and one to the right. By juxtaposing two vectors AB we mean a rank-2 tensor 
which can be multiplied to the left or to the right, e.g. if C = AB , V ·C = V ·AB , C·V = AB·V .

Assuming a linear first order equation for a 4-vector S , its motion is necessarily of the form ( ∂t′ = d/dt′)

with � a coupling constant, �
t′ an applied tensor field and B

t′ := Ut′At′ − At′Ut′ the generator of FW transport, 
Ut′ being the 4-velocity of O′ and At′ := ∂t′Ut′ being its 4-acceleration.

The symbol B for U ∧ A was chosen to stress that the FW generator is the Minkowski space analog of the 
unnormalized binormal vector of the Frenet–Serret apparatus in 3-dimensional space, κ b̂ = v̂ × n̂ , κ being the 
curvature and n̂ = dv̂

dl  the first normal. In Minkowski space, the unit tangent vector v̂ corresponds to the 4-velocity 
U  , the curvature to the norm of the 4-acceleration A , the first normal n̂ to the direction of the 4-acceleration A , 
and the curve length parameter l to the proper time.

For a spin 1/2 interacting with the electromagnetic field, � is the gyromagnetic factor, i.e. the constant of 
proportionality between the spin and the intrinsic magnetic moment, which is the Bohr magneton times the 
Landé gL factor divided by the total angular momentum, � = gLq/(2m) . The skew-symmetry of B ensures the 

(31)ω′∗
t′ =

γt′

γt′ + 1
v′∗t′ × a′∗t′ = − γ 3

t

γt + 1
vt × at ,

(32)ωt = − γ 2
t

γt + 1
vt × at .

(33)∂t′St′ = ��
t′ ·St′ +B

t′ ·St′ ,
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Figure 5.  (a,b). For a particle in uniform circular motion, the X (red) and Y (blue) axes will make a complicated 
motion as seen from the lab frame. In the article, we show how to extract a linear rotation, which we identify 
with Thomas precession, and an additional nonlinear rotation. The solid lines represent the axes of a Fermi–
Walker accelerated frame, the dotted lines the axes of a boosted frame, defined by pure Lorentz boosts applied 
to the lab frame. The length of the axes is constant in the accelerated frame, but varies in the lab frame due to 
Lorentz contraction. The speed is v = 4c/5 , thus γ = 5/3 . The axes were chosen to coincide with the lab axes 
at t = 0 , when the particle is at {0,−R} . The position of the axes is shown at times t = nT/6 , with T the period 
in the lab frame, for (a) n = 0, 1, . . . , 5 and (b) n = 6, 7, . . . , 11 . (c) In the frame defined by the dotted axes, the 
boosted frame, the solid axes appear to be purely rotating, with a frequency ω′ = γ (γ − 1)ω , hence a period 
T
′ = 9T/10 . Due to the time dilation, in the boosted frame the axes of the FW frame will appear as shown in 

the subfigure at times t ′ = nT/10 = nT
′/9.
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conservation of the norm of S in absence of external fields. The first term on the rhs of Eq. (33) would be zero 
in the absence of fields acting directly on S . Hence, we shall refer to the terms arising from it as the direct part.

If, furthermore, the field is �
t′ = �

t′ ·Ft′ ·�t′ , with F
t′ skew-symmetric and �

t′ = 1+ Ut′Ut′ , the projection 
operator on the three-dimensional space normal to the 4-velocity Ut′ , then Eq. (33) preserves both the norm of 
S and the value of its projection along the worldline O′ , St′ ·St′ = const and Ut′ ·St′ = const . In particular, when 
the constant projection is zero, the field F  is the electromagnetic field, and the acceleration is due solely to F 
(neglecting the Stern–Gerlach contribution to the  acceleration24) mAt′ = qF

t′ ·Ut′ , then Eq. (33) reduces to the 
Bargmann–Michel–Telegdi  equation9.

Equation for components in an arbitrary frame. A reference frame is characterized by an origin O following a 
given worldline in Minkowski space, and by a family of three vectors e(j)(t) normal to the worldline, the spatial 
axes. (To avoid confusion, we are writing the time dependence in conventional form, e(j)(t), Sj(t) when indexes 
appear. In the following, however, we will avoid as far as possible the use of component indexes. All in all, special 
relativity is a geometric theory, and thus it is possible to formulate its equations in an invariant form.)

The spatial axes are transported along the worldline of the origin of the frame in such a way that the angles 
among them are preserved and that they continue normal to the time axis, the 4-velocity, which implies that 
∂t e(j)(t) = B

(Frame)
t

·e(j)(t)+�k
j(t)e(k)(t) with �j

k = �jk′e(k′)·e(k) , �jk a skew-symmetric 3× 3 matrix and t the 
proper time of the frame. The tensor B(Frame) = U (Frame) ∧ d

dt U
(Frame) is the FW transport generator associated 

to the frame, while the tensor B that appears in Eq. (33) is the one associated to the particle.
The spin vector is to be decomposed not in the basis e(α)(t) at the origin, but in another basis e(α)(rt , t) 

depending on the position of the spin. The two bases differ because in an accelerated reference frame a curvature 
appears. Details of the calculations will be shown in a forthcoming  paper25.

The components of the spin 4-vector are Sα(t) = S(t′)·e(α)(rt , t) , where e(α)(rt , t) are the reciprocal spatial 
axes of the frame, e(α)(rt , t)·e(β)(rt , t) = δαβ.

Thus

The factor γ̄t = [∂t′/∂t]−1 is the time dilation, which in an accelerated frame is

g  being the gravitational field at the origin of the frame due to the equivalence principle, i.e. minus the proper 
acceleration, � the Coriolis gravi-magnetic field, i.e. the angular velocity of the axes of a FW frame as measured 
by the accelerated frame, and rt the position of the particle. We shall define the scalar potential θt = 1− g t ·rt 
and the vector potential wt = �t × rt.

The additional terms due to the second addend on the rhs of Eq. (34) lead to a redefinition of the time deriva-
tive as a tensor operator,

so that the laws of physics are formally invariant even when written in terms of components. By contrast, the 
formulation of the preceding subsection in terms of abstract vectors and tensors does not require any redefini-
tion of derivatives.

After some calculations, we find that the spatial components of the spin 4-vector obey

where the matrices E , K , and N  represent, respectively, the electromagnetic, the kinematic, and the non inertial 
contribution, 

13 being the 3× 3 identity and abtr being a matrix written as a dyadic. The symbol J  denotes the 3-vector having 
as components the 3× 3 generators of spatial rotations, such that for any pair a, b of 3-vectors a·J b = a × b 
and btra·J = (b × a)tr . We introduced the simultaneous 3-acceleration Asim = A− A0v , A0 = vc·A , and the 
conjugate velocity

(34)∂tS
α(t) = 1

γ̄t

(

∂t′St′
)

·e(α)(rt , t)+ St′ ·
(

∂t e
(α)(rt , t)

)

(35)γ̄t =
1

√

(1− g t ·rt)
2 − [vt −�t × rt ]2

,

(36)Dα
β = δαβ∂t −

(

d

dt
e(α)(rt , t)

)

·e(β)(rt , t),

(37)∂tSt =
[

�

γ̄t
Et +Kt +Nt

]

St ,

(38a)Et = −
[

13 + γ̄ 2
t vtv

tr
t − 1

θ2t
wtw

tr
t

]

(

Bt − vct×Et

)

·J ,

(38b)Kt = vtA
sim,tr
t ·

[

13 − wtv
c,tr
t

]

,

(38c)Nt =
[

θtg t + ∂twt −
1

θt
(∂tθt + wt ·g t)wt −�t × wt

]

vc,trt +�t ·J + 1

θt
wtg

tr
t ,
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The time component satisfies identically S0(t) = vct ·St.
In order to identify correctly the electric and magnetic field in an accelerated frame, some care must be taken 

because the metric is not flat. One should use the fully covariant representation

In a nonrotating frame, i.e. a FW frame, � = 0 , and the equivalent gravitational field is Newtonian, as it 
derives from a scalar potential, hence

Equation in a comoving frame. In the following, a prime with an asterisk denotes the representation in a 
comoving frame, while a prime denotes the representation in the FW comoving frame.

In a comoving frame v = 0 and r = 0 , thus θ = 1 , w = 0 , and Eq. (37) simplifies to

where B′∗
t′  is the magnetic field in the comoving frame, which is the axial 3D-vector representation of the spatial 

block of the skew-symmetric tensor �
t′ ·Ft′ ·�t′.

For FW frames �′ = 0 . Thus, Eq. (33) becomes particularly simple in the comoving FW frame:

The electromagnetic field felt by the particle E′,B′ is not given by the standard textbook formulas 
E� + γ (E⊥ + v × B) , B� + γ (B⊥ − v × E) , because the Lorentz transformation Lt from the lab frame to the 
comoving frame is not a simple boost, but includes the Thomas–Wigner rotation. See Eq. (15) for an example.

Equation in an inertial frame. In an inertial frame, the axes do not vary. In particular, g = 0 and � = 0 . Hence, 
Eq. (37) simplifies to 

 where the matrix M is

The time component satisfies identically S0(t) = vt ·St . The terms on the rhs multiplied by � are the direct 
terms, the remaining term 

[

13 + γ 2
t vtv

tr
t

]

vta
tr
t = γ 2

t vta
tr
t  for S , or −γ 2

t atv
tr
t  for T , is the kinematic term.

Separation of norm and direction in the motion of a vector. Here we discuss the linear homogene-
ous equation for an N-dimensional vector

with M(t) a given one-parameter family of matrices.
We are indicating with a bold symbol a column vector. A row vector will be indicated as a transpose, e.g. Ptr . 

The row-column product is implied by juxtaposition of the symbols. Thus, atrb is the scalar a·b , while abtr is a 
matrix; MP is a column vector, PtrM a row vector, and PtrMP is a scalar.

If M(t) is skew-symmetric, the norm of P(t) is constant, thus the equation describes a rotation. However, how 
to proceed if M(t) is not skew-symmetric? Can we still individuate a rotation term?

First, we shall drop from the problem any component which is possibly conserved and does not enter the 
equations for the other components. This happens if M(t) has some rows and the corresponding columns iden-
tically equal to zero. Thus, if M can be written in the block form (M0(t) 0

0 0
) , we shall consider only the block M0 

and the corresponding components of P , since the remaining components are constant.
More generally, if M(t) has a set of µ common, constant in t, left and right eigenvectors em with 0 eigenvalue, 

we change coordinates so that the last µ axes coincide with em . Then, since P(t) · em = const , we consider only 
the remaining components of P , and the corresponding non-zero block of M.

Next, we separate M(t), or its relevant part M0(t) , in a symmetric and a skew-symmetric part, 
M(t) = M(t)+Ma(t) . The skew-symmetric part gives automatically a contribution perpendicular to P , hence 
it provides a rotation. The symmetric part, however, also provides a rotation, albeit a nonlinear one, as we shall 
see in the following.

(39)vct =
vt − wt

θ2t − w2
t + wt ·vt

.

(40)e(α)(rt , t)·F·e(β)(rt , t) =
(

0 − Etr
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,
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We write the vector as P(t) = P(t)P̂(t) , and we separate the equations for the norm P(t) and for the direction 
P̂(t) . By construction, the equation for the direction can be only a rotation. By multiplying Eq. (46) with P(t) , 
we get the equation for the norm, which involves only the symmetric part of M,

The direction instead satisfies

The first term in the rhs can be written

where we defined the skew-symmetric matrix

with [ , ] the commutator. The skew-symmetric matrix Anl(t, P̂) hence corresponds to another rotation, which 
is nonlinear, as it depends on the direction P̂ itself.

From Eq. (47), the square norm can be written after possibly solving for the direction,

Three dimensional case. In particular, in three dimensions, to any skew-symmetric matrix it is associated, 
through the Hodge dual operation, an axial vector which can be identified as an angular velocity. The linear 
angular velocity is

with J  the 3× 3 angular momentum generators, which form a basis for skew-symmetric matrices. The nonlinear 
angular velocity satisfies

Explicitly,

Finally, in three dimensions, the equations for the direction can be separated as

Two‑dimensional case. Suppose that the Z component of the vector is conserved, and that it does not enter in 
the equation for the other two components. This case is relevant because often times the trajectory is planar, and 
the off-plane component of the spin is always conserved. Let MII the 2× 2 nonzero block of M. Let P� = {PII, 0} 
the component of P on the XY plane with PII the 2-component vector consisting in the first two components of 
P . We have an effective two-dimensional equation

We may proceed as in the general case, and apply Eq. (50) to PII(t) . Since there is only one skew-symmetric 

matrix in 2D, up to a constant, AZ =
(

0 − 1

1 0

)

 , the commutator yields

where ωnl(t, P̂�) = k̂·[P̂�(t)× (M(t)P̂�(t))] , while P̂�(t) is the unit vector of the component of P paral-
lel to the XY plane, i.e. if P = {X,Y ,Z} , P̂� = {X,Y , 0}/

√
X2 + Y2  . Better, in invariant form |P�| = |P × k̂| , 

P̂� = (P − k̂·P k̂)/|P�|.
The nonlinear rotation rate, as a vector in 3D, is thus

(47)P(t)
∂P(t)

∂t
= P2(t) P̂

tr
(t)M(t)P̂(t) .

(48)∂P̂(t)

∂t
= [M(t)− P̂

tr
(t)M(t)P̂(t)]P̂(t)+Ma(t)P̂(t) .

(49)[M(t)− P̂
tr
(t)M(t)P̂(t)]P̂(t) = Anl(t, P̂(t))P̂(t) ,

(50)Anl(t, P̂) := [M(t), P̂P̂
tr] ,

(51)P2(t) = P2(0) exp [ 2
∫ t

0
dt P̂

tr
(t)M(t)P̂(t)].

(52)ωl(t)·J = Ma(t) ,

(53)ωnl(t, P̂)·J = Anl(t, P̂).

(54)ωnl(t, P̂) = P̂ ×

(

M(t)P̂
)

.

(55)∂P̂(t)

∂t
= [ωl(t)+ ωnl(t, P̂(t))]× P̂(t).

(56)∂tPII(t) = MII(t)PII(t).

(57)Anl(t, P̂�) := [MII(t), P̂IIP̂
tr

II] = ωnl(t, P̂�(t))AZ ,

(58)ωnl(t, P̂) = {P̂ × [M(t)P̂]}·k̂ k̂
|P̂ × k̂|2
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Had we not eliminated from the equations the constant component Z, and had we instead applied the result 
for the 3D case, we would get in-plane terms in ωnl , which would change the Z component of the unit vector P̂ 
in such a way as to compensate the change in the norm P.

Application to the spin precession. In our case, in absence of external fields, the equation for the simultaneity-
corrected spin in an inertial frame is

hence the matrix is

The symmetric part is

Therefore, the nonlinear part of the precession (since a spin represents a rotation, the rotation of a spin is 
called a precession),

However, if the motion is planar, the component of the spin normal to the plane of motion in the lab frame 
is conserved. Thus, we should use the 2D result, which yields a nonlinear rotation rate

The skew-symmetric term is

corresponding to the Thomas precession

For the conventional spin S the same linear term holds, while the non-linear term has the opposite sign.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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