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Photo and copper dual catalysis for allene
syntheses from propargylic derivatives via
one-electron process
Qi Liu1,2, Jian Zheng 3, Xue Zhang 1✉ & Shengming Ma 1,4✉

Different from the traditional two-electron oxidative addition-transmetalation-reductive

elimination coupling strategy, visible light has been successfully integrated into transition

metal-catalyzed coupling reaction of propargylic alcohol derivatives highly selectively forming

allenenitriles: specifically speaking, visible light-mediated Cu-catalyzed cyanation of pro-

pargylic oxalates has been realized for the general, efficient, and exclusive syntheses of di-,

tri, and tetra-substituted allenenitriles bearing various synthetically versatile functional

groups. A set of mechanistic studies, including fluorescence quenching experiments, cyclic

voltammetric measurements, radical trapping experiments, control experiments with differ-

ent photocatalyst, and DFT calculation studies have proven that the current reaction pro-

ceeds via visible light-induced redox-neutral reductive quenching radical mechanism, which is

a completely different approach as compared to the traditional transition metal-catalyzed

two-electron oxidative addition processes.
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Due to the wide existence of allene unit in natural products,
bioactive molecules1, and functional materials2, develop-
ment of methods for efficient allene syntheses is of high

current interest3–11. A few strategies such as allenylic substitution
with 2-halo-1,3-butadienes12,13 or allenyl esters14–18, 1,4-difunc-
tionalization of 1,3-enynes19–32, allenation of the terminal alkynes
(ATA) reaction33,34, and coupling reactions involving propargylic
substrates35–53, have been extensively and well established. For
the last reaction, in addition to the SN2′-type substitution of
propargylic substrates38–46, transition metal-catalyzed coupling
reaction of propargylic alcohol derivatives with organometallic
reagents47–53 involves a two-electron oxidative addition-
transmetalation-reductive elimination process (Fig. 1a). How-
ever, scope and selectivity limitation remain due to the issues of
the intrinsic two-electron mechanism54–56. Allenenitriles have

been frequently employed as useful synthetic precursors for
various organic motifs57–59, while the classic synthetic method
relies on stoichiometric amount of CuCN-mediated cyanation of
propargylic alcohols with KCN (1.5 equiv) in the presence of HBr
(2.5 equiv)60. We envisioned a concept for allenenitrile syntheses
via the coupling reaction from propargylic derivatives involving a
one-electron process (Fig. 1b). The challenges here (Fig. 1b) are
(1) the regioselectivity issue on possible formation of alkyne
products61,62, (2) the match of radical reactivity with the transi-
tion metal species, and (3) the regeneration of the catalytically
transition metal catalyst.

In this work, we wish to report such a concept-a radical-
based efficient syntheses of allenenitriles from propargylic oxa-
lates and TMSCN under the dual catalysis of photo and copper
(Fig. 1c)60.

a

R2

R1 LG

R3

R2

R1
R3

•
R1

R2

R3

R2

R1 LG

R3
•

R4

R1

R2

R3

•
TM(n+2)

R1

R2

R3Two-electron
Oxidative addition

- TMn

R4 M
TM

R2

R1
R3

TM(n+2)

b

Nu

cat. TM(n+1)

TMn?

•
TM(n+2)

R1

R2

R3

Radical
generation

Nu

•

Nu

R1

R2

R3

R2

R1 Nu

R3Challenges: 1. Formation of alkynes
2. Radical reactivity match with TMn+1

3. Regeneration of the transition metal catalyst (TM)

PC
R2

R1 O
O

CO2Me fac-Ir(ppy)3 (1 mol%)
CuBr (10 mol%)

4,4'-di-tert-butyl-2,2'-bipyridine (12 mol%)

TMSCN (3 equiv), CH3CN (0.1 M)
•

CN

R1

R2
R3

R3

c

31 examples
up to 92% yieldsTM

?
Nu

cat. TM(n+1) R2

R1
R3

TMn

TM(n+2) Nu

?

Fig. 1 Coupling reactions involving propargylic derivatives. a Traditional transition metal-catalyzed two-electron cross-coupling reactions. b A concept of
one-electron process for cross-coupling reactions. c This work: an example of such a concept for allenenitrile synthesis (visible light/transition metal dual
catalysis).
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Results
Optimization of reaction conditions. We began our study on
the coupling reaction of propargylic oxalate 1a with trimethylsilyl
cyanide (TMSCN) under blue light irradiation in the presence of
CuBr and photocatalyst, fac-Ir(ppy)3. The desired allenenitrile 2a
was formed in DMF for 24 h in 29% NMR yield with 18%
recovery of 1a (Table 1, entry 1). After evaluation of a series of
2,2′-dipyridine ligands, we were glad to find that 4,4′-di-tert-
butyl-2,2′-bipyridine (dtbbpy, L5) was the optimal ligand
(Table 1, entries 2–6). Notably, no propargylic isomer 3a was
detected in the crude reaction mixture. The reaction performed in
CH3CN gave higher yield than other checked solvents such as
DMAC, NMP, DMPU, THF, and DCM (Table 1, entry 7, for
details on solvent screening, see the Supplementary Information).
Increasing the loading of TMSCN (Table 1, entry 8) and running
the reaction at a concentration of 0.1 M (Table 1, entry 9) further
promoted the formation of 2a, which could be isolated in 89%
yield on a 0.5 mmol reaction scale. As expected, CuBr2 was totally
ineffective (Table 1, entry 10). No reaction occurred in the
absence of the light (Table 1, entries 11 and 12) or photocatalyst
fac-Ir(ppy)3 (Table 1, entry 13), suggesting that both the light and
photocatalyst were indispensable for the transformation.

Substrate scope. With the optimized reaction conditions in hand,
we set out to investigate the substrate scope of this method
(Fig. 2). Overall, a variety of terminal tertiary propargylic oxalates
smoothly underwent cyanation to form trisubstituted alleneni-
triles as exclusive regioisomer in good to excellent yields. No
obvious yield difference among cyclic (2a, 2b, 2c, 2d) and acyclic
(2i, 2j, 2m) substrates was observed. Even with the sterically
hindered adamantyl-containing oxalate 1l, the yield of 2l was 91%

after increasing the catalyst loadings of CuBr and L5 to 15 mol%
and 18 mol%, respectively. A wide range of reactive yet synthetic
useful functional groups, such as sulfide (2e, easily poisoning Cu
catalysis), amide (2f), halogen (2n, 2o, 2p), ester (2k, 2q), ketal
(2g, 2s), terminal alkyne (2q), and terminal olefin (2r) were intact
under the standard mild reaction conditions. Interestingly, under
the standard conditions the propargylic oxalate 1h with a ketone
unit was converted to nitrile 2h with the in situ formation of a
synthetically useful enol silyl ether entity63,64 in 65% yield. The
thiophene unit in substrate 1t was also accommodated. Fur-
thermore, products incorporating Boc-protected L-proline 2u,
pentoxyifylline 2v, Boc-protected tropinone 2w and 2w’, and
raspberry ketone tetra-O-acetyl-β-D-glucopyranoside 2x, mes-
tranol 2y worked well without affecting the other fragile func-
tionalities. The structure of 2w’ was unambiguously established
by its X-ray analysis. The reaction could be easily conducted on
gram-scales (2q and 2y), demonstrating the practicality of this
protocol. Even the reaction of terminal secondary propargylic
oxalates 1z and 1A still afforded 1,3-disubstituted allenenitriles 2z
and 2A as the products in decent yields and a very high allene/
alkyne selectivity (25:1 and 14:1). 4-Phenylallenenitrile 2J could
also be obtained via the current method in 54% yield as the only
isomer, and the slightlylower isolated yield may be attributed to
its instability.

The reaction could be further extended to non-terminal
propargylic oxalates, such as 1B, 1C, and 1K. When
trimethylsilyl-substituted alkyne 1C was used, TMS-substituted
allenenitrile 2C was produced exclusively in 88% yield, which was
not readily accessible by other ways65 and very useful in
propargylation reaction66,67. For non-terminal propargylic oxa-
lates with R3 being Ph (1D) and CO2Me (1E), dinitrile products
4a and 4b were obtained, which must be produced from the

Table 1 Optimization of the reaction conditions.

O

CO2Me

O
fac-Ir(ppy)3 (1 mol%)

CuBr (10 mol%)
Ligand (12 mol%)
TMSCN (2 equiv)

blue LED, Solvent (0.2 M)
24 h

•

CN

1a
0.2 mmol

2a

N N

R R L1, R = CO2Me
L2, R = Ph
L3, R = OMe
L4, R = H
L5, R = t-Bu

+

CN

3a
not observed

Entry Ligand Solvent Yield of 2aa Recovery of 1aa

1 – DMF 29 18
2 L1 DMF 7 88
3 L2 DMF 28 65
4 L3 DMF 52 38
5 L4 DMF 53 32
6 L5 DMF 61 33
7 L5 CH3CN 80 14
8b L5 CH3CN 87 11
9c L5 CH3CN 94(89d) Trace
10e L5 CH3CN 0 99
11c,f L5 CH3CN 0 100
12c,g L5 CH3CN 0 99
13c,h L5 CH3CN 0 100

aDetermined by 1H NMR analysis with CH2Br2 as the internal standard.
b3 equivalents of TMSCN were used.
cThe reaction was conducted on 0.5 mmol scale using TMSCN (3 equiv) in CH3CN (5mL).
dIsolated yield.
eCuBr2 was used instead of CuBr.
fWithout light.
gThe reaction was conducted in 50 °C oil bath without light.
hWithout fac-Ir(ppy)3.
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subsequent conjugate addition of TMSCN with the in situ formed
allenenitrile intermediate 2D and 2E, respectively.

Interestingly, when MgCl2 or MgBr2•6H2O replaced TMSCN
as the nucleophile, various chloroallene or bromoallene bearing
sterically hindered adamantyl (12l or 13l), ketal (12s), ester, or
terminal alkyne (13q) could be obtained in decent yields. As a
comparison, TMSBr or TMSCl gave inferior results (Fig. 3).

Synthetic applications. These allenenitriles are synthetic versatile
as shown in Fig. 4: The Cu(I) catalyzed [4+ 2] cycloaddition68 of
2a (R1, R2= -(CH2)5-) with furan provided 7-oxa-bicyclo-[2.2.1]
heptene derivatives endo-5 and exo-5 in 55 and 14% yield,

respectively. The configuration of endo-5 was unambiguously
identified by X-ray analysis. Conjugate addition of
4-methylbenzenethiol with 2a afforded sulfur-substituted tetra-
substituted alkene 6 in an excellent yield69. Deuteration of α-H of
2m (R1=Me, R2= -(CH2)2Ph) with D2O in the presence of
K2CO3 and n-Bu4NBr readily yielded d-2m in 96% yield with
96% D-incorporation. Hydrolysis of nitrile group in 2l (R1=Me,
R2= 1-adamantyl) with a base produced allenyl amide 7 in 64%
yield70. In addition, the ethynyl group in 2q underwent the Cu-
catalyzed click reaction with anti-HIV drug AZT (Zidovudine)71

while the allenenitrile unit remained unreacted, offering useful
handle for further synthetic elaboration.
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Fig. 2 Substrate scope study. aCuBr (15 mol%) and L5 (18mol%) were used. bDue to the difficulty of separating the two regioisomers, the yield value
refers to the isolated yield of a mixture of alkyne and allene; the regioselectivity was determined by 1H NMR analysis. cThe reaction was conducted in 10 mL
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ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30655-3

4 NATURE COMMUNICATIONS |         (2022) 13:3302 | https://doi.org/10.1038/s41467-022-30655-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Mechanistic studies. To probe the reaction mechanism, we
conducted a set of mechanistic studies. First, several propargylic
compounds with different leaving groups 1F (Boc), 1G (Ac),
1H (CO2Me) were prepared. The Cyclic Voltammetry (CV)
experiments were performed to measure the reduction potential
of these substrates 1d, 1F, 1G, and 1H (Fig. 5a). The half peak
potential of redox active oxalate 1d was determined to be Ep/2
[1d/1d•-]=−1.71 V vs SCE (Saturated calomel electrode) in
CH3CN. However, under the same measurement conditions for
1F (Boc), 1G (Ac), and 1H (CO2Me), no apparent anodic and
cathodic current peaks could be observed in the range of −3.0
to 0 V, suggesting that these were redox-inactive leaving groups.
Indeed, when 1F (Boc), 1G (Ac), or 1H (CO2Me) were sub-
jected to the optimal conditions, 100% of the corresponding
unreacted starting materials were recovered.

Two possible reaction pathways for this transformation based on
CV data were proposed as shown in Fig. 6a and Supplementary
Fig. 5. In oxidative quenching cycle (Supplementary Fig. 5), first, the
excited state of fac-Ir(ppy)3* (E1/2red [IrIV/IrIII*]=−1.73 V vs SCE

in CH3CN)72 could be quenched with oxalate 1 (Ep/2 [1d/1d•-]
=−1.71V vs SCE in CH3CN) to generate [fac-Ir(ppy)3]+ species
and anionic radical intermediate 9, which would form propargylic
radical 10 by releasing oxalate anion. Then LCuICN (Ep/2red [CuII/
CuI]=+0.15 V vs SCE in CH3CN, see Supplementary Information
for details) would be oxidized by [fac-Ir(ppy)3]+ (E1/2red [IrIV/
IrIII]=+0.77V vs SCE in CH3CN)72 to produce LCuIICN, which
would further react with TMSCN to yield LCuII(CN)2. Alterna-
tively, in reductive quenching cycle (Fig. 6a), the excited state of fac-
Ir(ppy)3* (E1/2red [IrIII*/IrII]=+0.31 V vs SCE in CH3CN)72 could
be quenched with LCuICN to generate LCuII(CN) and [fac-
Ir(ppy)3]− species (E1/2red [IrIII/IrII]=−2.19 V vs SCE in
CH3CN)72. Oxalate 1 could be reduced by [fac-Ir(ppy)3]− to yield
anionic radial intermediate 9 via one-electron reduction. Finally, in
both pathway the radical intermediate 10 may isomerize to allenyl
radical 1173,74, which may bind with LCuII(CN)2, followed by
reductive elimination to deliver allenenitrile 2 and regenerate the
catalytically active species LCuICN. Another possible pathway, 11
could abstract the CN group from LCuII(CN)2 to afford allenenitrile
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232,75,76. The steric effect of R1, R2, and R3 may play an important
role in the reaction selectivity for forming 2 or 3.

To distinguish the two pathways, Stern-Volmer quenching
experiments of fac-Ir(ppy)3 were carried out. As shown in Fig. 5b,
the excited state of the photocatalyst fac-Ir(ppy)3 was efficiently
quenched by the CuBr/L5 catalyst. Furthermore, if the cyanation
of 1d would be realized via oxidative quenching cycle, considering
the redox-potential window of typical photocatalysis (Ir/Ru/
organic-PC etc.)77, the Ph-PTZ was selected as another potential
photocatalyst for this transformation. The reaction in the
presence of photocatalyst Ph-PTZ instead of fac-Ir(ppy)3 would
provide readily radical 10 or 11, the subsequent SET process
between the oxidized state of Ph-PTZ+ (E1/2[Ph-PTZ+/Ph-
PTZ]=+0.815 V vs SCE in CH3CN)61 and LCuICN (Ep/2red

[CuII/CuI]=+0.15 V vs SCE in CH3CN) would form LCuIICN,
which could yield 2d. However, such a reaction only afforded
10% of 2d with 90% of 1d being recovered (Fig. 5c). When 2
equiv of TEMPO were used as the radical trapping agent in the
reaction of 1d, the formation of 2d was obviously reduced (16%
vs 87%), and the TEMPO-trapped product 14 and/or 15 could be
detected by LC-HRMS analysis, which supports the involvement
of radical intermediates in the current transformation (Fig. 5d).
Furthermore, in order to check the possible triplet energy transfer
mechanism, other ruthenium- or iridium-based dyes or organic

photocatalysts were tested under standard conditions (for details
on photocatalyst screening, see the Supplementary Information):
Photocatalysts (Ir(dtbbpy)(ppy)2PF6, ET= 49.2 kcal/mol and
Ir[dF(CF3)ppy]2(dtbbpy)PF6, ET= 60.8 kcal/mol) with its triplet
energy similar to that of fac-Ir(ppy)3 (ET= 57.8 kcal/mol) did not
provide 2d at all (Fig. 5e)78,79.

To further elucidate the reaction mechanism, density func-
tional theory (DFT) calculations were preformed to survey the
reaction of 1B using ligand L4 (For details on DFT calculations,
see the Supplementary Information and Supplementary Data 1).
As proposed by Fig. 6a, radical intermediate Int1 could be formed
from oxalate 1B. Mulliken atomic spin density analysis of Int1
suggests that the single electron distributes on C1 and C2 with a
similar spin density (0.64 and 0.47, Fig. 6b), indicating Int1 is a
combination of resonance forms of allenyl radical and propargylic
radical. As an allenyl radical, Int1 reacts with L4CuII(CN)2 via a
singlet diradical transition structure TS1_a with a free energy
barrier of 10.1 kcal/mol, providing a closed-shell propargyl-
Cu(III) complex Int2_a reversibly. Subsequent reductive elimina-
tion produces the final allenenitrile product 2B with a very low
barrier of 1.0 kcal/mol (TS2_a). Furthermore, the concerted
radical cyanation process is also investigated. A triplet transition
structure TS_a was obtained with a much higher free energy
barrier of 30.3 kcal/mol, which indicates that the stepwise
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pathway via a Cu(III) intermediate is more favorable. On the
other hand, the possibility of Int1 acting as a propargyl radical
has also been considered. A similar oxidation/reductive elimina-
tion process is obtained, but more energy demanding, due to the
steric effect caused by the cyclohexyl group with the ligand. Thus,
allenenitriles 2B were generated as the only products.

These above results definitely confirmed that the reductive
quenching cycle in Fig. 6a was the dominant pathway in the
current transformation, which is different from the well-
established oxidative quenching mechanism61,75,76.

In conclusion, we have developed a general and efficient
method for the highly selective synthesis of di-, tri-, and tetra-
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substituted allenenitriles from readily available propargylic
oxalates and TMSCN under photoredox conditions. This reaction
featured mild conditions and a broad functional group compat-
ibility. Excellent regioselectivities were achieved in both terminal
and internal propargylic oxalates. Even for secondary substrates,
allenenitriles were still the predominant products. The current
method was further extended to the synthesis of cholorallenes or
bromoallenes by using MgCl2 or MgBr2•6H2O as the nucleophile.
Stern-Volmer quenching experiments, cyclic voltammetric mea-
surements, radical trapping experiments, control experiments
with different photocatalysts, and DFT calculation studies
indicated that propargylic radical and allenyl radical generated
via light-induced one-electron process were involved via the
reductive quenching cycle. This protocol for allenenitrile
syntheses involving one-electron mechanistic pathway is very
different from the traditional transition metal-catalyzed two-
electron coupling reactions and will surely overcome the scope
limitation of the known protocols and enjoy scopes for the
efficient syntheses of differently functionalized allenes due to the
powerful catalytic activity of copper80,81. Further studies on
highly selective allene synthesis via such one-electron process and
other photocatalysts are being actively pursued in this laboratory.

Methods
General procedure for the copper-catalyzed cyanation of propargylic oxalates.
To a flame-dried 10 mL Schlenk tube were added fac-Ir(ppy)3 (3.3 mg, 5 μmol),
CuBr (7.3 mg, 0.05 mmol), 4,4′-di-tert-butyl-2,2′-bipyridine L5 (16.4 mg,
0.06 mmol), 1a (105.4 mg, 0.5 mmol)/CH3CN(2.5 mL), and TMSCN (157.2 mg,
1.5 mmol)/CH3CN(2.5 mL) sequentially under Ar atmosphere. The resulting
mixture was irradiated with a 50W blue LED lamp (2-3 cm away, with cooling fan
to keep the reaction temperature at 35–40 °C) for 24 h with stirring and monitored
by TLC. The resulting mixture was filtrated through a short pad of silica gel eluted
with ethyl ether (30 mL). After evaporation, the residue was purified by chroma-
tography on silica gel to afford the pure product 2a.

Data availability
The X-ray crystallographic coordinates for structures of 2w’ and endo-5 reported in this
study have been deposited in the Cambridge Crystallographic Data Centre (CCDC)
under deposition numbers CCDC 2047907 (2w’), and CCDC-2047908 (endo-5). These
data can be obtained free of charge from http://www.ccdc.cam.ac.uk/data_request/cif.
The experimental procedures and characterization of the new compounds in this study
are provided in the Supplementary Information. All other data are available from the
authors upon request.
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