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Abstract: Electrohydraulic forming is a high-velocity forming process that deforms sheet metals
with velocities above 100 m/s and strain rates more than 100 s−1. This experiment was conducted
in a closed space because of safety concerns related to the high-velocity conditions; therefore, we
were not able to examine the deformation process of the sheet metal. To observe the electrohydraulic
forming process in detail, we performed virtual numerical simulations using accurate material
properties. Therefore, in this paper, we obtained the material property of a sheet metal from a
numerical estimation by using a surrogate model based on the reduced order model and the artificial
neural network. The Cowper–Symonds constitutive equation was selected for the Al 6061-T6 sheet
metal, and two strain rate parameters were adopted as the unknown parameters. From the two
sampling techniques, the training and test samples were extracted from the specific ranges of two
unknown parameters, and a numerical simulation was performed for these samples by using the
LS-DYNA program. The z-axis displacements of the deformed sheet metal were obtained from
the results of the numerical simulation, and two basis vectors were extracted by using principal
component analysis. In addition, to predict the weighting coefficients of the two basis vectors at
the defined range of parameters, we used the artificial neural network technique as a surrogate
model. By comparing the surrogate model and the experimental results and calculating the root
mean square error value, we estimated the optimal parameter for Al 6061-T6. Finally, the reliability of
the obtained material parameters was proved by comparing the experimental results, the surrogate
model, and LS-DYNA.

Keywords: electrohydraulic forming; material property; surrogate model; reduced order model;
artificial neural network

1. Introduction

Electrohydraulic forming (EHF) is a high-velocity sheet metal forming process that deforms the
sheet with a velocity greater than 100 m/s and a strain rate above 100 s−1. In particular, EHF uses the
discharge of electrical energy in a fluid (e.g., water or oil) as a deformation source. When a capacitor
bank discharges electrical energy, the energy is delivered to the fluid by the two electrodes attached
to the wall of the chamber, and this discharge creates high-pressure shockwaves. A very thin wire
connects the tips of the two electrodes. Therefore, the transmitted energy causes the wire to explode,
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which maximizes the shockwaves in the fluid. The metal sheet that was in contact with the fluid is
deformed into the die by the shockwaves. A schematic view of the EHF process is shown in Figure 1.Materials 2019, 12, x FOR PEER REVIEW 2 of 17 
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Researchers have found that the high-velocity forming process can improve the formability of a 
sheet metal having low formability, such as magnesium alloys, titanium alloys, and some aluminum 
alloys [1]. Shim and Kang [2] used the 5000 series of aluminum alloys for the EHF experiment and 
showed formability improvement in the EHF process by comparing Forming limit diagrams(FLDs) 
in quasi-static and high-speed conditions. Gillard et al. [3] and Golovashchenko et al. [4,5] showed 
that the formability of the DP 980 sheet was improved by die–sheet interactions in the EHF 
experiment using dies of various shapes.  

Besides EHF, electromagnetic forming (EMF), which is based on the use of a magnetic force 
generated from a copper coil, shows improvements in formability. Imbert [6] showed significant 
improvements in formability in the EMF experiment and elucidated the reason for the bending and 
straightening of the sheet metal. In addition, Imbert et al. [7] found that high hydrostatic stresses, 
which are favorable for suppression of damage and increase in sheet ductility, can increase 
formability in the EMF process. However, EMF suffers from a major disadvantage—the forming force 
is affected by the electrical conductivity of the sheet metal. For materials with low electrical 
conductivity, the forming efficiency is so low that the EMF has limitations in a wide range of 
industries as described by Shin [8]. Therefore, the EHF, which does not have any restrictions on the 
material selection, has attracted considerable attention from various industries. EHF has another 
advantage that the bouncing of the sheet metal, which is generated in the EMF process as described 
by Noh et al.[9], does not occur because the fluid plays an important role in keeping the forming 
energy at one side of the deformed sheet metal as shown by Woo et al.[10].  

In a high-velocity forming process, such as in EHF, the progress of the deformation of the sheet 
metal cannot be observed during the experiment because the deformation is completed in a very 
short time of approximately 1 ms and the experiment was performed in a closed space because of 
safety concerns. Therefore, we required a reliable finite element analysis to study the EHF process. 
For such a reliable analysis, it is necessary to input accurate material properties for the sheet metal to 
minimize the error between the experiment and numerical simulation.  

In general, for the acquisition of material properties in quasi-static conditions, the tensile test is 
employed by using a dog bone-shaped specimen at a strain rate below 1 s−1 [11]. A popular 
measurement method used for high-speed conditions is the Split Hopkinson pressure bar (SHPB) 
test, which shows a strain rate ranging from 102 to 103 s−1. SHPB was developed by Kolsky [12] in 
1963. In this test, two cylindrical bars are positioned at each end of a specimen. These bars are 
impacted by a striker bar, and the elastic strain waves measured by using two strain gauges attached 
to the bar surfaces. Using the strain waves of the two bars and a theoretical equation for SHPB, we 
calculated the stress–strain relationship of the specimen. However, the experimental apparatus 
required for the SHPB test is expensive, and it is not suitable as a method for acquiring the properties 
of the material to be used for sheet metal forming because the properties are obtained by compression 
force.  

Therefore, in this study, to acquire the material properties of Al 6061-T6, we applied a numerical 
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Researchers have found that the high-velocity forming process can improve the formability of a
sheet metal having low formability, such as magnesium alloys, titanium alloys, and some aluminum
alloys [1]. Shim and Kang [2] used the 5000 series of aluminum alloys for the EHF experiment and
showed formability improvement in the EHF process by comparing Forming limit diagrams (FLDs) in
quasi-static and high-speed conditions. Gillard et al. [3] and Golovashchenko et al. [4,5] showed that
the formability of the DP 980 sheet was improved by die–sheet interactions in the EHF experiment
using dies of various shapes.

Besides EHF, electromagnetic forming (EMF), which is based on the use of a magnetic force
generated from a copper coil, shows improvements in formability. Imbert [6] showed significant
improvements in formability in the EMF experiment and elucidated the reason for the bending and
straightening of the sheet metal. In addition, Imbert et al. [7] found that high hydrostatic stresses,
which are favorable for suppression of damage and increase in sheet ductility, can increase formability
in the EMF process. However, EMF suffers from a major disadvantage—the forming force is affected
by the electrical conductivity of the sheet metal. For materials with low electrical conductivity, the
forming efficiency is so low that the EMF has limitations in a wide range of industries as described
by Shin [8]. Therefore, the EHF, which does not have any restrictions on the material selection, has
attracted considerable attention from various industries. EHF has another advantage that the bouncing
of the sheet metal, which is generated in the EMF process as described by Noh et al. [9], does not occur
because the fluid plays an important role in keeping the forming energy at one side of the deformed
sheet metal as shown by Woo et al. [10].

In a high-velocity forming process, such as in EHF, the progress of the deformation of the sheet
metal cannot be observed during the experiment because the deformation is completed in a very short
time of approximately 1 ms and the experiment was performed in a closed space because of safety
concerns. Therefore, we required a reliable finite element analysis to study the EHF process. For such a
reliable analysis, it is necessary to input accurate material properties for the sheet metal to minimize
the error between the experiment and numerical simulation.

In general, for the acquisition of material properties in quasi-static conditions, the tensile test
is employed by using a dog bone-shaped specimen at a strain rate below 1 s−1 [11]. A popular
measurement method used for high-speed conditions is the Split Hopkinson pressure bar (SHPB) test,
which shows a strain rate ranging from 102 to 103 s−1. SHPB was developed by Kolsky [12] in 1963.
In this test, two cylindrical bars are positioned at each end of a specimen. These bars are impacted by
a striker bar, and the elastic strain waves measured by using two strain gauges attached to the bar
surfaces. Using the strain waves of the two bars and a theoretical equation for SHPB, we calculated
the stress–strain relationship of the specimen. However, the experimental apparatus required for the
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SHPB test is expensive, and it is not suitable as a method for acquiring the properties of the material to
be used for sheet metal forming because the properties are obtained by compression force.

Therefore, in this study, to acquire the material properties of Al 6061-T6, we applied a numerical
estimation using a surrogate model that combined the reduced order model (ROM) and the artificial
neural network (ANN) such that the numerical simulation of EHF showed results similar to the
experimental results.

To describe the material properties, we employed the Cowper–Symonds constitutive equation
that considers a high strain rate condition. We also used two material parameters in this equation as
inputs in the surrogate model.

We selected the z-displacement of the sheet metal as the output for the surrogate model.
The deformed configuration of the sheet had a high order; therefore, the ROM technique can
help the surrogate model generated by the ANN, reduce the computational complexity, and efficiently
predict the outputs.

In Section 2, we describe the numerical model for the EHF free-bulging test and the 40 samples
used in the surrogate model. Section 3 explains the detailed process for the construction of the surrogate
model by using the ROM technique and the ANN learning model. Section 4 presents the validation of
the developed surrogate model by calculating several error values. Section 5 shows the optimized
material parameters for Al 6061-T6. Finally, Section 6 summarizes the results of this paper.

2. Finite Element Method for the Electrohydraulic Forming Process

2.1. Numerical Modeling

To create a surrogate model of EHF, we conducted a numerical simulation by using the LS-DYNA
explicit code. The finite element model for the EHF simulation is shown in Figure 2. The fluid parts
included plasma, water, and air; the structural parts were composed of a deformable sheet metal, a
rigid free-bulging die, and a chamber. To reduce the calculation time, we employed the 1/4 model and
applied symmetric conditions in the x–z and y–z planes.
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Figure 2. Numerical model for electrohydraulic forming.

In the EHF simulation, a large deformation occurs in the fluid parts because of the high
electrical energy, which causes a mesh distortion problem. Therefore, in this study, an arbitrary
Lagrangian–Eulerian (ALE) method was used to create the elements in the fluid parts. The ALE
element can handle the mesh distortion problem, and it is powerful in the fluid-structural coupling
problem. Therefore, the ALE element is widely used in many industries, such as automobile, aerospace,
and military, which deal with high speeds and large deformation problems [13–15]. The structural
parts were modeled with the general Lagrangian elements.

When we define the contact between the ALE materials (plasma, water, and air), we need to
merge the nodes located between the different ALE materials and use a multi-material ALE group. For
defining the contact condition between ALE and the structural materials, we need to use the constraint
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keyword. In the constraint keyword, several values should be chosen, such as the number of coupling
points, the coupling method, and the penalty coupling force direction. In addition, the slave part for
the contact should be the Lagrangian or the structural elements, and the master part should be the
ALE or the fluid parts. If the proper parameters are not defined for the constraint keyword, there can
be a leakage, which means that the fluids penetrate through the structural parts. Therefore, it is very
important to set the parameters for the numerical model.

In our experiment, we used electrodes to deliver the discharged electrical energy from the capacitor
bank to the water. However, in the numerical model, only the plasma part was used instead of the
electrodes because of the efficiency of the numerical simulation. If the electrodes were included in
the numerical model, the generation of elements in the water part would have become very difficult
due to the complex geometry. Therefore, using the plasma part, we describe the pressure wave in the
fluid parts.

The electrical power P for the plasma part can be defined by using the current i and the resistance
of the wire Rw according to the time t in the EHF electrical circuit as described in Equation (1):

P = i2Rw(i, t) (1)

The time evolution of the current in the EHF process can be defined using the following
differential Equation:

d2i
dt2 +

Rw(i, t) + R
L

di
dt

+
1

LC
i = 0 (2)

Here, i is the current in the circuit, R is the resistance of the circuit except Rw(i, t), C is the
capacitance, and L is the inductance.

However, it is difficult to measure the value of Rw(i, t) because the wire is in the fluid and
is dependent on time. Therefore, instead of calculating the current using Equation (2), we used
Equation (3) to calculate the electrical power P by measuring the current and voltage (V) curves
experimentally as:

P = Vi (3)

The electrical power for the plasma part was obtained from the EHF experiment for the input
voltage of 8 kV. The Rogowski coil surrounded the electric wire, which connected the capacitor bank
and the electrodes, and the current was measured when the electrical power was discharged from
the capacitor, as shown in Figure 3. The voltage was assumed to decrease linearly from the input to
zero when the current was at the maximum point [4]. The electrical power deposition rate obtained
by multiplying the current and the voltage curves was the input to the plasma part by using the
equation-of-state keyword in LS-DYNA [16].
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The element size of the fluid parts and the structural parts were set to be like each other so that
the deformation energy was delivered stably from the fluid to the structure.

The thickness of the sheet metal was 1.0 mm, and all the structural parts were constructed with
shell elements. The EHF process proceeded under conditions of high strain rate; therefore, we had to
choose the material model that considered the flow-stress curves according to the different strain rate
conditions for the sheet metal. Therefore, the Cowper–Symonds constitutive equation can be written
as follows [17]:

σ = σ0

1 + ( .
ε
C

)1/p, σ0 = A + Bεn (4)

where σ0 is the flow stress in a quasi-static condition, ε is the effective plastic strain,
.
ε is the effective

strain rate, and C and p are the strain rate parameters. A, B, and n are the material properties
obtained from the quasi-static tensile test. In the case of Al 6061-T6, A = 291 MPa, B = 451 MPa,
and n = 0.66, which were obtained from the tensile test performed at a strain rate of 0.00067 s−1.
To generate the training and test samples for the surrogate model of the EHF simulation, we selected
the strain rate parameters C and p as inputs. The domains for the parameters were selected as follows:
[C, p] = [1000, 2] × [20000, 20] ⊂ R2. For the 20 training samples, we used the Latin hypercube
sampling (LHS) method, and for the 20 test samples, we employed random sampling.

LHS is a widely used sampling method developed by McKay et al. [18]. It divides the entire range
of each variable into n spaces so that the sample is extracted from the entire sample space. We extracted
one sample from each space, but not from the overlapping spaces. The advantage of the LHS is that
it distributes the samples evenly within a defined range compared with other sampling techniques;
therefore, LHS is suitable for extracting the training samples. By random sampling, we obtained 20 test
samples that did not overlap with the training samples.

The obtained samples are shown in Figure 4. Each parameter sample was input to Equation (4);
therefore, we performed a total of 40 numerical simulations. For one case, the analysis required
approximately 5 h when the simulation was implemented on a workstation, which was equipped with
Intel 3.30 GHz 8 core CPUs and 64 GB RAM.
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The important keywords used in EHF simulation are described in Table 1.
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Table 1. LS-DYNA keywords used in EHF simulation.

LS-DYNA Keywords Description

* MAT_PIECWISE_LINEAR_PLASTICITY Material keyword for Al 6061-T6
* CONTACT_SURFACE_TO_SURFACE Contact keyword for structural parts

* CONSTRAINED_LAGRANGE_IN_SOLID Contact keyword for coupling between
structure and fluid parts

* INITIAL_VOLUME_FRACTION_GEOMETRY Volume fraction keyword for generating
water part

* EOS_LINEAR_POLYNOMIAL_WITH_ENERGY_LEAK Equation of state keyword for electric power
in plasma part

* ALE_MULTI-MATERIAL_GROUP Keyword for defining ALE materials group
(plasma, water and air)

2.2. Numerical Results

The simulation results for case 1 (C = 6000 s−1 and p = 6) are illustrated in Figure 5. The initial
plasma part was very small with an initial radius of 1 mm. However, after the power input, the fluid
parts expanded, and the water part deformed the sheet metal into the die shape. High pressure first
occurred at the center and then propagated throughout the entire fluid parts. However, the energy of
the fluid parts was used to deform the sheet metal. Gradually, the pressure decreased, and a slight
high pressure was generated near the deformed sheet from 0.3 to 0.4 ms. We could clearly examine
the propagation of the pressure waves at the beginning of the power input. However, these waves
gradually showed complex shapes due to the interference that occurred as a result of the reflection
of the pressure waves against the chamber and the sheet metal. The coupling of the fluid and the
structural parts was well defined by using a constraint keyword; therefore, there was no leakage in the
numerical simulation. The sheet deformation was almost completed within approximately 0.5 ms; the
sheet was saturated until the end of the simulation, as shown in Figure 6. The deformation started at
the center of the sheet, and then it proceeded outward.
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Figures 7 and 8 show the forming velocity and strain rate for the sheet at three points. As described
in the introduction, the sheet metal was deformed with very high velocity above 100 m/s and maximum
high strain rates of approximately 2400 s−1 at the central area. Mostly, the strain rate of the sheet metal
is between 100 and 500 s−1 during the forming process. At 0.5 ms, the z-axis velocity had a negative
value due to the slight bouncing, which was caused by the vibrations resulting from the high-speed
deformation. The z-axis velocity came close to zero as the vibration decreased (see Figure 7).
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For the 20 training samples and the 20 test samples, the z-displacements of the sheet metal at
different x-coordinate points were extracted, as shown in Figure 9. To create the surrogate model, all
the cases had the same number of points. Therefore, from the center of the sheet, where the maximum
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z-displacement occurred, we selected 39 points, and the z-displacement at each point was used in
the ROM.Materials 2019, 12, x FOR PEER REVIEW 8 of 17 
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3. Surrogate Model Using Order Reduction and ANN

3.1. Reduced Order Model

Reduced order model (ROM) is a mathematical technique used in many fields that deal with
high-order numerical models, such as the aviation and aerospace industries [19–21]. By using the ROM
technique, the original data, which had a high order, was mapped into a lower-dimensional space to
reduce the computation time and eliminate unnecessary noise. In this process, the characteristics of
the original data are retained.

To reduce the order of the problem, we performed principal component analysis (PCA) in advance.
PCA has been widely used for dimensionality reduction and feature extraction. It finds new basis
vectors, which are orthogonal to each other while preserving the variance of the original data and
transforming the data from higher-dimensional spaces into lower-dimensional spaces without any
linear correlation.

Let Zc(x;θ) ∈ R39 be a mean-centered output associated with the x-coordinate ∈ R and the
material parameter θ(C, p) ∈ R2 for the training samples. Then, Zc can be presented by the linear
combination of the orthogonal basis vectors as follows:

Zc
(
x;θ j

)
=

r∑
i=1

ai
(
θ j

)
vi(x) + Z (5)

Here, ai
(
θ j

)
is the weighting coefficient corresponding to the basis vector vi(x) ∈ Rm, r is the

number of basis vectors, Z is the sample mean that can be calculated using Z = 1
n
∑n

j=1 Zc
(
x;θ j

)
∈ Rm,

and n = 20 is the number of samples.
We can reduce the dimension of the output Zc from r to s by dropping r− s unimportant basis

vectors and choosing only the significant s basis vectors. By doing this, Equation (5) can be revised
as follows:

Zc
(
x;θ j

)
≈

s∑
i=1

ai
(
θ j

)
vi(x) + Z (6)

We obtained the basis vectors v for this study using the PCA technique as follows. First, using the
output of the training sample Z ∈ R39 × 20, we calculated the mean centered sample Zc by subtracting
the mean value of the samples from the original data. Second, we determined the eigenvalues and
eigenvectors of the covariance matrix of Zc.
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When we found the basis vectors of the sample data, we first calculated the covariance matrix of
the data. To effectively perform the PCA process, the data Y transformed into the lower-dimensional
spaces should preserve the variance of the original data. The transformed data can be described as
a linear combination of the original data X. Therefore, the transformed new data can be written as
Y = ATX, where the matrix A is the basis vector. To preserve the variance, the following Equations [22]
need to be satisfied by the theory of linear algebra:

max
{
Var(Y)

}
= max

{
Var(ATX)

}
= max

{
ATΣA

}
(7)

Here, Σ is the covariance matrix of X. The value of A is directly proportional to the right-hand-side
term of Equation (7). Therefore, using the constraint ||A|| = 1 and applying the Lagrange multiplier
method, we obtain the following equation:

(Σ − λ)A = 0 (8)

From linear algebra [23], we know that A is the eigenvector of Σ, and λ is the eigenvalue of Σ.
In conclusion, A (which maximizes the variance of Y) is the eigenvector of Σ, and the matrix A is
called the PCA. In addition, the column vectors of Σ, which are the eigenvectors, are orthogonal to one
another; therefore, they can be used as basis vectors for the linear transformation of X. In conclusion, to
find the basis vectors of the data set, we needed to calculate the eigenvectors of the covariance matrix
of Zc.

In the PCA process, we employed the snapshot method to extract the eigenvalues and eigenvectors.
The snapshot method is used to obtain a small number of eigenvectors. When we obtain eigenvalues and
eigenvectors, the covariance matrix ZcZc

T needs to be calculated. However, for example let A = (m× n)
matrix and m� n, then the size of the covariance matrix AAT increases, and the computation of the
eigenvalues and eigenvectors becomes complicated. Therefore, using the snapshot method, we can
calculate ATA instead of AAT. Using a smaller covariance matrix, we can easily obtain the eigenvalues
and eigenvectors. In linear algebra, the eigenvalues of AAT and ATA are the same, and the eigenvectors
of AAT can be calculated by multiplying A and the eigenvectors of ATA. Therefore, using Zc

TZc, we
computed 20 eigenvalues and 20 eigenvectors, instead of 39 eigenvalues and 39 eigenvectors. We hen
listed the eigenvectors in the order of magnitude of the eigenvalues. The cumulative sum of the
normalized eigenvalues is shown in Figure 10. The sum of all the normalized eigenvalues was 1.
The sum of the first and second eigenvalues was 0.9986, which means that the variance of the original
data can be preserved more than 99% by using only two eigenvectors. Therefore, the result of the EHF
simulation can be represented by using only the first and second eigenvectors. The two eigenvectors
are shown in Figure 11. The first eigenvector is similar to the deformation shapes in Figure 9; this
means that the first eigenvector is the most important factor in the deformation geometry of the sheet
metal and has the same context as the normalized value of the first eigenvalue in Figure 10. Therefore,
the first two eigenvectors were chosen as the basis vectors of the ROM.

3.2. Prediction of the Weighting Coefficients by Using ANN

Using the two basis vectors obtained, Equation (6) can be rewritten as follows:

Zc
(
x;θ j

)
≈

2∑
i=1

ai
(
θ j

)
vi(x) + Z (9)

To complete the ROM process, we calculate the weighting coefficients ai at the specific parameter
θ j. The weighting coefficient can be easily calculated by orthogonal projection [23]:

ai
(
θ j

)
=

(
Zc

j, vi
)
. (10)
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For the known parameter θ j, such as the training sample in this study, we can calculate ai because
we know the Zc

j and vi values (which are calculated as described in Section 3.1). For example, for the
training sample 1 (C = 6000, p = 5.7895), a1 = −1.2490 and a2 = 1.4431 from Equation (10). Therefore,
when the original z-displacement data is compared with the ROM data, which has only two basis
vectors, the two curves show almost the same results as those of the root mean square error of 4.835E−2
(see Figure 12).
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However, for unknown parameters, we cannot obtain ai using Equation (10). Therefore, the ANN
model was used to develop a surrogate model that could build the relationship between θ j and ai such
that it was possible to predict ai for the unknown parameter θ j.

The ANN system is a machine learning method that models the neuronal circuits in which humans
make decisions [24]. The ANN system is like the human brain; numerous nodes are interconnected to
learn the input data. At the start of the learning, we could not obtain accurate predictions, but the
incremental learning created a relationship between the input and output, and the output could be
predicted for even untrained input data after the learning was completed.

In general, the ANN consists of the input layer, hidden layer, and output layer, as shown in
Figure 13. When there are two or more hidden layers, the learning model is known as the deep neural
network. The input signal xi is transferred from the input layer to the j-th node of the hidden layer,
and it is multiplied by weighting the factor ui j. Finally, the input signal is forwarded to the output
layer. In this study, we used two hidden layers; therefore, the following equations describe the overall
procedures to predict the weighting coefficient in the ROM equation by using ANN:

a = h
[∑

wkl g
[∑

v jk f (
∑

xiui j)
]]

(11)
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Figure 13. Schematic view of the artificial neural network.

Here ui j, v jk, and wkl are the weight factors from the input to the hidden layer 1, from the hidden
layer 1 to the hidden layer 2, and from the hidden layer 2 to the output layer, respectively; f , g, and h
are the sigmoid activation functions as follows:

f =
1

(1 + e−x)
. (12)

The prediction accuracy is improved through a backpropagation algorithm that adjusts the
weighting factor between the layers to reduce the error between the output and the desired target
values. The Levenberg–Marquardt (LM) function was used as a network backpropagation function [25].
The LM function combines the Gauss–Newton algorithm and the gradient descent algorithm, and it is
widely used in nonlinear least-square problems.

In this study, the ANN supervised learning model was constructed using two hidden layers
and 40 neurons. In addition, the inputs are the material parameters θ j for the training samples,
and the targets are the weighting coefficient ai corresponding to θ j calculated using Equation (10).
The flowchart for constructing the surrogate model using the ROM is shown in Figure 14.
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4. Validation of the Surrogate Model

The surrogate model using the ROM for the EHF was constructed by using the MATLAB 2019a
program. Using the constructed surrogate model, we predicted the z-displacement in the EHF process
by using the training and test samples. The actual versus predicted plots are shown in Figure 15.
Almost all the data are located near the Predicted = Actual line, which means that the outputs of the
surrogate model were correctly predicted.
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To analyze the results in detail, we calculated several error values, such as the coefficient of
determination (R2), root mean square error (RMSE), mean absolute relative error (MARE), and
maximum absolute relative error (Max. ARE) for the training and test samples, as shown in Table 2.
A regression model with R2 close to zero is not very useful; however, when R2 has a large value close
to one, the output is predicted well. The RMSE value is commonly used to calculate the difference
between the prediction of the regression model and observation of the real experiment. MARE is
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employed in regression problems or model evaluation owing to its intuitive interpretation in terms of
the relative error. The equations for the four errors are as follows:

R2 =

∑(
ŷi − yi

)2

∑(
yi − yi

)2 (13)

RMSE =

√
1
n

Σ(yi − ŷi)
2 (14)

MARE =
1
n

Σ
∣∣∣∣∣ yi − ŷi

yi

∣∣∣∣∣ (15)

Max.ARE = max
∣∣∣∣∣ yi − ŷi

yi

∣∣∣∣∣ (16)

Table 2. Numerical validation for the training and test samples.

Training Sample Test Smple

No. R2 RMSE MARE Max. ARE No. R2 RMSE MARE Max. ARE

1 9.999E-01 4.835E-02 6.048E-03 8.119E-02 1 9.995E-01 1.983E-01 2.268E-02 2.334E-01
2 9.999E-01 5.312E-02 3.036E-02 7.184E-01 2 9.995E-01 2.189E-01 2.474E-02 2.094E-01
3 9.999E-01 4.087E-02 3.354E-03 3.864E-02 3 9.995E-01 2.082E-01 1.669E-02 1.840E-02
4 9.999E-01 3.374E-02 2.729E-03 2.571E-02 4 9.996E-01 1.987E-01 1.264E-02 5.855E-02
5 9.999E-01 9.558E-02 1.529E-02 3.233E-03 5 9.996E-01 1.992E-01 1.987E-02 2.034E-01
6 9.999E-01 5.749E-02 6.005E-03 1.349E-02 6 9.995E-01 2.122E-01 1.059E-02 1.666E-02
7 9.999E-01 3.348E-02 6.363E-03 2.655E-03 7 9.996E-01 1.974E-01 1.581E-02 1.006E-01
8 9.999E-01 4.260E-02 3.520E-03 2.054E-02 8 9.997E-01 1.981E-01 1.395E-02 6.089E-02
9 9.999E-01 4.228E-02 8.438E-03 1.070E-02 9 9.994E-01 2.033E-01 1.356E-02 1.059E-01

10 9.999E-01 4.052E-02 2.298E-03 6.936E-03 10 9.996E-01 1.977E-01 1.091E-02 3.819E-02
11 9.999E-01 5.653E-02 5.126E-03 5.224E-02 11 9.995E-01 2.092E-01 3.432E-02 4.571E-01
12 9.999E-01 7.672E-02 1.217E-02 7.476E-03 12 9.996E-01 2.007E-01 1.397E-02 6.695E-02
13 9.999E-01 4.057E-02 6.139E-03 3.676E-02 13 9.996E-01 2.059E-01 2.265E-02 1.911E-01
14 9.999E-01 7.306E-02 9.832E-03 9.419E-02 14 9.996E-01 1.999E-01 1.855E-02 1.504E-01
15 9.999E-01 5.273E-02 7.811E-03 7.290E-02 15 9.996E-01 1.986E-01 1.684E-02 1.033E-01
16 9.999E-01 4.708E-02 7.075E-03 6.479E-03 16 9.996E-01 2.152E-01 1.381E-02 3.668E-02
17 9.999E-01 4.191E-02 4.357E-03 2.803E-03 17 9.993E-01 2.045E-01 1.475E-02 8.087E-02
18 9.999E-01 3.483E-02 3.333E-03 2.347E-02 18 9.996E-01 2.012E-01 1.257E-02 5.468E-02
19 9.999E-01 3.159E-02 3.926E-03 3.929E-02 19 9.996E-01 2.019E-01 1.409E-02 8.220E-02
20 9.999E-01 2.188E-02 3.200E-03 5.797E-03 20 9.996E-01 1.976E-01 1.594E-02 9.812E-02

Here, yi is the original data, ŷi is the predicted value, yi is the mean value of yi, and n is the
number of samples. When the R2 value is close to one, and the RMSE and MARE values are close to
zero, the predicted model estimates very well the output of the original data.

For the training samples, all the cases show the R2 values of at least 9.99E−1, and the RMSE and
MARE show values close to zero, and their maximum values were 9.558E−2 and 3.036E−2, respectively.
All the Max. ARE also show a small value less than 1. For the training samples, this result is natural
because the ANN model for the weighting coefficients was trained by using the training samples.
Although the error is a bit large compared with the training data, the test sample also has R2 values of
more than 9.99E−2. The other errors were close to zero; therefore, the test samples also showed good
prediction, which means that the outputs of the surrogate model were well predicted. Therefore, we
can conclude that the surrogate model was well constructed.

From the actual–predicted plots for the weighting coefficients shown in Figure 16, we can see that
the predicted results of a2 have a relatively large error compared with the original values. However, a2

is insignificant compared with a1 due to the low eigenvalue (described in Section 3.1); therefore, it does
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not substantially affect the z-displacement results. The results of the surrogate model showed good
agreement with the original results notwithstanding the relatively low prediction results of a2.
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5. Optimal Material Parameters for Al 6061-T6

To find the optimal parameters that have minimum error with the experimental results, we
calculated RMSE values at the defined range of material parameters as follows:

RMSE =

√
1
n

Σ
(
yexperiment − ŷestimated

)2
(17)

The experimental results were obtained from the free-bulging EHF experiment performed at the
input voltage of 8 kV. In the case of the high-velocity forming process, the formability of the sheet metal
was affected by the contact between the sheet metal and die [5–7]. Therefore, to obtain the accurate
material property, the free-bulging die was used so that there was no contact between the sheet metal
and the die during deformation. The process for the EHF experiment using the free-bulging die is
described in detail in ref. [26].

The RMSE values calculated at [C, p] = [1000, 2] × [20000, 20] ⊂ R2 are shown in Figure 17
as 2D and 3D graphs by the contour plot function in MATLAB. The minimum value of RMSE was
approximately 4.608 × 10−1, which occurred at C = 15202.02 and p = 18.73. To validate the reliability of
the obtained parameters, we compared the following three cases: the surrogate model, the LS-DYNA
simulation, and the experiment; our results are shown in Figure 18 and Table 3. A comparison of the
numerical simulation–surrogate model shows a higher R2 value and smaller values of RMSE, MARE,
and Max. ARE than the other two cases. This means that the surrogate model, constructed by the ROM
and ANN techniques, can well predict the z-displacement in the EHF process. In addition, the other
two cases (i.e., the experiment–surrogate model and the experiment–numerical simulation) also show
reasonable error values; the R2 values were close to 1, and the RMSE and MARE values were close to 0.
Therefore, the material parameters in the Cowper–Symonds model for Al 6061-T6 were determined to
be C = 15202.02 and p = 18.73.
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Table 3. Numerical validation of the experiment, the numerical simulation, and the surrogate model.

Error Experiment–Surrogate
Model

Experiment–Numerical
Simulation

Numerical Simulation–
Surrogate Model

R2 9.977E-01 9.964E-01 9.985E-01
RMSE 4.608E-01 5.793E-01 3.701E-01
MARE 6.390E-02 9.620E-02 3.640E-02

Max. ARE 3.417E-01 7.980E-01 2.552E-01

6. Conclusions

In this paper, by using the surrogate model based on the ROM and ANN techniques, we performed
a numerical estimation to determine the material parameters in the Cowper–Symonds constitutive
equation for Al 6061-T6. We obtained 20 training samples and 20 test samples from the LHS and random
sampling, respectively, and we conducted numerical simulations for these samples. We extracted
z-displacements of the deformed sheet metal and used them to construct the ROM. By applying PCA,
we calculated the eigenvalues and eigenvectors for the training samples; two significant eigenvectors
were used as the basis vectors in the ROM process. For only two basis vectors, the variance of the
original data was preserved over 99%.

To predict the weighting coefficient for the range of material parameters C and p, we employed a
surrogate model with two hidden layers and 40 nodes. In the ANN model, the input values were the
material parameters C and p, and the output values were the two weighting coefficients in the ROM
model having two basis vectors. To perform a goodness of fit for the surrogate model, we calculated R2,
RMSE, MARE, and Max. ARE for the training and test samples. The error showed reasonable values,
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which proved the reliability of the surrogate model. Finally, we obtained the optimized parameters
C = 15202.02 and p = 18.73 by calculating the RMSE value for comparing the experimental result and
the surrogate model at defined parameter ranges.

In this study, dynamic material parameters for Al 6061-T6 were obtained using the final shape
under the specific conditions of the 8 kV EHF experiment. Since uncertainties, such as input energy
error, experimental error, and measurement error, are not considered, the obtained parameters may not
be appropriate under other forming conditions. Therefore, in our future work, it will be necessary to
use a probabilistic and statistical approach to consider uncertainties to acquire more accurate material
parameters which can be applied universally.
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