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ABSTRACT The site frequency spectrum (SFS) and other genetic summary statistics are at the heart of many population genetic
studies. Previous studies have shown that human populations have undergone a recent epoch of fast growth in effective population
size. These studies assumed that growth is exponential, and the ensuing models leave an excess amount of extremely rare variants. This
suggests that human populations might have experienced a recent growth with speed faster than exponential. Recent studies have
introduced a generalized growth model where the growth speed can be faster or slower than exponential. However, only simulation
approaches were available for obtaining summary statistics under such generalized models. In this study, we provide expressions to
accurately and efficiently evaluate the SFS and other summary statistics under generalized models, which we further implement in a
publicly available software. Investigating the power to infer deviation of growth from being exponential, we observed that adequate
sample sizes facilitate accurate inference; e.g., a sample of 3000 individuals with the amount of data expected from exome sequencing
allows observing and accurately estimating growth with speed deviating by $10% from that of exponential. Applying our inference
framework to data from the NHLBI Exome Sequencing Project, we found that a model with a generalized growth epoch fits the
observed SFS significantly better than the equivalent model with exponential growth (P-value ¼ 3:853 1026). The estimated growth
speed significantly deviates from exponential (P-value � 10212), with the best-fit estimate being of growth speed 12% faster than
exponential.
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SUMMARY statistics of genetic variation play a vital role in
population genetic studies, especially inference of demo-

graphic history. In particular, the site frequency spectrum
(SFS) is a vital summary statistic of genetic data and is widely
utilized by many demographic inference methods applied to
humans and other organisms (Marth et al. 2004; Gutenkunst
et al. 2009; Excoffier et al. 2013; Bhaskar et al. 2015; Liu and
Fu 2015). Some other demographic inference methods are
based on the sequential Markov coalescent and utilize the
most recent common ancestor (TMRCA) and linkage disequi-

librium patterns (Li and Durbin 2011; Harris and Nielsen
2013; MacLeod et al. 2013; Sheehan et al. 2013; Schiffels
and Durbin 2014). As another example, several studies used
the average pairwise difference between chromosomes
(Hammer et al. 2008; Gottipati et al. 2011; Arbiza et al.
2014) and the SFS (Keinan et al. 2009) to study the relative
effective population sizes between the human X chromosome
and the autosomes. The wide application of such genetic
summary statistics stresses the need for their fast and accu-
rate computation under any model of demographic history,
instead of their estimations via simulations or approxima-
tions (e.g., Hudson 2002; Gutenkunst et al. 2009).

Several recent demographic inference studies showed ev-
idence that human populations have undergone a recent
epoch of fast growth in effective population size (Gutenkunst
et al. 2009; Coventry et al. 2010; Gravel et al. 2011; Nelson
et al. 2012; Tennessen et al. 2012; Gazave et al. 2014). How-
ever, the above studies assumed that the growth is exponen-
tial. The observation of a huge amount of extremely rare,
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previously unknown variants in several sequencing studies
with large sample sizes (Nelson et al. 2012; Tennessen
et al. 2012; Fu et al. 2013) and the recent explosive growth
in census population size suggests that the human population
might have experienced a recent super-expononential growth,
i.e., growth with speed faster than exponential (Coventry et al.
2010; Keinan and Clark 2012; Reppell et al. 2012, 2014).
Hence, recent studies presented a new generalized growth
model that extends the previous exponential growth model
by allowing the growth speed to be exponential or faster/
slower than exponential (Reppell et al. 2012, 2014). Modeling
the recent growth by this richer family of models holds the
promise of a better fit to human genetic data and can also be
applicable to other organisms that experienced growth. How-
ever, only simulation approaches are currently available for
evaluating such a generalized growth demographic model
(Reppell et al. 2012), which makes inference of demographic
history computational intractable.

In this study,wefirst provide a set of explicit expressions for
the computation of five summary statistics under a model of
any number of epochs of generalized growth or decline: (1)
the time to themost recent commonancestor (TMRCA); (2) the
total number of segregating sites (S); (3) the SFS; (4) the
average pairwise difference between chromosomes per site
(p); and (5) the burden of private mutations (a), a summary
statistic that has been recently introduced as sensitive to re-
cent growth (Keinan and Clark 2012; Gao and Keinan 2014).
We also introduce a new software package, Efficient compu-
tation of Generalized models’ Genetic summary Statistics
(EGGS), which implements these expressions and facilitates
fast and accurate generation of these summary statistics.
We show that the numerically computed summary statistics
match well with simulation results and facilitate computa-
tion that is orders of magnitude faster than simulations. By
performing demographic inference on the SFS generated
from simulated sequences, we then explore how many sam-
ples are needed for recovering parameters of a recent gener-
alized growth epoch. Finally, we apply the software to
investigate the nature of the recent growth in humans by
inferring demographic models using the SFS of synonymous
variants of 4300 European individuals from the National
Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing
Project (Tennessen et al. 2012; Fu et al. 2013).

Materials and Methods

Generalized demographic models

A demographic modelNðTÞ describes the changes of effective
population sizeN against time T. We consider time, measured
in generations, as starting from 0 at present and increasing
backward in time. Furthermore, we consider the families of
demographic models that are constituted by any number
of epochs of generalized growth or decline, along the lines
of Bhaskar and Song (2014). More formally, there exists
a minimal positive integer L such that the demographic

history of a population can be split into a model with Lþ 1
epochs that are split by L ordered different time points
T1;T2; . . . ; TL ( T0 ¼ 0,T1 ,T2 , . . . ,TL ,TLþ1 ¼ N) ,
with the kth epoch starting from Tk21 and lasting through
Tk (thus the last epoch starts at time TL and continues into
indefinite past, TLþ1 ¼ N). Such a history is considered as a
generalized model if the population size in each epoch
NðTk21 #T,TkÞ can be described by the following differen-
tial equation regarding time T (Reppell et al. 2012, 2014),

dN
dT

¼ 2 rkN
bk ; (1)

where k ¼ 1; 2; . . . ; Lþ 1: Each epoch can hence capture a
variety of changing patterns in effective population size. Spe-
cifically, if rk ¼ 0; this epoch is of constant population size.
When rk 6¼ 0; bk controls the growth or decline speed of this
epoch: (1) if bk ¼ 1; the epoch is of exponential growth
(rk . 0) or decline (rk , 0) with rate rk; (2) if bk . 1; the
epoch is of faster-than-exponential (super-exponential)
growth (rk . 0) or decline (rk , 0); (3) if bk , 1; the epoch
is of slower-than-exponential (sub-exponential) growth
(rk . 0) or decline (rk , 0). Linear growth or decline is also
a special case of generalized models when bk ¼ 0: An illus-
tration of a generalized model with five epochs is provided in
Figure 1, with more detailed explanation and illustrations in
Supporting Information, File S1 and Figure S1.

The solution to Equation 1 is

NðTÞ ¼
�
N12bk
k;i 2 rkðT2Tk21Þð12 bkÞ

� 1
12bk ; bk 6¼ 1

Nk;ie2rkðT2Tk21Þ; bk ¼ 1

8><
>: (2)

(Reppell et al. 2012, 2014), where Nk;i is the initial popula-
tion size of the kth epoch. Each epoch k is defined by four
parameters: the starting population size Nk;i; the ending pop-
ulation size Nk;f ; the duration of the epoch ðTk 2Tk21Þ; and
the growth speed parameter bk: The growth rate parame-
ter rk is an immediate function of these parameters,
rk ¼ rkðNk;i;Nk;f ; bk;Tk 2Tk21Þ; and hence does not need to
be provided as an independent variable in defining the
changes in effective population size during an epoch. Note
thatNkþ1;i; the starting population size of the ðkþ 1Þth epoch,
is not necessarily the same as Nk;f ; the ending population size
of the kth epoch. Specifically, if Nkþ1;i 6¼ Nk;f ; there is an in-
stantaneous change in population size at time Tk:

Explicit expressions for summary statistics of
demographic models under arbitrary population
size functions

In this section, we briefly summarize the main results from
previous studies that are used to evaluate the expected value
of the summary statistics. Under Kingman’s standard coales-
cent (Kingman 1982a,b), given a demographic model NðTÞ;
the expected time to the most recent common ancestor
E½Tp

MRCA� can be calculated by
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E
�
Tp
MRCA

� ¼ Xp
j¼2

Ap
j cj (3)

(Polanski and Kimmel 2003), where the superscript p is the
number of chromosomes (i.e., twice the sample size for dip-
loids), cj is the expected time to the first coalescent event
when there are j chromosomes at present, and Ap

j are con-
stants (Tavare 1984; Takahata and Nei 1985; Polanski et al.
2003) provided in File S1. Without loss of generality, we
consider the case of diploid individuals, where there are
2NðTÞ chromosomes at any generation T, and use the nota-
tion NðTÞ ¼ 2NðTÞ: Then cj is expressed by the equation

cj ¼
Z N

0
T

�
j
2

�

NðTÞe
2
R T

0

��
j
2

�
ds=NðsÞ

�
  dT

¼
Z N

0
e
2

�
j

2

�
LðTÞ

  dT; (4)

where LðTÞ ¼ R T
0 ðds=NðsÞÞ:

The expected full normalized SFS E
�
jp
� ¼�

E
�
j
p
1

�
;E

�
j
p
2

�
; . . . ;E

�
j
p
p21

�	
can be computed by the follow-

ing set of equations (Polanski et al. 2003),

E
�
j
p
i

� ¼ E
�
ℓpi
�

E½Lp�; E
�
ℓpi
� ¼ Xp

j¼2

Wp
i;jcj; E½Lp� ¼

Xp
j¼2

Vp
j cj;

(5)

where ℓpi is the length of branches in the genealogy that have i
descendants (i ¼ 1; 2; . . . ; p2 1) and Lp ¼ Pp21

i¼1 ℓ
p
i is the to-

tal length of all branches in the coalescent tree. The quanti-
ties Vp

j andWp
i; j are constants (Polanski et al. 2003), which we

provide in File S1.
Naturally, theexpectednumberof segregating sites is given

by

E½S� ¼ m0LE½Lp�; (6)

where m0 is the mutation rate per site per generation and L is
the length of the locus under consideration. The average
pairwise difference between chromosomes per site E½p� can
be calculated by

E½p� ¼ 2m0E
h
Tp¼2
MRCA

i
: (7)

The expected burden of private mutations a at a diploid sam-
ple size of ðp=22 1Þ; defined as the proportion of heterozy-
gous sites in a new diploid individual that are homozygous in
the previous ðp=22 1Þ individuals, E½ap=221� can be com-
puted by

E

h
ap=221

i
¼ 2

p½1þ dð1; p2 1Þ�
E
�
ℓp1
�þ E

h
ℓpp21

i
E
�
ℓ21
� (8)

(Gao and Keinan 2014), where dð�; �Þ is Kronecker delta
function.

The detailed description of the five summary statistics
mentioned above is included in File S1.

Evaluation of the expected time to the first coalescent
event under generalized models

The core of evaluating the summary statistics lies in find-
ing feasible and numerically stable functions for calculating
cj; the expected time to the first coalescent event when
there are j chromosomes at present. Previous studies give
explicit expressions of cj for a demographic model con-
structed by exponential and constant-size epochs (Polanski
et al. 2003; Bhaskar et al. 2015). In this study, we give
a comprehensive set of formulas for cj under generalized

models introduced above. Define fk
j :¼

R Tk
Tk21

e
2

�
j

2

�
LðTÞ

  dT;

then cj ¼
PLþ1

k¼1f
k
j ; where ðLþ 1Þ is the total number of

epochs. The quantity fk
j can be computed by the following

set of equations:

1. If rk ¼ 0 or bk ¼ 0; rk 6¼ 0;

Figure 1 Illustration of an example of a generalized de-
mographic model as introduced in the first section of
Materials and Methods. This model consists of five
epochs (starting from the present on the right): (1)
faster-than-exponential (b.1) growth (forward in time)
from N1;f to N1;i between T0 ¼ 0 and T1; (2) linear de-
cline (a special case of generalized decline when b ¼ 0)
from N2;f to N2;i between T1 and T2; (3) exponential
growth (a special case of generalized growth when
b ¼ 1) from N3;f to N3;i between T2 and T3; (4) slower-
than-exponential (b,1) decline from N4;f to N4;i be-
tween T3 and T4; and (5) constant population size (a
special case of generalized growth when r ¼ 0) at
N5;i ¼ N5;f starting from T4; which lasts indefinitely back-
ward in time (T5 ¼ N). The ending population size of the
previous epoch is not necessarily the beginning popula-
tion size of the next epoch (e.g., N2;f 6¼ N3;i; N4;f 6¼ N5;i),
corresponding to an instantaneous population size
change at that time.
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2. If bk . 0; rk . 0 or bk ¼ 1; rk , 0;
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The expressions of function LðTÞ are given in File S1.
The function Uðb; xÞ :¼ xUð1; b; xÞ ¼ x

RN
0 e2xtð1þ tÞb22   dt;

where Uða; b; xÞ is the confluent hypergeometric function of
the second kind (Gradshtĕın et al. 2007). The function
Mðb; xÞ :¼ ðx=ðb21ÞÞMð1; b; xÞ ¼ x

R 1
0 extð12tÞb22   dt;where

Mða; b; xÞ is the confluent hypergeometric function of the

first kind (Gradshtĕın et al. 2007). The exponential growth
or decline then becomes a special case of Uðb; xÞ when
b ¼ 1; x 6¼ 0;

Uð1; xÞ ¼ xex
Z N

1

e2t

t
dt ¼ xexE1ðxÞ; (12)

where E1ðxÞ is the exponential integral (Gradshtĕın et al.
2007), which has been shown by previous studies (Polanski
et al. 2003; Bhaskar et al. 2015). We could not find feasible
and numerically stable closed-form formulas for fk

j when the
population size decreases forward in time in a manner that is
not linear or exponential (i.e., rk , 0 and bk Ï f0; 1g). In these
scenarios, we used Gauss–Legendre quadrature (Kahaner
et al. 1988) for efficient numerical evaluation of relevant
functions (see File S1 for detailed description).

Software implementation

The above expressions are implemented in a software pack-
age, EGGS. The source code and compiled programs for Linux
andMacOSplatforms are publicly available fromourWeb site
(http://keinanlab.cb.bscb.cornell.edu). Source code was
written in C++, with no external libraries needed for com-
pilation. Additional information of implementation is in-
cluded in File S1 and in the manual that accompanies the
software online.

Demographic models assumed in this study

The demographic models used in this study are based on
the inferred European history presented by Gazave et al.
(2014) (Figure 2, in black), which contains two bottlenecks
(Keinan et al. 2007) and a recent exponential growth ep-
och. Specifically, the Gazave et al. (2014) model inferred
that the European population had a constant effective pop-
ulation size of 10,000 (diploid) individuals before 4720
generations ago and went through the ancient bottleneck
between 4720 and 4620 generations ago with a population
size of 189. The population size then recovered to 10,000
diploids until 720 generations ago, at which time the recent
bottleneck started with a size of 549. At 620 generations
ago, the population size recovered to 5633 individuals. The
recent growth epoch started 140.8 generations ago and
led to a population size of 654,000 at present. The param-
eters of the original recent growth epoch were varied to
incorporate generalized growth effects.

In addition to using the model mentioned above, we also
applied an alternative model of ancient European history for
inference. The model was first presented in Gravel et al.
(2011) and later used in Tennessen et al. (2012). This model
inferred that the European population had an ancient effec-
tive population size of 7300 diploid individuals until 6167
generations ago, when the population size expanded to
14,474 individuals. The first bottleneck took place 2125 gen-
erations ago, with the population size reducing to 1861 indi-
viduals. This first bottleneck lasted until 958 generations ago,
at which time a second bottleneck took place with a
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decreased population size of 1032. We assumed 24 years per
generation (Scally and Durbin 2012) to translate the year-
based time presented in the original model. For compatibility
with the Gazave et al. (2014) model, we considered that the
population size had an instantaneous recovery after the sec-
ond bottleneck lasted for 100 generations, instead of gradual
recovery (Gazave et al. 2014). Figure S8 shows the schematic
representation of the Gravel et al. (2011) model.

Demographic inference framework based on the site
frequency spectrum

Demographic inference in this study was based on the ob-
served allele frequency counts from the simulated or real data
set. To determine the fitness of a model NðTÞ to the observed
data, we calculated the composite log likelihood by

L½N� ¼ log  E½jjN� ¼ C � E½jjN�; (13)

where C is a vector of the observed folded allele frequency
counts and E½jjN� is the computed folded SFS under demo-
graphic model NðTÞ: More detailed description can be found
in File S1.

To search for the maximum-likelihood point over the
parameter space, we applied the ECM (Expectation/
Conditional Maximization) method (Meng and Rubin 1993),
which was previously used in the demographic inference study
by Excoffier et al. (2013). One hundred ECM cycles were

performed for each run of inference. We obtained 95% confi-
dence intervals of parameter estimates via block bootstrapping
of the data 200 times. Specifically, if the original data contained l
loci, we randomly chose l loci from the original data with re-
placement in each bootstrap (see File S1 for details).

Processing of NHLBI Exome Sequencing Project data for
demographic history inference

TheNHLBI ExomeSequencing Project (ESP) data (Tennessen
et al. 2012; Fu et al. 2013) contain deep sequencing of 4300
individuals of European ancestry. An important feature of
these data is the high level of sequencing coverage, which
allows the capture of very rare variants accurately. These
variants constitute the part of the SFS that is most enriched
for information on recent population growth (Keinan and
Clark 2012; Tennessen et al. 2012; Gao and Keinan 2014).
To reduce the effect of selection as much as possible while
keeping a sufficient amount of data, we chose to use the
SFS calculated from synonymous single-nucleotide variants
(SNVs) only, as previously performed by Tennessen et al.
(2012). To further improve the quality of the data, we filtered
SNVs with average read depth #20 or with successful geno-
type counts ,7740 (90%) and subsampled the remaining
233,134 SNVs to 7740 alleles, which is equivalent to 3870
diploid individuals (File S1).

Figure 2 Comparison of four summary statistics
estimated by FTEC simulation and computed by
EGGS. (A) Demonstration of the demographic
models considered for evaluating the accuracy of
our calculations as implemented in EGGS (first sec-
tion of Results). This two-bottleneck model has the
same population size and time throughout history
as in the inferred European history in Gazave et al.
(2014), with the exception that we varied the
growth speed parameter of the recent growth ep-
och to be b ¼ 0:5 (sub-exponential, blue), b ¼ 1:0
(exponential as in Gazave et al. 2014, black), and
b ¼ 1:5 (super-exponential, red). The y-axis shows
effective population size of diploid individuals on
log scale. (B–E) The comparison of the first 15 en-
tries of the SFS (B), the total number of segregating
sites (S) across all 200,000 loci (each 1000 bp long)
(C), the expected pairwise difference between
chromosomes per base pair (D), and the burden
of private mutations (a) as the percentage of het-
erozygous variants in one individual that are mono-
morphic in the rest of the sample of 999 individuals
(E) computed numerically in EGGS (dark-colored
bars) and simulated by FTEC (light-colored bars)
for the demographic models shown in A: blue,
b ¼ 0:5; black, b ¼ 1:0; red, b ¼ 1:5; with a sam-
ple size of 1000 individuals (2000 chromosomes).
The y-axis in B is on a log scale.
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Data availability

The NHLBI Exome Sequencing Project (ESP) data used in
this study is publicly available at http://evs.gs.washington.
edu/EVS/.

Results

Comparison with simulated results by FTEC

To validate that the expressions provided in Materials and
Methods can correctly compute the summary statistics under
generalized growth models, we compared the summary sta-
tistics calculated by our software EGGS to those simulated by
the software FTEC (a coalescent simulator for modeling
faster than exponential growth by Reppell et al. 2012) under
the demographic models shown in Figure 2A. This model is
the inferred European history in Gazave et al. (2014), except
that we varied the growth speed parameter b (Equation 1),
which corresponds to 1 in the original model (exponen-
tial growth), to also be 0.5 (corresponding to sub-exponential
growth) and 1.5 (corresponding to super-exponential
growth). The sample size is fixed at 1000 diploid individuals
(2000 chromosomes). For FTEC simulation, we used a mu-
tation rate of 1:23 1028 per base pair per generation (e.g.,
Kong et al. 2012) and simulated 200,000 independent loci,
each of 1000 bp.

The comparison of the SFS, S (across all 200,000 loci), p,
and a numerically computed by EGGS to those simulated by
FTEC is shown in Figure 2, B–E. For each demographic model
illustrated in Figure 2A, the values for all summary statistics
from the numerical computation by EGGS are practically
identical to those from the simulation results by FTEC. How-
ever, our software EGGS exhibits a huge speed improvement
over FTEC. For each model considered in Figure 2A, EGGS
takes ,1 sec to generate the results, while it takes �5 hr for
FTEC to simulate the sequences, due to the large number
of independent loci required for accurate estimation (per-
formed in the Ubuntu system with an Intel Xeon CPU at
2.67 GHz). For instance, when 2000 independent loci are
simulated, which still takes �3 min, the summary statistics
deviate considerably from the accurate results (Figure S2 and
Table S1). Furthermore, our software works well over a wide
range of values of the growth parameter b, even when b ¼ 0
(corresponding to linear growth or decline) or b, 0 (Figure
S3), conditions that are not handled by FTEC. We note, how-
ever, that as a simulation program FTEC provides the full
sequences as output and can have a wider range of applica-
tions than facilitated by the SFS and other summary statistics
that EGGS calculates.

Evaluating inference of generalized growth based on
the site frequency spectrum

We next set out to test the accuracy (as a function of sample
size) of inferring parameters in models with generalized
growth from the SFS. Bhaskar and Song (2014) showed that
in theory, an underlying generalized growth demographic

model can be uniquely identified by the ideal, perfect
expected SFS with a very small sample size generated from
that model (34 haploid sequences for the models shown in
Figure 2A). However, the SFS is estimated in practice from a
limited amount of data from each individual (even in the case
of whole-genome sequencing) and, as a result, the estimated
SFS will fluctuate around the expected values, which limits
its accuracy for inference (Terhorst and Song 2015). We aim
to test such inference in practice and determine the power of
generalized growth detection and the sample size needed for
accurately recovering the growth speed parameter as well as
other parameters of the demographic model. For it to be
comparable with many practical applications, we considered
sequence length that is about equivalent to that obtained
from whole-exome sequencing (File S1).

We performed inference on the SFS calculated from sim-
ulated sequences generated by FTEC. We simulated a de-
mographic model with the same initial epochs as the model
illustrated in Figure 2A. Starting 620 generations ago, the
simulated model includes a constant population size of
10,000 until 200 generations ago, when the population starts
a generalized growth epoch until the present. The general-
ized growth epoch starts with a population size of 10,000 that
grows to an extant effective population size of 1 million in-
dividuals, with the growth speed parameter b taking each of
the following values: 0.4, 0.7, 0.9, 1.0, 1.1, 1.3, and 1.6. We
chose these values to represent a range of super-exponential
and sub-exponential growth, with emphasis on values
around the exponential rate (b ¼ 1:0) to test the detection
power of generalized growth when the growth speed devi-
ates slightly from exponential. We varied the sample size
(number of diploid individuals sampled at present) to be
1000, 2000, 3000, 5000, and 10,000 (File S1). The first 15
entries of the site frequency spectra for these simulated sce-
narios are shown in Figure S4. From each set of simulations,
we then inferred four parameters of the recent growth epoch,
which can uniquely determine the epoch: (1) the growth
speed parameter b; (2) the initial population size before
growth, Nf ; (3) the ending population size after growth, Ni;

and (4) the onset time of growth T, which is equivalent to the
growth duration since the simulated epoch ends at present.

As sample size increases, the accuracy of the point esti-
matesgenerally improvesand the confidence intervalnarrows
(Figure 3). Specifically, when the SFS of only 1000 diploids is
used for inference, the inference performs poorly for all pa-
rameters, exhibiting large confidence intervals (Figure 3).
However, the confidence interval always includes the true
simulated value. A sample size of 2000 already exhibits
acceptable performance except when the growth speed
becomes large (b ¼ 1:3 and 1.6). Larger sample sizes of
5000 and 10,000 are sufficient for inferring all parameters
with very tight confidence intervals. For such sample sizes,
the inference even significantly distinguishes between
growth speeds (b ¼ 0:9 and b ¼ 1:1) that are close to expo-
nential (b ¼ 1:0) from that of an exponential, thereby con-
cluding that a sub-exponential (0.9) or super-exponential

240 F. Gao and A. Keinan

http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.180570//-/DC1/FigureS2.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.180570//-/DC1/TableS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.180570//-/DC1/FigureS3.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.180570//-/DC1/FigureS3.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.180570//-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.180570//-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.180570//-/DC1/FigureS4.pdf


(1.1) growth has taken place. These observations suggest
that a sample size of at least 3000 diploid individuals might
be needed for inferring the parameters associated with the
simulated recent generalized growth epoch, which is moti-
vated by previous models of European demographic history.
It remains to be explored how accurate the estimates are, and
how their accuracy improves with sample size, across a more
diverse set of models.

European demographic history inference

We next performed demographic inference on NHLBI ESP
data (Tennessen et al. 2012; Fu et al. 2013). We applied our
inference framework to these data while considering and
comparing two models. Both models assume the ancient
epochs before 620 generations ago to be the same as those
in the Gazave et al. (2014) model illustrated in Figure 2A.We
inferred the parameters only for the most recent epoch,
which is of generalized growth in one model while limited
to exponential growth in the other. The parameters for infer-
ence are as follows: for both models, (1) population size
before growth (Nf ); (2) population size after growth (Ni);
and (3) growth onset time (T), which is equivalent to the

duration of growth; and only for the generalized growth
model (4) the growth speed parameter (b), which is fixed
at b ¼ 1 for the exponential growth model. The point esti-
mates and 95% confidence intervals are shown in Table 1 and
the best-fit demographic models are illustrated in Figure 4, A
and B (see also Figure S5, Figure S6 and Figure S7).

Although the Gazave et al. (2014) model assumed a dif-
ferent ancient history before the recent growth epoch from
that assumed in Tennessen et al. (2012), using ESP data and
assuming exponential growth, the inferred growth epoch is
generally consistent with that obtained in the latter study
(Figure 4, A and B, and Table 1). Our study infers that recent
growth started 198 (95% C.I.: 195–202) generations ago
with an effective population size of �13,100 (12,600–
13,600) and continued at a rate of 2.2% (2.15–2.26%) per
generation (Table 1), while Tennessen et al. (2012) esti-
mated that recent growth had an initial population size of
�9500 individuals, a duration of 204 generations, and a
growth rate of 2.0% per generation.

Theinferredgeneralizedgrowthmodelfitsthedatasignificantly
better than thatwith exponential growth (P-value¼ 3:8531026

by x2 likelihood-ratio test with 1 d.f.). It estimates that

Figure 3 Inference results on simulated data with a recent generalized growth epoch. The model parameters are as follows: Growth starts 200
generations before the present from an effective population size of 10,000 and ends with an effective population size of 1 million at present. The
growth speed parameter b takes the following values in different simulations: 0.4, 0.7, 0.9, 1.0, 1.1, 1.3, and 1.6. Inference of these four parameters is
based on the SFS estimated from a sample of individuals of one of five sizes (black, 1000; red, 2000; blue, 3000; brown, 5000; and green, 10,000). The
point estimates with 95% confidence interval for these parameters are grouped by the growth speed parameter b (x-axis). The thick, dashed lines show
the true values of the simulated model. The results are shown in the following order: (A) the inferred growth speed parameter, (B) the inferred
population size before growth, (C) the inferred population size after growth, and (D) the inferred growth start time. The y-axis in C is on a log scale.
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growth started 213 (206–220) generations ago from an ef-
fective population size of 12,400 (11,800–13,000), both
values consistent with those estimated in the exponential
growth model. The extant effective population size following
growth is estimated to be 1.26 (1.16–1.37) million. The
inferred growth speed parameter b ¼ 1:12 (1.07–1.15) is
significantly larger than the exponential speed of b ¼ 1
(P-value� 10212; using a one-tailed z-test), which is the main
difference between the twomodels. b ¼ 1:12 implies a growth
rate acceleration pattern (File S1) that is super-exponential
at 12% faster than exponential through the epoch (Figure 4):
the super-exponential growth is relatively slow around the
onset time, and it keeps accelerating as time approaches the
present.

To test the sensitivity of the model to the assumption of
ancientEuropeanhistory,weconsideredanalternatemodel of
ancienthistory.Wefixed thehistorybefore858generationago
to be that inferred by Gravel et al. (2011) for Europeans
(Materials and Methods). We repeated inference of the same
parameters, using the same ESP data. As above, the inferred
parameters for exponential growth are similar to those
obtained in Tennessen et al. (2012) that were based on the
model of Gravel et al. (2011) (Table 1). However, the SFS
from this model fits the data worse than that from the expo-
nential model based on the ancient history of the Gazave et al.
(2014) model (P-value ¼ 1:593 1026 from x2 goodness-of-
fit test between the exponential Gravel model and ESP data;
P-value ¼ 0.97 for the corresponding exponential Gazave
model; see File S1 and Table S3). By applying a generalized
growth epoch to the Gravel et al. (2011) model, the inferred
parameters are generally in line with those from the gener-
alized model based on Gazave et al. (2014), although some
differences exist (Table 1), indicating that the assumption of
ancient history can affect the inference of recent growth to
some extent. More importantly, the generalized Gravel model
fits the data almost equally well as the generalized Gazave
model, which is significantly better than the exponential
model (P-value � 10212 by x2 likelihood-ratio test; also
see Table S3). As with the generalized Gazave model, the
inferred growth speed parameter from the generalized
Gravel model, b ¼ 1:22 (1.18–1.26), is also significantly
larger than the exponential speed b ¼ 1 (P-value � 10212;

using a one-tailed z-test; Figure 4, C and D).
Motivated by these results, we considered a third model

with two recent exponential growth epochs, which still

assumes the ancient epochs before 620 generations ago to
be the same as those in the Gazave et al. (2014) model illus-
trated in Figure 2A. Five parameters were inferred (Table
S2), with the first phase of growth estimated to start 219
(95–334) generations ago with a population size of 12,200
(11,700–13,200). This phase of growth lasts until 135 (25–
157) generations ago and leads to a population size of 47,100
(30,200–540,900). The population size after the recent
phase of growth is 1.12 (1.07–2.09) million. This model
provides a significantly better fit than the model with a single
exponential growth (P-value¼ 5:5531026 by x2 likelihood-
ratio test with 2 d.f.), but is a worse model than the general-
ized growth model (based on the Bayesian information
criterion, BICtwo-epoch exponential 2BICgeneralized ¼ 6:1). How-
ever, this model exhibits some of the same accelerating pat-
terns as in the generalized growth model, ascertained by the
growth rate of the most recent exponential epoch being 2.4%
(2.3–5.2%), larger than that of the first exponential epoch,
1.6% (1.3–2.1%). This acceleration pattern shown in both
the generalized model and the model with two exponential
epochs is consistent with evidence of growth in European
census population size that has greatly accelerated in the
modern era (Keinan and Clark 2012).

Discussion

In this study, we provide mathematical derivation and a
software that can efficiently compute the expected values
of five genetic data summary statistics given a generalized
demographicmodel by evaluating the derived explicit expres-
sions. These summary statistics include the time to the most
recent common ancestor (TMRCA), the total number of segre-
gating sites (S), the SFS, the average pairwise difference be-
tween chromosomes per site (p), and the burden of private
mutations (a). The fast and accurate generation of these
summary statistics under generalized models can provide a
useful tool in the studies of human demographic inference.
For instance, in addition to inference based on the SFS as in
the present study, a recent study by Chen et al. (2015) pre-
sented an inference framework based on the total number of
segregating sites. The results in this study can be easily in-
corporated into that framework. Furthermore, the source
code of the software is freely available to allow extensions
to compute other summary statistics of interest (for example,
the joint SFS of samples from multiple populations under

Table 1 Demographic inference results using ESP data for a model with a recent epoch of exponential growth and a model with a recent
epoch of generalized growth

Ancient history Growth model Nf   ð104Þ Ni   ð106Þ T b

Gazave model Exponential 1.31 (1.26–1.36) 1.04 (1.00–1.07) 198 (195–202) NA
Generalized 1.24 (1.18–1.30) 1.26 (1.16–1.37) 213 (206–220) 1.12 (1.07–1.15)

Gravel model Exponential 0.89 (0.86–0.93) 0.85 (0.82–0.88) 186 (182–190) NA
Generalized 0.78 (0.74–0.83) 1.33 (1.22–1.46) 218 (211–228) 1.22 (1.18–1.26)

Shown are point estimates and 95% confident intervals (in parentheses) for the following parameters of the inferred recent growth epoch when the ancient history was
assumed to be the same as that in the Gazave et al. (2014) model and the Gravel et al. (2011) model: population size before growth (Nf ); population size after growth (Ni);
time growth started in generations (T); and the growth speed parameter (b), which is fixed at b ¼ 1 in the exponential growth case.
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generalized models, by extending the work of Wakeley and
Hey 1997 and Chen 2012). Such extensions can facilitate a
variety of population genetic studies in humans and other
organisms beyond the inference of demographic history.

It is also possible that other families of growthmodels may
fit the pattern of human population size history. For instance,
Eldon et al. (2015) considered the algebraic-growth model in
the form of NðTÞ ¼ Tg: In reality, however, not all demo-
graphic models have numerically stable closed-form expres-
sions for the expected time to the first coalescent event (cj).
In these cases, fast and accurate numerical integration meth-
ods, such as the Gauss–Legendre quadrature used in this
work, can be applied to evaluate cj: This technique holds
the promise of efficiently generating the expected value of
population genetic summary statistics under arbitrary popu-
lation size functions.

Bhaskar et al. (2014) pointed out that as sample size in-
creases, the assumptions of standard Kingman’s coalescent
are violated as multi-merger and simultaneous-merger
events can become nonnegligible. Such events can distort
the genealogies and potentially cause the values of summary
statistics to be different from those under Kingman’s coales-
cent (Bhaskar et al. 2014). To explore such discrepancies,
we compared the SFS from Kingman’s coalescent and the
discrete-time Wright–Fisher (DTWF) model (Bhaskar et al.

2014) under the inferred demographic history in the gener-
alized Gazave model with a sample size of 3870 diploids (File
S1). We observed that the SFS from the DTWF model and
Kingman’s coalescent are very similar (File S1 and Figure
S9), which means that multi-merger and simultaneous-
merger events should not have a significant effect on the
inference carried out in this study. However, it remains valu-
able to systematically study the effect of multi-merger and
simultaneous-merger events in the context of generalized
growth, especially as sample size increases.

By applying inference of generalized growth based on the
SFS generated from the synonymous variants of 4300 indi-
viduals of the NHLBI ESP data set (Tennessen et al. 2012; Fu
et al. 2013), we found that the generalized growth model
shows a better fit to the observed data than the exponential
growth model that has been used by almost all previous de-
mographic modeling studies (P-value ¼ 3:853 1026). We
also found that the European population experienced a re-
cent growth in population size with speed modestly faster
than exponential (b ¼ 1:12; P-value � 10212 for difference
from b ¼ 1). This result is consistent with previous specula-
tions that the human population might have undergone a
recent accelerated growth epoch based on the observation
of very rare, previously unknown variants in several sequenc-
ing studies with large sample sizes (Nelson et al. 2012;

Figure 4 Demographic inference results based on ESP data. (A) Illustration of the effective population size (y-axis, on a log scale) over time for the best-
fit models inferred based on ESP data, assuming the ancient history is the same as that in Gazave et al. (2014). Two models are shown: one restricted to
recent growth being exponential (black) and one with a generalized recent growth epoch (red). Before 620 generations ago, the model was not inferred
and all parameters were set to be the same as those shown in Figure 2A. Solid lines show the effective population size over time for each of the inferred
models, with dashed lines indicating estimated parameter values on the x-axis or the y-axis. Only the most recent 1000 generations are shown to
emphasize the difference between the two models. (B) A zoom-in to the most recent 240 generations of the inferred models in A to emphasize the
acceleration pattern of the generalized growth model, with the y-axis on a linear scale. (C-D) Similar to A-B, except that the best-fit models presented are
based on the assumption that the ancient history before 858 generations ago is fixed to that in Gravel et al. (2011) (see Figure S8).
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Tennessen et al. 2012; Fu et al. 2013). It is also in line with
the super-exponential growth in census population size dur-
ing that time (Keinan and Clark 2012). In future studies, it
will be valuable to incorporate gradient-based optimization
techniques for the fast inference of demographic models con-
taining generalized growth epochs, e.g., by extending the
work of Bhaskar et al. (2015). Such an improvement will
enable simultaneous inference of recent growth and more
ancient epochs.

To minimize the impact of natural selection on our de-
mographic inference,we considered only synonymous SNVs
for demographic modeling, as in the original study of
Tennessen et al. (2012). However, it is still a potential limita-
tion that the data are affected by negative and background
selection. Hence, it remains valuable to validate the result
of super-exponential growth by conducting inference on
SFS calculated from more neutral genomic regions (Gazave
et al. 2014) or by modeling the effect of selection. One
promising possibility is extracting genomic regions that
are less subject to selection from whole-genome sequences
in the UK10K project (The UK10K Consortium et al. 2015).
More generally, with the increasing availability of high-
quality whole-genome sequencing data with large sample
sizes for humans and other species, more refined and re-
alistic demographic histories can be estimated with gener-
alized models.
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Figure S1. Different patterns of generalized growth. (A) Illustration of the population size

functions when keeping the population size before growth Nf , the growth time T and the parameter

r the same and varying the growth speed parameter b to be 0.5, 1.0 and 1.5. (B) Illustration of the

population size functions when keeping the population size before growth Nf , the population size

after growth Ni and the growth time T the same and varying the growth speed parameter b to be

0.3, 1.0 and 1.7.



Figure S2. Comparison of the first 15 entries of the SFS computed numerically in EGGS

(dark bars) and simulated result by FTEC (light bars). Only 2,000 loci (1,000 bp-long each)

instead of 200,000 were simulated for the demographic models shown in Figure 2(A): b = 0.5, blue;

b = 1.0, black; b = 1.5, red. y-axis is on log scale.



Figure S3. Expected values of summary statistics generated under demographic mod-

els with a wide range of the growth speed parameter (b). The time values and population

size values are kept the same as shown in Figure 2(A). The growth speed parameter (b) of the recent

epoch takes values from −15 to 15. The sample size is 10,000 individuals. The mutation rate per

site per generation µ0 = 1.2 × 10−8. We assumed a total of 2 × 108 sites , thus the locus-based

mutation rate µ = 2.4 (same for Figure 2). (A) The demonstration of the demographic models for

several values of b. To better exhibit the difference between different values of b, only the most

recent 400 generations are shown. The two dotted purple lines show the constant-size model fixed

at 5,633 (corresponding to b→∞) and an instant-increase model with a sudden change from 5,633

to 654,000 at 140.8 generations ago (corresponding to b → −∞). (B)-(E) The expected value of

TMRCA, S, α at n = 9,999 and π respectively for b varying from −15 to 15. The two dotted purple

lines correspond to the expected values for the scenarios shown by the dotted purple lines in (A).

(F) The expected proportion of singletons (red), doubletons (blue) and the sum of the rest entries

of the SFS for b varying from −15 to 15. The dotted lines show expected singletons (red), double-

tons (blue) and the rest (black) of the SFS for the scenarios shown by the dotted purple lines in (A).



Figure S4. The first 15 entries of the site frequency spectra for the simulation sce-

narios described in the second section of Results. The inference results are shown in Figure

3. (A)-(G): corresponding to b = 0.4, b = 0.7, b = 0.9, b = 1.0, b = 1.1, b = 1.3 and b = 1.6 re-

spectively for the recent generalized growth epoch, with sample size of 1,000 diploids (blue), 2,000

diploids (red), 3,000 diploids (green), 5,000 diploids (orange) and 10,000 diploids (cyan).



Figure S5. The one-dimensional log likelihood surface around the best estimates of the

ESP synonymous data using exponential growth model. (A) varying population size before

growth while keeping all other parameters at corresponding best estimates; (B) varying population

size after growth only; (C) varying growth time only.



Figure S6. The one-dimensional log likelihood surface around the best estimates of the

ESP synonymous data using generalized growth model. (A) varying population size before

growth while keeping all other parameters at corresponding best estimates; (B) varying popula-

tion size after growth only; (C) varying growth time only; (D) varying growth speed parameter only.



Figure S7. The first 20 entries of the site frequency spectra for ESP data and the in-

ferred demographic models assuming the ancient demography in Gazave et al. (2014).

The SFS from the ESP data, the exponential model, the generalized growth model and the two-

epoch exponential model are shown in black, green, red and blue respectively. For comparison

purposes, we also included the SFS from a base model, which has a constant population size

throughout history (in pink).



Figure S8. The best-fit generalized models for ESP data assuming the ancient demog-

raphy in Gazave et al. (2014) (red) and in Gravel et al. (2011) (blue). The demographic

history was fixed before 620 generations ago for Gravel model and 858 generations ago for Gravel

model. Both x-axis and y-axis are on log scale.



Figure S9. Effects of multi-merger and simultaneous-merger events on the SFS. The

underlying demographic model is the best-fit generalized model using the ancient history in Gazave

et al. (2014). The sample size is 3,870 diploid individuals. (A) The 100-entry partially normalized

SFS under Kingman’s coalescent and under discrete-time Wright-Fisher model. (B) The percentage

difference of entry-to-singleton ratio between Kingman’s coalescent and discrete-time Wright-Fisher

model for the first 100 entries.



Table S1. Comparison of summary statistics computed by EGGS and estimated by FTEC

simulation. Only 2,000 loci (1,000 bp-long each) were simulated for the demographic models

shown in Figure 2(A). Presented are (i) the total number of segregating sites (S) across all 2,000

loci (1,000 bp-long each), (ii) the mean pairwise difference between chromosomes per base pair

(π), and (iii) the burden of private mutation (α) as the percentage of heterozygous variants in one

individual that are monomorphic in the rest of the sample of 999 individuals.

Values of b

0.5 1.0 1.5

S(10−4)
EGGS 10.06 9.70 7.72

FTEC 10.06 8.96 7.73

π(10−4)
EGGS 3.58 3.57 3.57

FTEC 3.53 3.49 3.56

α(10−3)
EGGS 7.56 5.97 4.18

FTEC 7.66 6.00 4.24



Table S2. Demographic inference results using ESP data for a model with two re-

cent epochs of exponential growth. Shown are point estimates and 95% confident intervals

(in parenthesis) for the following parameters of the inferred epoch: population size before growth

(N2), population size after the more ancient phase of exponential growth (N1), population size

after the recent phase of exponential growth (N0), time when the ancient phase of exponential

growth started (T2, in generations), time when the recent phase of exponential growth started (T1,

in generations).

N2(104) N1(104) N0(106) T2 T1

1.22 4.71 1.12 219 135

(1.17 ∼ 1.32) (3.03 ∼ 54.09) (1.07 ∼ 2.09) (95 ∼ 334) (25 ∼ 157)



Table S3. Goodness of fit between the SFS from inferred models and ESP data. We

show the p-value from χ2 goodness of fit test and KL divergence between the SFS from the ESP

data and that from the constant population size model, the inferred exponential model, the gener-

alized model and the two-epoch exponential model. The assumed ancient history (Gazave model

or Gravel model) is indicated in parenthesis. The constant population size model is included here

for comparison purposes.

Model p-value from χ2 test KL divergence

Constant 0 0.84

Exponential (Gazave) 0.97 1.64× 10−4

Generalized (Gazave) 1 1.15× 10−4

Two-Epoch Exponential (Gazave) 1 1.09× 10−4

Exponential (Gravel) 1.59× 10−6 4.12× 10−4

Generalized (Gravel) 1 1.15× 10−4



File S1

1 Detailed description of genetic summary statistics

1.1 Total number of segregating sites (S)

Suppose we have n sequences (chromosomes), this quantity stands for the number of sites in which

the sequences have different genotypes. Namely, if all sequences have a common genotype for a

site, this site is not considered as a segregating site.

1.2 Time to the most recent common ancestor (TMRCA)

This statistic is the time taken for all of the samples at present to coalesce to the same ancestor.

1.3 Site frequency spectrum (SFS)

Suppose we have n sequences sampled at present, the full SFS ξ has (n−1) entries ξ = (ξ1, ξ2, . . . , ξn−1),

where ξi records the fraction of segregating sites that have i derived alleles and (n−i) ancestral alle-

les. When we don’t have information about the ancestral allele, the folded SFS η = (η1, η2, . . . , ηbn
2
c)

is used, where ηi records the fraction of segregating sites that have i minor alleles and (n− i) major

alleles. By definition, ηi =
ξi + ξn−i

1 + δ(i, n− i)
.

1.4 Average pairwise difference per site (π)

Suppose we have n sequences sampled at present. We compare every two different sequences (thus

there are
(
n
2

)
pairs), count the number of differences between each pair, calculate the average of the

total differences and normalize the average difference by the total number of sites, or total length

of loci L. This quantity has the following relationship with the SFS and S:

π =
S

L
(
n
2

) n−1∑
i=1

i(n− i)ξi =
S

L
(
n
2

) bn2 c∑
i=1

i(n− i)ηi.

1.5 Burden of private mutations (α)

Suppose we have n diploid individuals sequenced (thus there are 2n sequences). α stands for the

proportion of heterozygous positions in a newly sequenced (n + 1)th individual that are novel.

Namely, all of the previous n individuals have the same genotype at such a site, but this newly

sequenced individual have a different genotype.
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2 More detailed explanation of the growth speed parameter bk

When rk 6= 0, the growth speed is controlled by the parameter bk. With the same value of rk, Nk,f

and (Tk − Tk−1), if bk > 1, the model will reach a Nk,i larger than that of an exponential model.

As a result, it is considered to be faster than exponential or super-exponential. Similarly, if bk < 1,

the model will reach a Nk,i smaller than that of an exponential model and thus is considered to be

slower than exponential or sub-exponential.

To illustrate the above facts, we give an example in Figure S1(A). The growth epoch starts 200

generations ago with a population size of 10,000. The value of growth rate g = d
dT logN(T ) is fixed

at 0.35% such that when exponential growth model is used, the population size after growth is

20,000, which is a 2-fold growth. The values of b are chosen to be 0.9, 1 and 1.1. When b = 1.1, the

population size after growth is 67,730, larger than 20,000 when exponential growth is considered.

Similarly, when b = 0.9, the population size after growth 13,129, smaller than 20,000.

If we fix Nk,i, Nk,f and (Tk − Tk−1), as is mostly considered in this study, taking different

values of b will cause the growth pattern to be different. When b > 1, the growth will show an

accelerating pattern compared with exponential growth; while when b < 1, the growth will show

a decelerating pattern. To illustrate this point, consider the models shown in Figure S1(B). The

growth epoch is from 200 generations ago to present and the population sizes before and after

growth are fixed at 10,000 and 100,000 respectively. The values of b are chosen to be 0.3, 1 and 1.7.

For the exponential model, the growth rate 1.15% is constant throughout the epoch. For b = 1.7,

the growth rate (0.52%) is smaller than that of the exponential growth (1.15%) at the onset time

of 200 generations ago. The growth keeps accelerating as time approaches present. At t = 0, the

growth rate for b = 1.7 (2.87%) is larger than that of the exponential (1.15%). For b = 0.3, the

pattern is opposite. The instantaneous growth rate (2.87%) is larger than that of the exponential

growth (115.13) at 200 generations ago. The growth keeps decelerating as time approaches present.

At t = 0, the instantaneous growth rate for b = 0.3 (0.57%) is smaller than that of the exponential

(1.15%).

3 Quantities Ap
j , V

p
j and W p

i,j

For computing E[T pMRCA], the quantities Apj can be calculated by (Polanski et al. 2003; Tavare

1984; Takahata and Nei 1985)

Apj =
(−1)j(2j − 1)p[j]

p(j)
,

where p[j] is the falling factorial function, p[j] = p(p−1) · · · (p−j+1), and p(j) is the rising factorial

function, p(j) = p(p+ 1) · · · (p+ j − 1).
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For computing E[ξp], the quantities V p
j can be calculated by (Polanski and Kimmel 2003)

V p
j = (2j − 1)

p!(p− 1)!

(p+ j − 1)!(p− j)!
[1 + (−1)j ],

and W p
i,j are constants given by the following recursive relationships (Polanski and Kimmel 2003):

W p
i,2 =

6

p+ 1
;W p

i,3 =
30(p− 2i)

(p+ 1)(p+ 2)
;W p

i,j+2 = −(1 + j)(3 + 2j)(p− j)
j(2j − 1)(p+ j + 1)

W p
i,j+

(3 + 2j)(p− 2i)

j(p+ j + 1)
W p
i,j+1.

4 Expressions of rk

For the generalized growth models considered in this study, any epoch k is determined by the

starting population size Nk,i, the ending population size Nk,f , the duration of the epoch (Tk−Tk−1)

and the growth speed parameter bk. After determining the epoch, the dependent parameter rk =

rk(Nk,i, Nk,f , bk, Tk − Tk−1) is calculated by

rk =


N1−bk
k,i −N1−bk

k,f

Tk − Tk−1
, bk 6= 1

logNk,i − logNk,f

Tk − Tk−1
, bk = 1

.

5 Expressions of Λ(T ) for evaluating φkj

For convenient purposes, define λk(T ) =
∫ T
Tk−1

dσ/N (σ), where N (σ) = 2N(σ) and Tk−1 ≤ T ≤ Tk,
then Λ(T ) = Λ(Tk−1) + λk(T ). For generalized models, the solution for λk(T ) is

λk(T ) =



T − Tk−1

Nk,i
, rk = 0

logNk,i − logN (T )

rk
, bk = 0, rk 6= 0

N (T )−bk −N−bkk,i

bkrk
, bk 6= 0, rk 6= 0

.

Notice that the third expression above is also true for exponential growth/decline (bk = 1 and

rk 6= 0).
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6 Evaluation of φkj for non-linear non-exponential generalized de-

cline epochs

Generally, under arbitrary population size function N(T ), the quantity

φkj = e−(j2)Λ(Tk−1)

∫ Tk

Tk−1

e−(j2)λk(T ) dT,

where Λ(T ) =
∫ T

0 dσ/N (σ), λk(T ) =
∫ T
Tk−1

dσ/N (σ) and N (σ) = 2N(σ).

For generalized decline epochs (rk < 0 and bk /∈ {0, 1}), in which case we didn’t find feasible

closed-form expression for evaluating φkj , this quantity can be expressed in the following way:

φkj =
e−(j2)Λ(Tk−1)(

j
2

) ∫ (j2)
bkrk

(
N−bk

k,f −N
−bk
k,i

)
0

(
bkrk(
j
2

) y +N−bkk,i

)− 1
bk

e−y dy.

The integral
∫ (j2)

bkrk

(
N−bk

k,f −N
−bk
k,i

)
0

(
bkrk(
j
2

) y +N−bkk,i

)− 1
bk

e−y dy is in the form of
∫ d

0 (ax + b)ce−x dx

where a, b, c, d are constants. We numerically evaluate this integral by Gauss-Legendre quadra-

ture (Kahaner et al. 1988). The basic idea of Gauss-Legendre quadrature is to approximate the

integrated function f(x) = (ax + b)ce−x by a polynomial function of degree n, and evaluate f(x)

at n different points in the range [0, d]. The error term is
d(2n+1)n!4

(2n+ 1)(2n)!3
f2n(ξ) (Kahaner et al.

1988), where 0 < ξ < d and f (2n) is the (2n)th derivative of f with respect to x. We choose the

polynomial degree n to be 512 in this work.

7 Libraries used/adapted in this study

For the computation of functions U(b, x) and M(b, x), we adapted the C++ codes for the evalua-

tion of confluent hypergeometric functions from GSL scientific library (Galassi et al.). In addition,

we used the library from the link http://www.holoborodko.com/pavel/numerical-methods/

numerical-integration/, which is provided by Pavel Holoborodko for Gauss-Legendre quadra-

ture. The authors are grateful to the providers of these libraries, which are essential in the imple-

mentation of the EGGS software.

8 Details of simulation parameters in the second section of Results

When simulating the sequences, we used mutation rate µ = 1.2×10−8 per base pair per generation

(Kong et al. 2012) and recombination rate ρ = 1.0 × 10−8 per base pair per generation. To

determine the amount of data for simulation, we used the number of exomes given in Tennessen et

4

http://www.holoborodko.com/pavel/numerical-methods/numerical-integration/
http://www.holoborodko.com/pavel/numerical-methods/numerical-integration/


al. (2012), which is about 2,500 and assumed that each exome has 20,000 base pairs on average.

To stress more the effect of linkage disequilibrium (LD) between the alleles in each exome, we

decreased the number of independent loci to 1,000 and increased the length of each locus to 50,000,

while keeping the total number of base pairs the same. To reduce noise in the simulated data and

increase computation speed, we only kept the first 100 entries of the folded SFS and calculated the

aggregate sum of the rest entries, such that there are 101 entries in total.

9 Details of bootstrapping

We used 200 bootstraps to obtain 95% confidence interval of the inferred parameters. For simulation

studies, we randomly choose 1,000 loci from the simulated 1,000 independent loci with replacement

in each bootstrap. For inference based on ESP data (Tennessen et al. 2012; Fu et al. 2013), we split

the sequences into 500kb regions based on SNP positions, which resulted in 882 different regions,

similar to the number of loci in simulation studies. In the same manner, we then chose 882 regions

with replacement for each bootstrap.

10 Subsampling approach

For ESP data, the successful genotype counts vary across different segregating sites. We applied

the subsampling approach similarly considered in Gazave et al. (2014) and Gao and Keinan (2014).

For a site with n successful genotype counts, suppose there are j minor alleles and (n − j) major

alleles, the probability that it is of x minor alleles when subsampled to m chromosomes is

P[x← m] =

(
j
x

)(
n−j
m−x

)(
n
m

) +

(
j

m−x
)(
n−j
x

)(
n
m

)
where x = 0, 1, 2, · · · , bm

2
c. In this work, we choose m (the number of chromosomes to subsample

to) to be 7,740, which is 90% of the total number of chromosomes (8,600).

11 Composite log likelihood

In order to determine the fitness of a model Θ to the observed folded allele frequency counts C, we

compute the log likelihood of the model according to

L[Θ] = logP[C |Θ] =

bn
2
c∑

i=1

Ci logE[ηi |Θ],
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where E[η|Θ] =
(
E [η1 |Θ] ,E [η2 |Θ] , · · · ,E

[
ηbn

2
c |Θ

])
is the expected folded SFS given model Θ.

In this work, we considered SFS binning from the 101st entry to reduce the noise in later parts of

the SFS: E [η̃ |Θ] =
(
E [η1 |Θ],E[η2 |Θ] , · · · ,E [η100 |Θ] ,

∑bn
2
c

i=1 E [ηi |Θ]
)

, and correspondingly the

binned allele frequency counts from the data C̃ =
(
C1, C2, · · · , C100,

∑bn
2
c

i=1 Ci
)

. The log likelihood

after binning is computed as

L[Θ] = logP[C̃ |Θ] =
101∑
i=1

C̃i logE[η̃i |Θ].

12 Goodness of fit measures

In order to test how well a model SFS fits the observed data, we performed χ2 goodness of fit test.

In specific, if the observed allele frequency counts is C = (C1, C2, · · · , Cd) (which indicates that the

total number of observed segregating sites is |C|) and the SFS under the model is ξ = (ξ1, ξ2, · · · , ξd),
then the statistic

χ2 =
d∑
i=1

(Ci − |C|ξi)2

|C|ξi
.

The degree of freedom is (d− 1), where d is the dimension of the vector C. A p-value > 0.05 means

we fail to reject the null hypothesis that the observed data SFS is consistent with the model SFS.

We also used another measure, Kullback-Leibler divergence or KL divergence (Kullback and

Leibler 1951), which provides a single number to relatively compare the goodness of fit between

different models:

DKL

(
C
|C|

∥∥∥∥ ξ) =

d∑
i=1

Ci
|C|

(
log
Ci
|C| − log ξi

)
.

A smaller DKL means a higher consistency between the observed and the model. The advantage of

KL divergence over log likelihood is that KL divergence is a normalized measure unaffected by the

total number of observed segregating sites |C|.
The p-values from χ2 goodness of fit test and the KL divergence between the observed ESP

data and the SFS from each of the inferred models are shown in Table S3.

13 Potential effect of multi-merger and simultaneous-merger events

on the SFS

As sample size increases, the probability of multi-merger and simultaneous-merger events will rise,

which violates the assumptions of Kingman’s coalescent and might affect the SFS (Bhaskar and

Song 2014). To test this effect, we used the discrete-time Wright-Fisher (DTWF) model software
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(Bhaskar and Song 2014) to compute the SFS under the generalized Gazave et al. model with a sam-

ple size of 7,740. To shorten the computation time, we used a hybrid of DTWF and Kingman’s coa-

lescent with a time cutoff of tc = 212 generations. However, it is still computationally burdensome

to evaluate all 7,739 entries of the unnormalized SFS ΞDTWF =
(
ΞDTWF

1 ,ΞDTWF
2 , · · · ,ΞDTWF

7739

)
,

which is needed to compute the normalized SFS ξDTWF =
ΞDTWF∣∣ΞDTWF

∣∣ =
(
ξDTWF

1 , ξDTWF
2 , · · · , ξDTWF

7739

)
as is used in the inference work. We instead only evaluated the first 100 entries of ΞDTWF,(
ΞDTWF

1 ,ΞDTWF
2 , · · · ,ΞDTWF

100

)
.

We first compared the partially normalized SFS under DTWF model

ξDTWF
partial =

1∑100
i=1 Ξi

(
ΞDTWF

1 ,ΞDTWF
2 , · · · ,ΞDTWF

100

)
with the partially normalized SFS under King-

man’s coalescent ξKingman
partial =

1∑100
i=1 ξ

Kingman
i

(
ξKingman

1 ,ΞKingman
2 , · · · ,ΞKingman

100

)
, which was com-

puted by EGGS. The two partially normalized SFS are very similar (Figure S9(A)). We next com-

pared the ratio of any entry to singletons under DTWF model and Kingman’s coalescent,

ρDTWF
i =

ΞDTWF
i

ΞDTWF
1

; ρKingman
i =

ξKingman
i

ξKingman
1

,

where i = 1, 2, · · · , 100 and we calculated the relative error,

ε(i) =
ρDTWF
i − ρKingman

i

ρKingman
i

× 100%,

where i = 1, 2, · · · , 100. The relative error is always less than 1% for the first 100 entries and

asymptotically increases to 1% (Figure S9(B)). We then used 1% as the relative error for the rest

of the SFS entries to predict the full normalized SFS under DTWF model. This predicted folded

SFS is very similar to the folded SFS under Kingman’s coalescent (KL divergence = 6.14× 10−6)

and fits almost equally well to the data (KL divergence between the predicted SFS and ESP data

= 1.24× 10−4; p-value from χ2 goodness of fit test = 1).
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