
REVIEW

The possibility of cancer immune editing in gliomas. A critical review
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ABSTRACT
The relationship between anti-tumoral immunity and cancer progression is complex. Recently,
immune editing has emerged as a model to explain the interplay between the immune system and
the selection of genetic alterations in cancer. In this model, the immune system selects cancer cells
that grow as these are fit to escape immune surveillance during tumor development. Gliomas and
glioblastoma, the most aggressive and most common of all primary malignant brain tumors are
genetically heterogeneous, are relatively less antigenic, and are less responsive to immunotherapy
than other cancers. In this review, we provide an overview of the relationship between glioma�s
immune suppressive features, anti-tumoral immunity and cancer genomics. In this context, we
provide a critical discussion of evidence suggestive of immune editing in this disease and discuss
possible alternative explanations for these findings.
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Introduction

Burgeoning work of next-generation sequencing analysis has
provided the framework to visualize the genomic landscape of
cancer, these studies have revealed a remarkable genetic
heterogeneity within lower-grade gliomas (LGG) and glioblas-
tomas (GBM).1-3 Gliomas elicit a strong immunosuppressive
state through the expression of inhibitory ligands that induce
anergy and apoptosis of cytotoxic lymphocytes, expression of
immune checkpoints that impair the anti-tumoral immune
response, and through eliciting tumoral infiltration by immu-
nosuppressive cells.4-7 There is also evidence of immune-cell
infiltration following immunotherapy in human and murine
gliomas,8,9 in which bone marrow-derived dendritic cells play a
role.9 Despite these findings, immunotherapy for gliomas has
not shown a significant efficacy in the clinical setting.10-12 These
facts rise the possibility that the dominance of tumor clones
that evade immune recognition could be related to the emer-
gence and selection of specific genetic alterations that confer
cancer cells this feature during tumor progression. However,
the possibility of immune editing during the progression of gli-
omas has not been explored. Herein we provide an overview of
immune editing and some illustrative examples that suggest
that this might be happening in gliomas.

The cancer immune editing concept

The first hints of immunity against cancer were given by Paul
Ehrlich13 and later supported by Burnet and Thomas.14-16

However, in light of some studies that introduced doubts about

the paradigm of immune control of cancer,17-19 the attention of
cancer immune surveillance gained broader recognition again
more recently by experiments where mice devoid of T, B and
NK cells or immune-regulatory cytokines were more suscepti-
ble to tumor formation than immunocompetent mice.20-24 Par-
ticularly, the reviving of interest on tumor immunology arose
from studies showing that cancer cells can escape immune rec-
ognition and destruction,20,25,26 framing this mechanism as one
of the hallmarks of cancer in the latest iteration of a compre-
hensive review of cancer biology by Hanahan and Weinberg in
recent years.27 The growing recognition of the immunological
control of neoplasia prompted a more integrative concept of
tumor-immune system interaction called cancer immune edit-
ing in which cancer immune-related phenotype is shaped by
selection of tumor cells capable of avoiding recognition and
killing by the immune system. Cancer immune editing has
been conceptualized into three phases: elimination, a process
in which the immune system recognizes and eradicates devel-
oping cancer cells before the latter can reach a clinical stage;
equilibrium, a state of tumor latency in which tumor cells
remain occult or sub-clinical, are not completely eradicated but
do not increase in number; and escape, a phase in which tumor
cells capable of evading immune recognition and eradication
(i.e. edited cells) grow progressively into a clinical stage of can-
cer.28,29 When this process is carried out in its entirety, tumor
cell variants with a less immunogenic phenotype emerge
resulting in cancer that cannot be eradicated by the immune
system.30,31 Comprehensive reviews have described the details
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of the evidence suggestive of the process of cancer immune
editing.30-32

Immune editing in Gliomas: Elimination, equilibrium,
and escape

Elimination

Clinical observations have provided the inference that the
immune editing phases might be occurring in cancer
patients. Particularly, the observation that immune sup-
pressed patients with AIDS or transplant recipients receiv-
ing immunosuppressive therapies are more prone to some
cancer types suggests the presence of the elimination phase
in the immune competent population.33-35 The innate and
adaptive immune system eliminate an emergent cancer
through several processes: some of the best characterized
mechanisms include the tumoral expression of NKG2D
ligands that are recognized by NK cells, the recognition of
tumor-specific antigens by CD4C and CD8C T-cells, the
production of pro-inflammatory and immunomodulatory
cytokines that enhance immune anti-tumoral responses, and
the induction of tumor cell apoptosis by immune effector
cells.28,30,31

A key question within the study of relationship between
the immune system and the cancer genome is whether
immune cells can recognize genetic alterations in the tumor.
Recent studies have suggested this to be the case. For
instance, the proliferation of hyperploid cancer cells alerts
the immune system of developing cancer through the recog-
nition of the abnormally exposed calreticulin on the cell
surface, which renders polyploid cancer cells as targets of
cytotoxic T-cells.36 However, a recent analysis of TCGA
data from 12 human cancer types showed that high levels
of tumor aneuploidy is associated with decreased expression
of genes encoding for markers of infiltrating cytotoxic
immune cells, genes encoding for components of the T and
B-cell receptor, genes mediating cytotoxic activities, genes
related to the IFN-g pathway, as well as genes associated
with the maintenance of the immune response and the pro-
duction of cytokines.37 Moreover, a higher number of neo-
antigens resulting from non-silent mutations were found in
highly aneuploid tumors compared to less aneuploid
tumors, indicating that the former did not undergo immune
editing during progression due to a reduced anti-tumoral
imunity.37 Highly aneuploid GBM and LGG did not reveal
any decrease in the expression of genes involved in immune
cytotoxic activities.37 In any case, according to the immune
editing model, if a particular cancer cell is not initially elim-
inated due to the fact that is not antigenic or given that it
has acquired the ability to suppress anti-tumor immunity, it
will prevail into the equilibrium phase.28,30

No studies provide any evidence to address whether the
elimination phase is occurring in gliomas, that is, evidence of
gliomas disappearing at a pre-clinical stage. Regardless of some
reports suggesting a higher incidence of gliomas in immuno-
suppressed individuals,38,39 in general, gliomas do not arise
from immunosuppressed states as opposed to other cancers
like non-Hodgkin lymphoma or Kaposi�s sarcoma.34 Direct

demonstration of the elimination phase in patients is particu-
larly difficult as it would require evidence of tumor-infiltrating
immune cells on preclinical stages of gliomas followed by the
spontaneous disappearance of the tumors. To prove this, trans-
genic mouse gliomas have emerged as novel tools that can
model the acquisition of many of the genetic alterations seen in
human gliomas40-42 and offer an opportunity to investigate
whether gliomas at early stages of formation undergo infiltra-
tion by immune cells, a pre-requisite for the existence of the
elimination phase. One of these studies analyzed early immune
responses at occult stages of glioma development in a trans-
genic mouse glioma model of spontaneous cancer (GFAP-
V12HA-ras).41 To induce the development of astrocytomas, the
glial fibrillary acidic protein (GFAP) promoter was used to
express the V12HA-ras specifically in astrocytes. At 12 weeks,
asymptomatic mice had infiltration of CD4C and CD8C T-cells
in the tumor, suggesting that the immune system can detect a
developing glioma at early stages. However, no evidence of
spontaneous disappearance of these tumors was reported.41

Whereas it is difficult to rule out elimination of gliomas by the
immune system, there is no substantial evidence to suggest this
phenomenon is taking place.

Equilibrium

The equilibrium phase was inferred from reports of transplant
patients who developed metastases in a transplanted organ that
was donated by a cancer patient.43-45 Particularly, there have
been reports of transplant recipients diagnosed with glioma
metastases on the grafted organs after receiving liver, kidney or
lung transplants from GBM donor patients, suggesting the pos-
sibility of an equilibrium phase in these tumors, at least with
respect to systemic grafting of lesions.39,46-48 In general, gliomas
do not metastasize outside the central nervous system in spite
of the fact that tumor cells have been found circulating in
the blood stream.49 In the context of these organ transplant
case reports,39,46-48 it appears that glioma cells in the donor
patient may have been in a dormant state due to the host
immune pressure, but after transplantation, these lesions grew
in the organ that was transplanted into a host undergoing phar-
macological immunosuppression. Another example of evidence
suggestive of the existence of an equilibrium phase in brain
tumors is that of a pediatric patient who was diagnosed with
medulloblastoma at 17 months of age, who 10 years later was
treated with immunosuppressive drugs for a lung transplant
due to the development of chemotherapy-induced pulmonary
fibrosis. 12 months after transplantation, liver metastases were
detected revealing recurrence of the medulloblastoma in the
histopathological report.50

Mouse models have suggested that adaptive immunity
and T-cells in particular are responsible for controlling
tumor growth during the equilibrium phase.51,52 As opposed
to NK cells, depletion of IFN-g, CD4C and CD8C T-cells in
mice treated with methyl-colantrene promoted the develop-
ment of sarcomas.51 In addition, depletion of CD4C and/or
CD8C T-cells led to spontaneous lung metastases in a fibro-
sarcoma mouse model that do not develop these metastases
in an immune competent setting.52 These metastases were
highly positive for MHC class I (MHC-I),52 indicating the
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importance of the interaction between MHC-I molecules
and T-cell receptors in tumor dormancy/equilibrium
maintenance.

Escape

In the escape phase, the immune system fails to limit tumor
growth, and tumor cells capable of evading the immune recog-
nition and elimination prevail into a clinically evident
state.28,30-32 The interaction between cancer and the immune
system gives rise to a new group of tumor cells displaying
reduced immunogenicity, and tumors that elicit an immuno-
suppressive microenvironment that endows them to survive
and proliferate in the immunocompetent host.28,53,54 Taking
into account that the correct functionality of the MHC-I com-
plex is required for an effective anti-tumoral immune
response,55 immune escape capabilities have been well associ-
ated with defects on MHC-I expression on tumor cells.53,56

Relative reduction in expression of MHC-I by tumor cells can
cause immune selection and outgrowth of a tumor clone resis-
tant to immunotherapies.57,58 Furthermore, recent evidence
suggests a positive selection of loss-of-function mutations of
HLA class I genes compared with mutations in non-HLA class
I genes in a pan-cancer analysis.59 This analysis showed few
HLA class I mutations in human gliomas compared to other
cancers. Nevertheless, an association between HLA class I
mutations and upregulation of killer lymphocyte effector gene
expression was found in several cancer types, including gliomas
(Fig. 1).59,60 This finding suggests that immune pressure exerted
by lymphocyte cytolytic activity selects glioma cells harboring
loss-of-function HLA class I mutations.59,60 Moreover, the
decreased expression of HLA class I and the antigen processing
and presentation machinery (APM) components correlates
with malignancy grade in human and murine GBM.61,62 The
reduction of HLA class I and II gene expression could be
explained by the EGFR activation.63 Indeed, inhibitory signals
originated from the activation of EGFR have been proposed to
affect the expression of the IFN-g receptor complex, as well as
to act on the promoter of HLA class I and II genes and MHC
class II transactivator (CIITA) gene, a transcriptional activator
of HLA class I and II genes.63 This mechanism might explain
the relative lymphocytic depletion of GBM of the classical

subtype, which characteristically have EGFR amplification.64

On the other hand, the sole expression of HLA class I molecules
without loaded antigen due to dysfunctional APM has been
described in astrocytomas as another potential escape mecha-
nism that inhibits the anti-tumoral response of NK cells.65

Given the relative uncommon frequency of HLA class I gene
mutations in human gliomas in spite of the implications of
these genes in tumor recognition by the immune system, we
investigated the aggregate frequency of down-regulation, non-
silent mutation or deletion of HLA class I and related APM
genes across gliomas from TCGA. As a group, these genes are
found affected by these inactivating alterations in 53.7% of
GBM (n D 396) and 32.4% of LGG (n D 511), suggesting that
gliomas commonly suffer hits of this pathway that is critical for
immune recognition (Fig. 2). The evidence presented above
indicates and further substantiates the idea of immune selection
of glioma cell populations with HLA class I molecules presenta-
tion defects.

Cancer immune editing implications in glioma therapy

Immune checkpoint inhibitors have shown clinically relevant
efficacy for some cancers such as melanoma and lung cancer,
and have emerged as an innovative therapeutic approach
within the field of oncology.66-69 Particularly, tumors with high
mutational load and mismatch repair (MMR) defects have
been shown to vary among cancer types and correlate with
good clinical responses to immune checkpoint inhibitors.70-73

In this context, GBM patients with germline MMR defects and
the accompanying hypermutator phenotype have shown strik-
ing and long-term responses to the PD1 inhibitor nivolumab.74

Temozolomide, the chemotherapeutic standard of care of
GBM, can generate mutations in the tumor that can lead to a
hypermutator phenotype following treatment with this chemo-
therapy in 17% of cases.75-78 Whereas high tumor mutational
load and loss of MMR protein expression are infrequent,79,80

the possibility of this phenotype/genotype being more respon-
sive to immunotherapy rises interest for personalizing the use
of this treatment modality for a subset of glioma patients.

Similar to the T-cell-dependent selection of tumor cells lacking
highly immunogenic antigens during tumor progression,81,82 the
major implication of immune editing for glioma therapy is that

Figure 1. Heatmap displaying a differential gene expression in a color scale in HLA class I-mutant gliomas vs. wild-type HLA class I gliomas. Tumors harboring HLA class I
mutations overexpress lymphocyte killer effector genes. As previously defined, “Cytolytic activity” is included as a single gene and determined by Granzyme A (GZMA)
and Perforin (PRF1), two cytolytic genes expressed in activated CD8C T-cells.60 �P < 0.05 represents the significance of the association between the expression of each
gene and HLA class I mutant-gliomas. [Adapted by permission from Springer Nature: Nature Biotechnology, Comprehensive analysis of cancer-associated somatic muta-
tions in class I HLA genes, Shukla et al., copyright 2015]59.
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Figure 2a. (Continued).
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Figure 2b. Cumulative HLA class I and APM defects across gliomas from TCGA. (A) 213/396 GBM and (B) 166/511 LGG samples were found to have alterations in the
formation of the HLA class I peptide complex that enable glioma cells to escape immune recognition by CD8C T-cells. (C) Highlighted in red are the components showing
different types of alterations in antigen processing and presentation ranging from defects in the IFN-g pathway (JAK1, JAK2, STAT1) and the HLA class I enhanceosome
(NLRC5, CIITA, IRF1, RFX5, RFXANK, RFXAP, X2BP, NF-Y) that mediate the transcriptional activation of HLA class I genes; PSME1, PSME2, PSME3 genes coding for the alpha,
beta, and gamma subunits that make up the proteasome activator complex PA28 for peptide generation; ERAP1 and ERAP2 that trim longer precursor of antigenic pepti-
des; HSPA and HSPC that chaperones the peptides to their loading on the MHC class I in the endoplasmic reticulum; and TAP1, TAP2, TAPBP, calreticulin, calnexin, PDIA3,
b2-microglobulin and HLA class I genes that participate in the formation of the MHC class I peptide complex.

Figure 3. Experimental or clinical evidence regarding immune editing in gliomas with numbers representing the references related to this evidence. No evidence exists about
the elimination phase in gliomas. Commonly, gliomas do not spread outside the central nervous system. However, glioma metastases have been detected in transplanted
organs of immunosuppressed transplant recipients, suggesting that the equilibrium phase is taking place in the systemic compartment39,46-48 Associations between loss-of-func-
tion HLA class I mutations and upregulation of lymphocyte killer effector genes,59 as well as HLA class I and APM defects have been found in gliomas, evidencing the escape
phase. In addition, loss of glioma-specific antigens after using targeted immunotherapies lead to a negative selection of tumor variants cells expressing these antigens.8,10,83,84
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immunotherapies designed to target tumor-specific antigens
often fail, as there are tumor clones that will be selected for
the lack of expression of these antigens or defects in antigen
presentation. In a phase II clinical trial evaluating EGFRvIII-
targeted vaccination in glioma patients, it was found that
EGFRvIII expression was lost at tumor recurrence.10,83 Addi-
tionally, recent reports testing chimeric antigen receptor
(CAR)-engineered T-cells targeting the cancer-associated
antigens interleukin-13 receptor alpha 2 (IL13Ra2) and
EGFRvIII have shown promising results in GBM patients
with recurrent disease.8,84 Although regression of multifocal
GBM was achieved in one particular patient, recurrent lesions
at new brain sites emerged with minimal to absent expression
of IL13Ra2.84 In the study evaluating CAR T-EGFRvIII, 5 of
7 GBM patients whom tumor was available for evaluation
after CAR T-cells infusion had a decrease in the expression of
EGFRvIII.8 Thus, recurrent tumor lesions lacking glioma-spe-
cific antigens suggest the possibility that antigen loss variants
were selected to grow during immunotherapy. Because of this
mechanism of immune editing and the intrinsic molecular
heterogeneity of gliomas, different strategies for immunother-
apy should be used in order to target multiple antigens to mit-
igate antigen escape and avoid tumor recurrence.85-87

If immune editing is occurring during glioma progression,
perhaps transient manipulation of the selection pressure eli-
cited by the immune system might lead to more immunogenic
tumors that might be more susceptible to immunotherapies. A
scheme summarizing the existing evidence of immune editing
in gliomas is shown (Fig. 3).

Conclusions

Gliomas are notorious for the multiple mechanisms of immune
suppression and lack of response to immunotherapy compared
to other cancers. Gliomas are molecularly complex and have
several genetic and epigenetic alterations that are recurrently
seen during tumor progression. Whereas some of these offer a
tumor growth advantage, others might have been selected by
the anti-tumoral immunity. This is an interesting possibility
that has not been systematically investigated in gliomas. Hope-
fully, further research addressing the possibility of immune
editing in gliomas will lead to manipulation of this process and
more efficient immunotherapy strategies transforming the way
these patients are treated.
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