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Abstract—Head impact measurement devices enable oppor-
tunities to collect impact data directly from humans to study
topics like concussion biomechanics, head impact exposure
and its effects, and concussion risk reduction techniques in
sports when paired with other relevant data. With recent
advances in head impact measurement devices and cost-
effective price points, more and more investigators are using
them to study brain health questions. However, as the field’s
literature grows, the variance in study quality is apparent.
This brief paper aims to provide a high-level set of key
considerations for the design and analysis of head impact
measurement studies that can help avoid flaws introduced by
sampling biases, false data, missing data, and confounding
factors. We discuss key points through four overarching
themes: study design, operational management, data quality,
and data analysis.

Keywords—Head impact measurement devices, Head impact

sensors, Head acceleration, Sports, Biomechanics, Concus-

sion, Head impact exposure.

SUMMARY STATEMENTS

This work was part of the Consensus Head Accel-
eration Measurement Practices (CHAMP) project. The
objective of CHAMP was to develop consensus best
practices for gathering, reporting, and analyzing head
acceleration measurement data in sports. Subject
matter experts were recruited to draft a series of papers
on various aspects of the issue. As described in detail in
a companion paper,1 each team drafted a paper and
several summary statements ahead of the CHAMP
Conference, held on March 24–25, 2022, at the Chil-
dren’s Hospital of Philadelphia. The purpose of this
paper is to provide a high-level set of key considera-
tions for the design and analysis of head impact mea-
surement studies. The following summary statements
were discussed, revised as necessary, and ultimately
approved by more than 80% of the vote at the con-
ference:

� Head impact sensor studies are typically observa-
tional in design, which limits their conclusiveness
because they are easily contaminated by unseen
confounding factors and biases. Investigators
should be wary of selection and sampling biases
when composing their samples. Efforts should be

Address correspondence to Steve Rowson, Biomedical Engi-

neering and Mechanics, Virginia Tech, Blacksburg, VA 24060, USA.

Electronic mail: rowson@vt.edu

Annals of Biomedical Engineering, Vol. 50, No. 11, November 2022 (� 2022) pp. 1346–1355

https://doi.org/10.1007/s10439-022-03101-0

BIOMEDICAL
ENGINEERING 
SOCIETY

0090-6964/22/1100-1346/0 � 2022 The Author(s)

1346

http://orcid.org/0000-0002-3227-0596
http://crossmark.crossref.org/dialog/?doi=10.1007/s10439-022-03101-0&amp;domain=pdf


made to measure and account for suspected con-
founders.

� Head impact sensor studies benefit from multidis-
ciplinary teams with essential expertise. In addi-
tion, establishing partnerships with the research
participant community can help produce more
representative and reliable conclusions.

� Proper operational planning for sensor mainte-
nance and technical failures will help minimize
missing data. In addition, video recording of data
collection sessions is recommended as a resource
for explaining and verifying impact events as
needed.

� Data quality must be assessed for outliers and
spurious data and addressed through data cleaning
practices. Suspected missing data should be noted,
and all kinematic waveforms should be inspected,
either computationally or manually. Sensor valid-
ity should dictate the necessity and scope of these
practices.

� Investigators should employ analysis techniques
that minimize sampling bias effects. Further, we
recommend statistical transparency in both proce-
dure and output.

� Investigators should perform a common-sense
check on the data and their analysis results. Care
should be taken to investigate results that appear to
be inconsistent, unrealistic, or counterintuitive.
Explanations and disclosures of disparities with
reality will help inform better data collection,
cleaning, and analysis techniques.

INTRODUCTION

Head impact measurement devices provide an
opportunity to collect data directly fromhumans in real-
world impact environments. Studies measuring these
impacts can enlighten us on biomechanical mechanisms
and tolerances of concussion and teach us about head
impact exposure in sporting environments and the
ability of interventions to reduce concussion risk. As
head impact sensor technology has become more cost-
effective, the number of studies being conducted and
published has continually grown. Investigators have
used head impact sensor data to quantify head impact
exposure in sports, relate biomechanical input to clinical
outcomes, model biomechanical concussion tolerance,
and link repetitive head impact exposure to clinical
changes.2,4,6,7,10–14,16,17,19,28–30,36–38,40–43,45,47 However,
while head impact measurement devices have enabled
innovative approaches to answer research questions,
study strength and conclusiveness have varied.

This brief paper is not intended to review the
existing head impact sensor literature critically. Such
reviews exist.33–35 Here, we aim to highlight key points
for the design and analysis of head impact sensor
studies and make recommendations for future studies
based on our combined experiences and observations.
Our intent is for this paper to serve as a helpful tool in
planning and executing head impact studies that are
appropriately powered, reproducible, and generaliz-
able. We discuss these points through four areas of
concern: study design, operational management, data
quality, and data analysis. Broadly considering the
topics discussed in each section will help ensure quality
results that enable meaningful cross-study analysis and
skeptical interpretation of the literature.

STUDY DESIGN

A study should be planned from start to finish be-
fore any data are collected. However, the temptation to
equip a team with sensors and collect data without a
predefined research question can be hard to resist.
Doing so is likely to produce a dataset that cannot
provide meaningful results for even basic objectives
like characterizing head impact exposure. This section
outlines a high-level approach for designing head im-
pact sensor studies and highlights common pitfalls to
avoid.

Head Impact Sensor Study Design

A head impact sensor study should start with
defining the research question(s) to be answered
through data collection and analysis. While research
questions are often broad, investigators should refine
them to a testable hypothesis. There are many brain
health questions that head impact measurement de-
vices might have utility in answering. These questions
could focus on head impact exposure, concussion
biomechanics, injury risk, clinical effects associated
with cumulative head impact exposure, risk reduction
interventions, and others. Each focus would have its
own planned design and considerations to limit bias
and confounding effects to maximize study conclu-
siveness.

With the research question in hand, the investigator
must next design the study. There are two classifica-
tions of study design: experimental and nonexperi-
mental. Experimental studies involve subjects and
conditions that the investigator manipulates. You can
think of experimental studies as laboratory experi-
ments where the investigator assigns subjects to con-
ditions. Nonexperimental studies are observational,
where the investigator does not assign subjects to
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conditions but instead observes subjects in naturally
occurring conditions. Most head impact sensor studies
are nonexperimental given the sound ethical restric-
tions of human subject research in real-world envi-
ronments with injury potential. This lack of control
creates challenges in interpreting results because con-
founding factors and biases are often unseen, making
observational studies less conclusive.

The investigator should select an appropriate study
design to test a study’s hypothesis. The investigator
should define the variables to be measured and which
relationships among them will be studied before the
study begins. The variables in head impact sensor
studies typically fall into four categories: biomechani-
cal, clinical, conditional, and historical.

1. Biomechanical variables are measured by the
sensors and describe the impact event. Linear
and rotational skull kinematics are of most inter-
est here, as they are correlated to brain injury
mechanisms, and it is not possible to directly
measure the brain’s impact response in human
subjects.21 Linear accelerations measured at the
accelerometers should be transformed to the
head’s center of gravity for common reference.
The biomechanical variables can either be inde-
pendent or dependent, depending on the study’s
question. For example, head acceleration would be
a dependent variable in a study comparing head
acceleration magnitudes by football player posi-
tion. Biomechanical exposure variables would be
independent variables in a study investigating the
correlation between head impact exposure and
cognitive test scores.

2. Clinical variables are measured through clinical
assessments and describe responses that might be
associated with impact. Investigators have studied
the effect of head impacts on awide range of clinical
measures, including signs and symptoms, neu-
rocognitive tests, balance, imaging, biomarkers,
gait, and oculomotor function.2,9,14,15,20,25,26,28,46

Clinical measures are almost always dependent
variables that investigators relate to biomechanical
measures in head impact sensor studies.

3. Conditional variables are factors that describe the
conditions associated with a sample. In the context
of head impact measurements in soccer players,
examples of conditional variables would include
whether an impact was collected in a game or
practice, player position, and if the head impact
was associated with a header or collision. Condi-
tional variables are included in statistical models
to explain some of the variance in the dependent
variable. They can be categorical, as described

above, or continuous (such as game temperature
or playing time) and are modeled as independent
variables.

4. Historical variables describe information about
the individual. These can include anthropomor-
phic measurements (such as height and weight),
demographic information (such as age and edu-
cation), and health history (such as learning
disorders and concussion history). Like condi-
tional variables, historical variables are factors
included in models to explain some of the variance
in the dependent variable. They can be categorical
or continuous and are modeled as independent
variables.

Next, the investigator should consider the nature of
planned comparisons. For example, can the hypothesis
be tested by comparing two samples? If so, are the
samples paired? Is there a multisample hypothesis?
How many factors will be considered, and how will
multiple comparisons be performed? Does the study
have a repeated measures design? Answers to such
questions will help identify the most appropriate sta-
tistical model. Paired and repeated measures
approaches can help increase power and reduce
required sample sizes. Examples of paired study de-
signs include matching concussed subjects to control
subjects to compare head impact exposure.36,42

Examples of repeated measures study designs include
clinical assessments performed at multiple time points
and compared to head impact exposure measures.27

Sampling

The investigator must determine how the sample
will be composed. The most obvious question is: what
is an appropriate sample size for the question at hand?
The answer is not obvious and depends on the research
question and study design. One key consideration is
whether the study’s research question focuses on head
impact exposure or concussion. Sample size in head
impact sensor studies typically refers to the number of
subjects instrumented or the number of concussions
observed. If the study focuses on exposure, equipping
100 subjects with head impact measurement devices
might provide 100 useful samples. We state that 100
samples might be produced, even though hundreds of
impacts might be collected for each player, because
data analyses should reduce each player’s impact data
to summary statistics when pooling data between
subjects. If the study focuses on concussions, equip-
ping 100 subjects with head impact measurement de-
vices might only yield 5 useful samples over a season
(subjects that sustained concussions and completed all
testing). The investigator should perform a power
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analysis using the chosen statistical model and avail-
able data from the literature to estimate the sample size
required to answer the research question. If injury is
being studied, the investigator must incorporate the
expected concussion rate into their power analysis.
Simulation is useful for complex statistical models
without clear power calculations for estimating sample
size. We recommend using effect sizes you suspect to
have clinical meaning in any power analyses. For in-
stance, detecting a 1 g difference in head impact
exposure between position groups within a sport is
likely not a meaningful difference.

Another question is: who will make up the sample?
In practice, an investigator focuses on a sport they
want to measure head impacts in and finds a team to
participate. These are typically convenience samples as
it is logistically impossible to randomly sample subjects
from random teams across the population of interest.
The sample is never random in observational head
impact sensor studies, which affects generalizability by
introducing selection bias. The samples chosen can be
too specialized. For example, results from a study on
National Football League players cannot be general-
ized and applied to high school football players. In
addition, a study quantifying head impact exposure in
soccer players that only enrolled a men’s soccer teams
could not be generalized to women’s soccer. One must
consider factors like the sex, level of play, age, and
region of enrolled teams when assessing selection bias
and the generalizability of their conclusions.

An additional concern is sampling bias. Sampling
bias can exist in different forms but pull results away
from representative averages. Once a team (or set of
teams) are recruited, the investigator enrolls subjects
into the study. The investigator might target specific
subjects to enroll for various reasons like playing time
and player position. On the other hand, subjects with
certain characteristics might be more or less likely to
agree to participate. These two scenarios might over-
represent one subject subtype and underrepresent an-
other. An example for a study on football player head
impact exposure would be where a disproportionate
number of skill position players were instrumented
relative to lineman. As a result, data analysis results
wouldn’t represent the team and would be skewed to-
ward skill positions. Uniform sampling of participants
and collecting data relevant to the research question
are essential aspects of study design that minimize
imbalances that mask the truth. However, sampling
bias will almost always be present, so data analysis
techniques that minimize bias effects should be em-
ployed.

Confounding Factors

Investigators must carefully consider factors that
might confound their results. Confounding factors are
variables related to the variables of interest that can
lead to false conclusions. A confounding variable must
be associated with both the main independent variable
of interest and the outcome of interest without being
on the causal pathway between the two variables. An
example would be football player position while
investigating the relationship between body mass (in-
dependent variable) and linear head acceleration (de-
pendent variable). Player position would act as a
confounder because, for example, wide receivers have
lower body mass than linemen and the nature and
frequency of contact differs between wide receivers and
linemen. Conditional and historical variables often
describe confounding factors. Conditional variables
like player position, depth chart, and session type can
influence biomechanical measurements.12,40,43 Histori-
cal variables like neurologic disorders and concussion
history can influence clinical measurements and injury
response. Further complicating this, factors like con-
cussion history, head impact exposure history, genet-
ics, resilience, sex, and fitness level likely influence
concussion risk and severity in ways that are yet to be
defined and are, in some cases, difficult to quantify
during baseline assessments. Investigators should
consider what factors might influence their variables
and make efforts to measure them. Confounding fac-
tors can be used as exclusion criteria or be built into
statistical models as covariates.

Instruments

The final step of study design is to select the
instruments used to collect data. Various instruments
are typically used within a single study. Biomechanical
data are captured with head impact measurement de-
vices. Clinical data are captured through a broad range
of clinical assessments depending on the study’s ques-
tion. Surveys are often used to capture conditional and
historical data. We will focus on head impact mea-
surement devices here, but it is important to note that
all instruments have some degree of error. This error
presents itself through a combination of systematic and
random errors. Systematic error is extremely prob-
lematic because there is no simple process to account
for it. Systematic error is one-directional, meaning that
measurements tend to be consistently higher or lower
than truth. For example, a head impact sensor might
always overestimate head acceleration and overcount
head impact events due to poor coupling with the
skull. Random error is less problematic, assuming that
its magnitude is not unreasonably high. Random error
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produces less precise data. It is as likely to be in one
direction as the other, allowing error to be averaged
out over many measurements. Given certain assump-
tions about the error distribution, some statistical
approaches account for data with random error. With
that stated, high random error is problematic for
interpreting individual measurements. The investigator
should understand the error characteristics of any
measurement devices that will be employed. Various
works have previously quantified error for existing
head impact measurement devices,5,22,31,32,39,44 and
CHAMP has two papers dedicated to head impact
sensor error assessments that we point to here for
brevity.18,24

OPERATIONAL MANAGEMENT

Outside of study design, proper operational man-
agement is critical for collecting quality data to sup-
port research questions. Here, we identify a few study
execution considerations derived from our experiences
to help maximize the chances of completing a suc-
cessful study.

Investigator Team

Head impact studies are large endeavors that benefit
from multidisciplinary teams comprised of biome-
chanical, clinical, and statistical expertise. A team with
relevant knowledge and experience is more likely to
collect valid data for each instrument, identify prob-
lems, perform sound analysis, and provide thoughtful
interpretation than a team without expertise in an
essential area. In multi-site studies, uniform biome-
chanical and clinical data collection methods are nee-
ded to pool data. Further, common diagnostic criteria
between clinical team members must be agreed upon
and implemented. Research teams would also benefit
from establishing partnerships with the research par-
ticipant community. Such partnerships help investiga-
tors understand the participant’s perspective and
conduct more representative and reliable studies.
Furthermore, they are the ones on the ground that can
help identify the most feasible way to carry out the
research study.

Missing Data

Minimizing missing data should be a priority for
investigators. Challenges with participant buy-in and
compliance for properly wearing head impact mea-
surement devices can result in missing or low-quality
data. Beyond compliance, instrument reliability varies.
Collecting consistent day-to-day data is difficult due to

device failures, battery charging issues, and partici-
pants fiddling with or removing devices. All potential
problems create opportunities for missing data. Given
that head impact sensor studies tend to require large
sample sizes, investigators should ensure that the
research team has enough personnel to maintain de-
vices, monitor the system during use, observe and re-
cord sessions, and inspect data daily.
Inevitable problems can be identified quickly and re-
solved, minimizing the impact of missing data.

Video Recording

Recording video of all sessions is another best
practice that we encourage. Ideally, video of all players
at all times would be recorded using multiple cameras.
The video should be deliberately time-synchronized
with the sensor equipment. It is often helpful to cap-
ture the game clock and scoreboard with video, as well.
Video can be used to identify measurements not
associated with impact (false-positive measurements),
identify impacts not measured by the sensor (false-
negative measurements), and provide a means of
classifying impact characteristics.

DATA QUALITY

With data collection complete, data quality must be
assessed and maximized before data analysis. The first
step is data cleaning. Data cleaning includes filtering
out non-impact-related events measured by devices,
filtering out events that are not relevant to the research
question, identification and removal of outliers, iden-
tification and removal of spurious kinematic signa-
tures, and identification and notation of missing data.
We recommend that these processes be done regularly
throughout data collection to check for systematic is-
sues and allow any problems to be identified and cor-
rected early in the study. Many of these processes rely
on instrument validity, which should be quantified
from in-lab and on-field evaluations and available to
investigators. Some sensor systems employ proprietary
software algorithms to clean data, but these vary in
their ability to do so correctly. It is up to the investi-
gator to determine which data cleaning steps are nec-
essary for their chosen instrument.

Video Verification

Video review can be a valuable tool in identifying
recordings not related to head impact. Non-impact
recordings, such as those associated with participants
removing measurement devices or seemingly random
event triggering, should be removed from the dataset if
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they are present. Using video to note sessions’ start,
end, and break times can provide a simple first filter to
remove measurements not associated with play. Then,
the remaining events recorded can be cross-referenced
with video to identify if they are associated with impact
events. The investigator should decide the necessity
and intensity of video review based on their study’s
purpose and instrument quality as determined in vali-
dation studies. Again, we point to the CHAMP vali-
dation papers on this topic for thorough treatment.18,24

Impact Classification

Investigators should define what they consider a
relevant acceleration event for the research question.
Sensor systems typically apply a threshold filter to re-
move low-magnitude events associated with dynamic
movements. While there can be a good reason to vary
the threshold between studies, differing thresholds
make head impact study comparisons difficult. For
example, lowering a recording threshold from 20 to
10 g in college football might double the number of
impacts recorded for each player. Furthermore, the
research question should dictate if all impact-related
events are being investigated or if just head impacts
are. The investigator should consider removing any
measurements not associated with direct head impact if
the latter. Video analysis can be used to determine if
head accelerations events are associated with body
collisions or direct head impacts.

Identifying Missing Data

Sometimes an instrument will fail to record kine-
matic data for a head impact. Such events are often
noticed when observing an injury or interesting impact
and finding no corresponding instrumentation data. In
the context of data recording, these are classified as
false-negative measurements. Tracking false-negative
impact recordings can be an important step in data
quality assessment, depending on the research ques-
tion. Unfortunately, identifying all false-negative
measurements is extremely challenging. Tedious video
review is required to observe all of the head impact
events experienced by the instrumented athletes over
the periods of interest. These head impacts then need
to be cross-referenced with instrumentation data to
identify false negatives. Even then, they are only sus-
pected false negatives because it is not known whether
the head impact observed on video was severe enough
to trigger the recording of sensor data in the first place.
Although tedious, a video review of all head impacts is
required to know the false-negative rate of a wearable
sensor system. This process need not be performed in
every study. Often, only injurious head impacts are

verified with video. However, if a full video review of
all head impacts is not performed, the authors should
reference a validation study in which such a video re-
view was performed. If the authors are using a sensor
system that has never been validated with video review,
they must acknowledge that the false-negative rate of
their sensor system is unknown. Likewise, it is impor-
tant to acknowledge that most datasets will contain
missing data in this form, and the investigator should
consider the effects of missing data on their analysis.

Waveform Review

Beyond video review, kinematic waveform review
can be performed to identify and remove erroneous
data. The focus here is on kinematic time history and
magnitude error. Low-quality waveforms can indicate
a coupling problem between the instrument and par-
ticipant.48 Like video review, there a multiple levels of
waveform review. The first action would be to identify
measurements with unusually high magnitudes.
‘‘Unusually high’’ might be defined as anything over
100 g but should vary depending on the loading envi-
ronment. While acceleration magnitudes this high oc-
cur in sports, they represent a small fraction of the data
collected and are likely to be associated with injury if
confirmed. Identified outliers can be compared to vi-
deo and flagged or removed if they are in stark contrast
to the observed impact severity. Directionality of the
acceleration vector and observed impact direction of
force can also be compared to assess waveform valid-
ity. Finally, waveforms should be reviewed to identify
spurious impacts—those with time-clipped impulses,
ringing, multiple nonsensical impulses, and poor sig-
nal-to-noise ratios.23 Fortunately, these processes can
be automated to clean data or flag a small sample of
impacts for manual inspection.

DATA ANALYSIS

There is a need for the transparent and consistent
reporting of data. Studies tend to use different tech-
nologies, compute quantities differently, and apply
different statistical methods, all of which make inter-
preting and comparing studies challenging. This sec-
tion will highlight a few key sources of variability and
suggest best practices where appropriate.

Biomechanical Variables

Newer instruments are adept at measuring rota-
tional head kinematics, using angular accelerometers,
angular rate sensors, or linear accelerometers. Angular
acceleration is an absolute measurement that can be
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characterized by its peak magnitude; however, the
head’s peak rotational velocity might be less biome-
chanically meaningful than the change in rotational
velocity associated with impact.3 Many head impact
sensor systems report peak rotational velocity by de-
fault, and investigators should take care to correct this
variable to the change in velocity associated with im-
pact.

Many head impact studies investigate the effects of
repetitive head impact exposure. A simple definition of
repetitive head impact exposure is the combined
biomechanical load of all head impacts experienced
over a given period. The combined biomechanical load
is a function of impact frequency and kinematic mag-
nitude. Studies have attempted to compute cumulative
exposure in various ways, including the number of
impacts, number of impacts paired with 95th percentile
acceleration magnitudes, summed accelerations, head
impact density measures, and risk-weighted expo-
sure.8,13,14,36,42 However, there is no consensus on the
optimal method to summarize the cumulative biome-
chanical load of many head impacts.

Summarizing Data

A single study might measure hundreds of thou-
sands of head impacts. How an investigator summa-
rizes these data depends on the research question.
Here, we note some data characteristics and practices
to handle head impact data. It makes sense to perform
analyses on a per-player basis in many instances. That
means that data are summarized for each subject be-
fore cohort values are computed. There are a couple of
benefits in doing so. First, it allows variation between
participants to be quantified. Second, it mitigates a
form of sampling bias where subjects with more head
impacts influence the cohort summary values more
than subjects with few impacts. At the subject level,
distributions of acceleration magnitudes will likely be
right-skewed. For heavily skewed distributions, medi-
ans and interquartile ranges are often better central
tendency and variance measures than averages and
standard deviations. 95th percentiles have frequently
been used to describe higher magnitude accelerations
for participants, assuming each subject has experienced
enough impacts. Distributions of summary statistics
between subjects should approach normality given a
large enough sample and the absence of bias. Each
study’s approach to summarizing data will vary
depending on the research question but should con-
sider the underlying distributions and opportunities to
identify and account for bias.

Statistical Reporting

Investigators should specify their statistical
approach during study design. More transparency in
statistical methods and output reporting in the litera-
ture would be helpful. For example, only reporting p-
values is not helpful to the reader for interpreting re-
sults. A p value is a composite number that combines
effect size and precision, yet describes neither. In
addition to p values, reporting effect size and a confi-
dence interval would better describe a study’s statisti-
cal findings. Such an approach could prevent small
effect sizes with little clinical meaning being overstated
due to high precision. The opposite can be a problem
too, where large effects might be completely ignored
due to low precision. The presence or absence of sta-
tistical significance does not reflect impairment (or
some other clinical characteristic). It is up to the
investigators to interpret any effects and their clinical
implications. The appropriate parameter to measure
effect size should be identified before the study starts to
avoid the temptation to ‘‘p-hack’’ after the fact and
scour the data for other parameters that show signifi-
cant (but unexpected and potentially spurious) effects.
Furthermore, it is imperative that investigators use and
report appropriate statistical procedures that account
for history and regression effects in studies with re-
peated measure designs. Not doing so threatens a
study’s internal validity, which is the confidence level
in a cause-and-effect relationship. Such designs typi-
cally have subjects complete clinical tests at multiple
timepoints.

Sampling Bias

Investigators should consider what sampling biases
might be in their data. If sampling can be shown to
minimize biases, estimates can be computed on an
absolute basis. If biases exist, methods to deal with
them should be implemented, like normalization or
reweighting to prevent a subset of subjects or condi-
tions from pulling the data away from representative
averages. Most datasets will have some sampling bias
in them. One example would come from nonuniform
sampling of player position.

Differential subject loss also affects study validity by
introducing sampling bias. Head impact sensor studies
occur over time, and subjects might drop out of the
study before its conclusion. This can be problematic
because the attrition might not be random and could
differ between the groups being compared. For exam-
ple, subjects might drop out of a study because they
sustained a concussion. This is a form of sampling bias
that can develop throughout a study. The method used
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to account for bias needs to be determined in the
context of the research question.

Dealing with Missing Data

Missing data can be pervasive in head impact sensor
datasets. Missing data are almost guaranteed to be in
all head impact sensor datasets, whether from device
failures, player compliance and participation, or data
cleaning. Imputation and removal are two primary
methods of dealing with missing data. Imputation
involves making an educated guess and filling in
missing data. Imputation approaches can make sense
in scenarios where one might aim to quantify total
head impact exposure over a season but had several
sessions where the devices were not functioning cor-
rectly. Removal involves removing sample units with
incomplete data from the analysis and only analyzing
sample units with complete data. Investigators should
employ a method compatible with their research
question.

Gut Check

Our last note is to have investigators perform a
common-sense check before submitting results for
publication. If the results are nonsensical or disagree
with what one would expect, care should be taken to
confirm the findings. Examples include unrealistically
high impact counts for low contact sports and overly
high kinematic magnitudes compared to observation.
Publication of nonsensical results can largely be pre-
vented through proper study design and data cleaning
practices.
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