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1  | INTRODUC TION

CRISPR (clustered regularly interspaced short palindromic repeats)‐
Cas (CRISPR associated protein) adaptive immune systems are used 
by certain prokaryotes to resist the invasion of foreign nucleic acids 
such as phages or plasmids.1,2 Currently, CRISPR‐Cas systems are 
divided into two classes (1 and 2), six types (class 1: types I, III and 
IV; class 2: types II, V and VI) and 33 subtypes.3 Class 1 systems 
utilize RNA‐guided complexes consisting of multiple Cas proteins 
as the effector proteins to recognize and cleave target DNA, while 
class 2 systems rely on a single effector‐protein (for example, Cas9) 
with a guided RNA to function. So far, several subtypes of class 2 
CRISPR‐Cas systems have been identified and developed into pow‐
erful gene‐editing technologies, including CRISPR‐Cas9, Cas12a 
(Cpf1) and Cas13a (C2c2).4‐7

In the most widely used CRISPR‐Cas9 system, Cas9 nuclease, 
coupled with a single guide RNA (sgRNA), binds to the target site that 

is complementary to sgRNA and next to a protospacer adjacent motif 
(PAM, a short sequence required for binding to the DNA) sequence 
in the genome, and makes double stranded breaks (DSBs) in the ge‐
nome. SgRNA is derived from the fusion of CRISPR RNA (crRNA) 
and trans‐activating crRNA (tracrRNA).4 The cell will subsequently 
initiate DNA repair depending on the availability of repair templates. 
In the absence of templates, cells will initiate the non‐homologous 
end joining (NHEJ) repair pathway, causing insertion or deletion (in‐
dels) mutations at the target site. When an exogenous homologous 
template is available, the cell will initiate a homology‐directed repair 
(HDR) pathway.8‐10 When Cas9 cleavage activity is completely or 
partially inactivated, dCas9 (dead Cas9) or nCas9 (Cas9 nickase) will 
be generated. Based on these Cas9 variants, a number of techniques 
have been derived by fusing the variants with various functional el‐
ements; they include CRISPR‐mediated gene activation (CRISPRa), 
interference with gene expression (CRISPRi), base editing (cytosine 
base editor, CBE or adenine base editor, ABE), DNA imaging and 
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Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)‐Cas (CRISPR as‐
sociated protein) systems serve as the adaptive immune system by which prokaryotes 
defend themselves against phages. It has also been developed into a series of power‐
ful gene‐editing tools. As the natural inhibitors of CRISPR‐Cas systems, anti‐CRISPRs 
(Acrs) can be used as the “off‐switch” for CRISPR‐Cas systems to limit the off‐target 
effects caused by Cas9. Since the discovery of CRISPR‐Cas systems, much research 
has focused on the identification, mechanisms and applications of Acrs. In light of the 
rapid development and scientific significance of this field, this review summarizes the 
history and research status of Acrs, and considers future applications.
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epigenetic modification.11‐13 Subsequently the CRISPR‐Cas9 system 
and its derivative gene‐editing toolkit have made a promising impact 
on basic, translational, and clinical research.7,14,15

However, the mature CRISPR‐Cas9 technologies have as‐yet‐
unresolved off‐target problems (cleavage and mutations at unin‐
tended sites with high sequence homology to on‐target sites), 
which limits the application of Cas9‐mediated technologies.16,17 
There are two general causes of off‐target action.18 The first is 
the intrinsic specificity of Cas9 protein. Cas9 not only tolerates 
base pair mismatches in the PAM‐distal part of the sgRNA‐guiding 
sequence, it can also tolerate non‐optimal PAM sequences albeit 
with less efficient cleavage activity. Furthermore, Cas9 can cleave 
off‐target sites which have a few extra or missing nucleotides 
compared with the sequence of the complementary sgRNA. The 
second cause of off‐target action is excessive amounts of Cas9/
sgRNA complex, which exacerbate off‐target effects. In order to 
solve this problem, Cas9 protein and sgRNA designs are modi‐
fied to improve the specificity of target recognition,19,20 or Cas9/
sgRNA abundance and duration are controlled to further decrease 
off‐target effects.18,21 In recent years, a series of proteins termed 
anti‐CRISPRs (Acrs) have been discovered in bacterial prophage or 
phages that can inhibit Cas9 cleavage activity.22,23 Acrs proteins 
such as AcrIIA4 have been shown to reduce off‐target effects by 
inhibiting Cas9 activity in a timely manner in cells.24

Anti‐CRISPRs are the natural inhibitors for CRISPR‐Cas systems. 
In the long course of evolution, bacteria and phages have been en‐
gaged in an evolutionary arms race.25 In order to resist infection 
by phages, bacteria have evolved a number of diverse anti‐phage 
defenses, and one of them is the CRISPR‐Cas immune systems.26 
Meanwhile, in order to evade CRISPR‐Cas‐mediated immunity, 
phages have evolved the Acr proteins that inhibit the CRISPR‐Cas 
systems.25 So far, a total of 44 distinct families of Acr genes have 
been reported (Table 1). Acr proteins are named based on the sub‐
type of the CRISPR‐Cas systems they inhibit and the order in which 
they were discovered.27 In this review, we summarize the discov‐
eries, inhibition mechanisms and applications of these Acr proteins, 
and look forward to future developments in their use as research 
tools and in clinical applications.

2  | THE DISCOVERY OF ACRS

In 2013, the first Acrs were discovered in the phages of Pseudomonas 
aeruginosa. This strain contains the type I‐F CRISPR‐Cas system 
and prophage. Researchers found that the prophage sequence in 
phage‐sensitive and ‐insensitive strains is different. A single unique 
genetic locus encoding ten distinct protein families was found in the 
prophage sequence of the phage‐insensitive strain, and five of them, 
AcrIF1‐5, could inhibit the type I‐F CRISPR‐Cas system in P aerugi-
nosa (Table 1).28 Subsequently, another four proteins, AcrIE1‐4, were 
found to inhibit type I‐E CRISPR‐Cas in P aeruginosa (Table 1).29

However, these nine Acr proteins originally found in P aeruginosa 
share no homology with the proteins from other bacterial species or 

phages, and there is no homology among these nine proteins. This 
makes it difficult to use bioinformatics methods such as Basic Local 
Alignment Search Tool (BLAST) to find new Acr proteins. However, 
researchers have found a highly conserved gene downstream of 
these Acr genes, named Acr‐associated gene 1 (aca1). Aca1 encodes 
a helix‐turn‐helix (HTH) protein which is a putative transcriptional 
regulator. Using BLAST, homologous sequences of aca1 have been 
retrieved. The genes upstream of these homologous sequences have 
been cloned into the expression plasmid to interfere with the type 
I‐E and I‐F CRISPR‐Cas systems of P aeruginosa, leading to the dis‐
covery of proteins AcrIF6‐10 (Table 1), as well as a new Acr‐associ‐
ated gene named aca2.30 It is worth noting that AcrIF6 can function 
as an inhibitor of both the type I‐E and I‐F CRISPR‐Cas systems.

Three proteins based on the DNA sequence from aca2, AcrIIC1‐3 
(Table 1), were the first inhibitors discovered for the type II‐C 
CRISPR‐Cas systems from Neisseria meningitides, and these were 
the first Acr proteins used to regulate Cas9‐mediated gene‐editing 
activity in human cells.22 Another study has found two other type 
II‐C Acrs based on aca2 (AcrIIC4 and 5, Table 1).31 This method 
of using the Acr‐associated genes to find novel Acr proteins has 
been termed “guilt‐by‐association”. Recently, as more bacterial and 
phage sequence data have been compiled, the “guilt by associa‐
tion” method with further functional assays has led to 12 new Acr 
proteins being identified, including AcrIC1, AcrIE4‐F7 (a chimera), 
AcrIE5‐7, AcrF11‐14, and AcrVA1‐3 (Table 1).32 Strikingly, AcrVA1‐3 
(and AcrVA4‐5 discussed below) were the first identified inhibitors 
for Cas12a (formerly Cpf1).32,33

In addition to the “guilt‐by‐association” concept, another bioin‐
formatic approach based on self‐targeting spacers was developed for 
finding novel Acrs. The idea arose from the phenomenon that some 
bacterial genomes can be targeted by self CRISPR spacers, whereby 
the bacterium has to deactivate its own CRISPR‐Cas system in order 
to survive. This phenomenon may imply the presence of the Acr 
proteins. Subsequently, in this manner, AcrIIA1‐4 were discovered 
(Table 1).23 Among them, AcrIIA2 and AcrIIA4 have been shown to 
inhibit the widely used Streptococcus pyogenes Cas9 (SpyCas9). In 
addition, AcrIIA4 has been revealed to significantly limit off‐target 
editing of SpyCas9 in human cells.24

Based on this self‐targeting bioinformatics analysis, a bioinfor‐
matics pipeline named self‐targeting spacer search (STSS) has been 
developed to predict the self‐targeting sequence in all available 
bacterial genomes with the predicted CRISPR arrays. Using STSS 
combined with a functional screening system called transcription‐
cell‐free translation (TXTL),34 Kyle E. Watters et al systematically 
found the inhibitors of Cas12a, namely AcrVA1, AcrVA4, and AcrVA5 
(Table 1).33 Interestingly, AcrVA1 was discovered independently 
and concurrently by different research groups using two different 
methods.32,33

In addition, A. P. Hynes et al made use of the “phage‐first” ap‐
proach to screen Acr proteins and identified AcrIIA5 and AcrIIA6 
in two virulent phages (Table 1).35,36 AcrIIA5 has proven to be the 
most broad‐spectrum inhibitor of the type II CRISPR‐Cas system to 
date, having been shown to inhibit the type II‐A Cas9 proteins (such 
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TA B L E  1   All known anti‐CRISPR proteins

Anti‐CRISPR Origin Number of amino acids CRISPR‐Cas system inhibited Ref.

AcrIC1 Moraxella bovoculi prophage 190 I‐C (Pae) 32

AcrID1 Sulfolobus islandicus rudivirus 3 104 I‐D (Sis) 37

AcrIE1 Pseudomonas aeruginosa phage JBD5 100 I‐E (Pae) 29,51

AcrIE2 P aeruginosa phage JBD88a 84 I‐E (Pae) 29

AcrIE3 P aeruginosa phage DMS3 68 I‐E (Pae) 29

AcrIE4 P aeruginosa phage D3112 52 I‐E (Pae) 29

AcrIE4‐F7 Pseudomonas citronellolis prophage 119 I‐E/I‐F (Pae) 32

AcrIE5 Pseudomonas otitidis prophage 65 I‐E (Pae) 32

AcrIE6 P aeruginosa prophage 79 I‐E (Pae) 32

AcrIE7 P aeruginosa prophage 106 I‐E (Pae) 32

AcrIF1 P aeruginosa phage JBD30 78 I‐F (Pae, Pec) 28,30,42‐45,69

AcrIF2 P aeruginosa phage D3112 90 I‐F (Pae, Pec) 28,30,42‐45

AcrIF3 P aeruginosa phage JBD5 139 I‐F (Pae) 28,30,42,52,53

AcrIF4 P aeruginosa phage JBD26 100 I‐F (Pae) 28,30,42

AcrIF5 P aeruginosa phage JBD5 79 I‐F (Pae) 28,30

AcrIF6 P aeruginosa prophage 100 I‐E (Pae),/I‐F (Pae, Pec) 30

AcrIF7 P aeruginosa prophage 67 I‐F (Pae, Pec) 30

AcrIF8 Pectobacterium phage ZF40 92 I‐F (Pae, Pec) 30

AcrIF9 Vibrio parahaemolyticus mobile element 68 I‐F (Pae, Pec) 30

AcrIF10 Shewanella xiamenensis prophage 97 I‐F (Pae, Pec) 30,44

AcrIF11 P aeruginosa prophage 132 I‐F (Pae) 32

AcrIF12 P aeruginosa mobile element 124 I‐F (Pae) 32

AcrIF13 Moraxella catarrhalis prophage 115 I‐F (Pae) 32

AcrIF14 Moraxella phage Mcat5 124 I‐F (Pae) 32

AcrIIA1 Listeria monocytogenes prophage J0161a 149 II‐A (Lmo) 23,39

AcrIIA2 L monocytogenes prophage J0161a 123 II‐A (Lmo, Spy) 23,47,48,70

AcrIIA3 L monocytogenes prophage SLCC2482 125 II‐A (Lmo) 23

AcrIIA4 L monocytogenes prophage J0161b 87 II‐A (Lmo, Spy) 23,24,47,55‐58,71,72

AcrIIA5 Streptococcus thermophilus phage D4276 140 II‐A (Sth, Spy) 35,36

AcrIIA6 S thermophilus phage D1811 183 II‐A (Sth) 36

AcrIIA7 Metagenomic libraries from human gut 103 II‐A (Spy) 38

AcrIIA8 Metagenomic libraries from human gut 105 II‐A (Spy) 38

AcrIIA9 Metagenomic libraries from human gut 141 II‐A (Spy) 38

AcrIIA10 Metagenomic libraries from human gut 109 II‐A (Spy) 38

AcrIIC1 Neisseria meningitidis 85 II‐C (Nme, Cje, Geo, Hpa, Smu) 22,31,46,59

AcrIIC2 N meningitidis prophage 123 II‐C (Nme, Hpa, Smu) 22,31,41

AcrIIC3 N meningitidis prophage 116 II‐C (Nme, Hpa, Smu) 22,31,41,46

AcrIIC4 Haemophilus parainfluenzae prophage 88 II‐C (Nme, Hpa, Smu) 31

AcrIIC5 Simonsiella muelleri prophage 130 II‐C (Nme, Hpa, Smu) 31

AcrVA1 M bovoculi prophage 170 V‐A (Mb, As, Lb, Fn) 32,33,40,50

AcrVA2 M bovoculi prophage 322 V‐A (Mb) 32

AcrVA3 M bovoculi prophage 168 V‐A (Mb) 32

AcrVA4 M bovoculi mobile element 234 V‐A (Mb, Lb) 33,40

AcrVA5 M bovoculi mobile element 92 V‐A (Mb, Lb) 33,40,49

Abbreviations: As, Acidaminococcus sp; Cje, Campylobacter jejuni; Fn, Francisella novicida; Geo, Geobacillus stearothermophilus; Hpa, Haemophilus 
parainfluenzae; Lb, Lachnospiraceae bacterium; Lmo, Listeria monocytogenes; Mb, Moraxella bovoculi; Nme, Neisseria meningitidis; Pae, Pseudomonas 
aeruginosa; Pec, Pectobacterium atrosepticum; Sis, Sulfolobus islandicus; Spy, Streptococcus pyogenes; Sth, Streptococcus thermophilus.
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as SpyCas9 and SthCas9) in vivo and the type II‐C Cas9 proteins in 
vitro.34,35 Subsequently, a similar approach was used to identify the 
first Acr protein inhibiting the type I‐D CRISPR‐Cas system in the 
archaeal lytic viruses (AcrID1, Table 1).37

Recently, a high‐throughput approach was developed to screen 
for Acr genes from soil, animal, and human metagenomics libraries 
based on their function of inhibiting SpCas9 rather than on bioin‐
formatics. Four protein families inhibiting Cas9 in vivo and in vitro 
(AcrIIA7‐10, Table 1) have been identified.38

3  | ACR MECHANISMS

Among the 44 distinct families of Acr proteins discovered so far 
(Table 1), mechanisms have been reported for 15 of them, includ‐
ing AcrIE1, AcrIF1‐3, AcrIF10, AcrIIA2, AcrIIA4, AcrIIC1‐5, AcrVA1, 
AcrVA4 and AcrVA5. Although structural information has been re‐
ported for 14 of these Acr proteins, specific inhibitory mechanisms 
can be determined for only 11 of them (AcrIE1, AcrIF1‐3, AcrIF10, 
AcrIIA2, AcrIIA4, AcrIIC1‐3, and AcrVA5). The structural information 
reported for another three Acr proteins (AcrID1, AcrIIA1, AcrIIA6) 
did not clearly illuminate their mechanisms.36,37,39 In addition, the 
inhibitory mechanisms of AcrIIC4, AcrIIC5, AcrVA1, and AcrVA4 
were determined by biochemical experiments.31,40 The known 
mechanisms of these 15 Acr proteins can be roughly divided into 
three types: crRNA loading interference, DNA binding blockage and 
DNA cleavage prevention. This corresponds to the three steps of 
CRISPR‐Cas‐mediated immunity through direct interference with 
foreign DNA (Figure 1).

3.1 | crRNA loading interference

According to a recent study,AcrIIC2 has been identified as interfer‐
ing with crRNA‐ and DNA‐loading steps through binding to a Cas9 
BH motif.41 AcrIIC2 is the first reported Acr protein interfering with 
crRNA loading, which prevents the correct assembly of the crRNA‐
Cas9 complex, resulting in the blockade of Cas9 activity.

3.2 | DNA binding blockage

In addition to AcrIIC2, 11 other Acr proteins can block the target 
DNA binding, but the mechanisms by which they block DNA bind‐
ing are completely different. Structural information has shown 
that AcrIF1, AcrIF2, and AcrIF10 act on different subunits of the 
Cascade effector complex of the type I‐F CRISPR‐Cas system to 
prevent DNA binding to the complex.42‐45 Biochemical and struc‐
tural data suggested that AcrIIC3 promotes dimerization of Cas9 
and prevents DNA binding.41,46 The structure of the Cas9‐sgRNA‐
AcrIIA4 complex, revealed by 3.9 Å resolution cryo‐electron mi‐
croscopy, indicates that AcrIIA4 binds to the PAM‐interacting 
domain of Cas9, thus preventing the target DNA binding.24,47 
What is more, AcrIIA4 binds only to assembled Cas9‐sgRNA com‐
plexes, not to Cas9 protein alone or to preformed Cas9‐sgRNA‐
DNA complexes.23,24 Combining electrophoretic mobility shift 
assays (EMASs), fluorescence polarization assays and image as‐
says, J. Lee et al showed that both AcrIIC4 and AcrIIC5 prevent 
NmeCas9 from binding to DNA while having no effect on sgRNA 
loading.31 Recently, two structural studies revealed that AcrIIA2 
acts as a DNA mimic, blocking the PAM recognition residues and 

F I G U R E  1   Schematics of anti‐CRISPR protein interfere with different stages of type I, type II and type V CRISPR‐Cas systems. A, In type 
I CRISPR‐Cas systems, the nine subunits of the Cascade come together with the CRISPR RNA (crRNA) to form the surveillance complex, 
which uses the spacer sequence (cyan) to search for target DNA (red). Then the Cas3 nuclease is recruited to the complex and cleaves 
the target DNA. AcrIF1, AcrIF2, and AcrIF10 can block the target DNA binding. AcrIE1 and AcrIF3 prevent Cas3 recruitment and thereby 
prevent DNA cleavage. B, In type II and type V CRISPR‐Cas systems, the crRNA is loaded onto Cas protein (Cas9 or Cas12a) to form a 
ribonucleoprotein complex, which binds to target DNA and then cleaves it. AcrIIC2 is shown to interfere with crRNA‐ and DNA‐loading. 
AcrIIA2, AcrIIA4, AcrIIC3, AcrIIC4, AcrIIC5, AcrVA1, AcrVA4 and AcrVA5 are known to block the target DNA binding. AcrIIC1 prevents the 
target DNA cleavage
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subsequently preventing dsDNA recognition and binding, which is 
similar to the actions of AcrIIA4.48

In addition, two recent studies showed that AcrVA1, AcrVA4, and 
AcrVA5 robustly block Cas12a binding to DNA via distinct mecha‐
nisms.40,49 AcrVA1 triggers endoribonuclease activity to truncate the 
Cas12a bound crRNA and permanently inactivates the Cas12a sur‐
veillance complex. AcrVA4 blocks dsDNA binding by driving dimeriza‐
tion of Cas12a‐crRNA complexes, similar to the action of AcrIIC3.40,46 
Structural and biochemical data revealed that AcrVA5 can block target 
DNA binding through acetylating the lysine residue of the PAM recog‐
nition region of Moraxella bovoculi (Mb) Cas12a.49 These two studies 
revealed a previously unobserved mechanism whereby AcrVA1 and 
AcrVA5 use enzymatic activities rather than physical barriers to shut 
down the Cas12a endonuclease activity.50

3.3 | DNA cleavage prevention

Three Acrs can inhibit CRISPR‐Cas systems by preventing target 
DNA cleavage. X‐ray crystallography showed that AcrE1 binds to 
the CRISPR‐associated helicase/nuclease Cas3.51 Both biochemical 
assay and structural analysis revealed that AcrIF3 binds directly to 
Cas3 as a dimer and prevents the recruitment of Cas3 to the Cascade 
complex.42,52,53 Detailed biochemical and structural characterization 
demonstrated that AcrIIC1 directly binds to the active site of the 
HNH endonuclease domain in Cas9, which prevents DNA from cleav‐
ing and transforms Cas9 into an inactive but DNA‐bound state.46

3.4 | Function and applications

The first application of Acrs was to regulate Cas9‐ or Cpf1‐mediated 
gene editing in human cell lines. Given that unintended DNA modifi‐
cation and cleavage by off‐target Cas nuclease activity is permanent, 
high specificity is particularly important in Cas9‐ or Cpf1‐mediated 
gene therapy.7 Many type II‐A, type II‐C, and type V‐A Acrs can 
inhibit Cas9‐ or Cpf1‐based genome editing in human cell lines.22‐

24,31,33,36 Notably, a research group has shown that timed addition 
of AcrIIA4 can significantly reduce off‐target editing at some tested 
off‐target sites in human cells,24 which indicates a potential clinical 
application in the future.

Anti‐CRISPRs can be a robust “off‐switch” for CRISPR‐Cas systems. 
For example, type II‐A or type II‐C Acr proteins can inhibit the Cas9‐
based gene drive, which has been developed for eradicating disease 
vectors such as mosquitos over a long timeframe.54 Acrs can avoid the 
unpredictable ecological consequences caused by gene drives based 
on Cas9. A recent study has shown that AcrIIA2 and AcrIIA4 proteins 
can inhibit active gene drive systems in budding yeast.55

Some of the type II Acr proteins can also inactivate dCas9‐based 
genome editing technologies by blocking dCas9 binding to the target 
DNA. Several studies have revealed that AcrIIA4 can significantly 
inhibit gene regulation by CRISPRi, CRISPRa and targeted DNA de‐
methylation in human cells.56,57 Moreover, optogenetic controlled 
AcrIIA4 and inducible AcrIIA4 can modulate Cas9‐mediated genome 
or epigenome editing.57,58

Interestingly, a recent study reported a centrifugal microfluidic 
platform to detect both Cas9 protein levels and nuclease activity.59 
In this platform, AcrIIC1 was initially used as a capture reagent to 
detect Cas9 from several species. Thus Acrs can be potentially used 
to detect accidental exposure, malicious use, and undesirable per‐
sistence of Cas9.

Another potential use of Acrs is phage therapy. With the emer‐
gence of many drug‐resistant bacteria, phage therapy is considered 
as an alternative to antibiotics. However, some pathogenic bacteria 
such as P aeruginosa and Clostridioides harbor CRISPR‐Cas systems, 
which prevent phage propagation and lysis in host bacterial cells.60‐

62 Engineered phages that contain Acrs could help phage therapy 
overcome this limitation.63,64

4  | OUTLOOK

Although it is a novel research field, the study of Acrs is not limited to 
their discovery, mechanisms and applications. The origin of Acrs and 
the potential evolutionary consequences for CRISPR‐Cas systems or 
horizontal gene transfer are research hotspots.25,64‐67 Meanwhile, 
it is worth investigating whether the target bacteria have so‐called 
anti‐Acrs strategies to protect themselves from phages carrying 
Acrs.64,66,67 Like the discovery of restriction enzymes and CRISPR‐
Cas9 technology, the study of Acrs as the natural inhibitors for 
CRISPR‐Cas systems will contribute to the phage‐host interaction 
field, which may lead to the emergence of novel biotechnologies.

There are also remaining questions about the discovery and 
mechanism of Acrs. Although Acrs have been identified for partial 
subtypes of type I, type II, and type V CRISPR‐Cas systems, most 
CRISPR‐Cas inhibitors are unknown. The subtype II‐B CRISPR‐Cas9 
system, such as FnCas9 (Francisella novicida Cas9), and type VI 
CRISPR‐Cas13a (formerly C2c2, which is a mature RNA editing tool) 
do not have known inhibitors.6,68 In addition, the inhibitory mech‐
anisms of many Acrs, such as AcrIIA5‐10, AcrVA2‐3, etc, have not 
been described. Determining these mechanisms will help research‐
ers develop versatile genome engineering modulators or specific ap‐
plications. Meanwhile, elucidating the diversity of Acr mechanisms 
will further increase our understanding of how phages and bacteria 
compete in the evolutionary battle for their survival.
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