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Vertebrates are constantly exposed to pathogens, and the adaptive immunity has
most likely evolved to control and clear such infectious agents. CD4+ T cells are the
major players in the adaptive immune response to pathogens. Following recognition of
pathogen-derived antigens naïve CD4+ T cells differentiate into effectors which then
control pathogen replication either directly by killing pathogen-infected cells or by assisting
with generation of cytotoxic T lymphocytes (CTLs) or pathogen-specific antibodies.
Pathogen-specific effector CD4+ T cells are highly heterogeneous in terms of cytokines
they produce. Three major subtypes of effector CD4+ T cells have been identified: T-
helper 1 (Th1) cells producing IFN-γ and TNF-α, Th2 cells producing IL-4 and IL-10, and Th17
cells producing IL-17. How this heterogeneity is maintained and what regulates changes
in effector T cell composition during chronic infections remains poorly understood. In this
review we discuss recent advances in our understanding of CD4+ T cell differentiation
in response to microbial infections. We propose that a change in the phenotype of
pathogen-specific effector CD4+ T cells during chronic infections, for example, from Th1 to
Th2 response as observed in Mycobactrium avium ssp. paratuberculosis (MAP) infection
of ruminants, can be achieved by conversion of T cells from one effector subset to
another (cellular plasticity) or due to differences in kinetics (differentiation, proliferation,
death) of different effector T cell subsets (population plasticity). We also shortly review
mathematical models aimed at describing CD4+ T cell differentiation and outline areas for
future experimental and theoretical research.
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INTRODUCTION
Adaptive immune responses are in general required for protec-
tion against many if not most pathogens. CD4+ T cells are the
key component of adaptive responses to both intracellular and
extracellular pathogens. The major function of CD4+ (helper) T
cells is to provide help to other lymphocytes to mount an effi-
cient immune response. By secreting appropriate cytokines and
expressing a variety of co-stimulatory molecules, CD4+ T cells
are required for the generation of high affinity antibody responses
to pathogens and for the formation of long-lived plasma cells
and memory B cells (Crotty, 2011). Although it is currently
believed that CD4+ T cells are not needed for the generation
of cytotoxic T lymphocyte (CTL) responses against many intra-
cellular pathogens such as viruses (Wiesel and Oxenius, 2012),
help from CD4+ T cells is required to generate memory CD8 T
cells which are able to expand upon secondary exposure to the
pathogen (Prlic et al., 2007). CD4+ T cells are in general needed
to control chronic viral infections such as lymphocytic chori-
omeningitis virus (Zajac et al., 1998; Prlic et al., 2007; Zhang and
Bevan, 2011). Recent evidence also suggests that CD4+ T cells
could directly impact virus replication by killing virus-infected

cells which express MHC-II molecules (Swain et al., 2012). By
secreting a variety of cytokines, effector CD4+ T cells can also
recruit other cells including neutrophils and monocytes to the
sites of infection (Huber et al., 2012). CD4+ T cells are also
involved in dampening immune responses either via the action
of thymus-derived regulatory T cells (Tregs) or via production
of anti-inflammatory cytokines such as IL-10 (Pot et al., 2011;
Josefowicz et al., 2012).

How CD4+ T cells become activated, how they differenti-
ate into effector cells, how effector phenotype of CD4+ T cells
is maintained, and whether T cell effector phenotype can be
changed to better control infections has been a subject of intensive
research. In some circumstances, during progression of a chronic
disease the efficient pathogen-specific CD4+ T cell response is
lost and pathological response leading to exacerbation of the dis-
ease arises. Such a “switch” occurs during Mycobactrium avium
ssp. paratuberculosis (MAP) infection of cattle and sheep where
initially dominant MAP-specific cellular response (T-helper 1,
Th1) is lost over time of infection, and MAP-specific antibody
response (Th2) appears as the disease reaches clinical stage (Begg
et al., 2011). In other circumstances, inappropriate responses
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arise following the first priming event. For example, exposure to
allergens often leads to the generation of CD4+ T cell response
that results in allergic reactions (Th2) rather than in protective
immunity (Th1) (Holt and Thomas, 2005).

It is generally possible to bias differentiation on naïve CD4+
T cells into a particular effector T cell subset (e.g., Th1 or Th2) by
providing appropriate environmental conditions. However, reg-
ulation of the phenotype of differentiated effector CD4+ T cells
has proven to be more challenging. We propose that change
of the phenotype of pathogen-specific CD4+ effector T cells
during a chronic infection or a chronic inflammatory condi-
tion can be achieved via two distinct mechanisms: “cellular” and
“population” plasticity of T cell effectors. We illustrate how math-
ematical modeling has been used to understand factors driving
naïve CD4+ T cell differentiation and plasticity of effector T cell
responses in chronic infections.

CELLULAR AND POPULATION PLASTICITY OF CD4+ T CELL
RESPONSES
T CELL DIFFERENTIATION
Naïve CD4+ T cells differentiate into various subsets upon inter-
action with an antigen presented by the professional antigen-
presenting cells (APCs) such as dendritic cells (DC). CD4+ T cells
require 3 signals for their lineage commitment (Kenneth et al.,
2008). The first signal is generated following the interaction
between T-cell receptor (TCR) and the peptide presented in the
context of major histocompatibility complex (MHC) class II on
an APC (Yamane and Paul, 2012). The second signal is generated
following the interaction between the CD28 co-receptor on the T
cell and B7 family of co-stimulatory molecules such as CD80 or
CD86 on the APC. The third signal is generated by inflammatory
cytokines produced by the APC or other cells at the site of T cell
activation. These cytokines direct differentiation of naïve CD4+
T cells into a particular effector subset. Effector CD4+ T cells
can be categorized into three major subsets based on the type of
cytokine they produce and the major transcription factor (TF)
they express (Figure 1). If an APC secretes interleukin (IL)-12,
naïve CD4+ T cells differentiate into Th1 effectors. Th1 effec-
tors express a transcription factor T-bet and secrete the cytokines
IFN-γ and TNF-α; these cells play an essential role in inhibit-
ing replication of intracellular pathogens such as viruses (Hsieh
et al., 1993; Lighvani et al., 2001; Kenneth et al., 2008). If an APC
secretes IL-4, naïve CD4+ T cells differentiate into Th2 effectors.
Th2 cells express TF GATA-3, secrete cytokines IL-4, IL-5, and IL-
13 (Le Gros et al., 1990; Eltholth et al., 2009); these cells are critical
during infection by extracellular pathogens such as extracellular
bacteria and helminthes. In the presence of IL-6 and transforming
growth factor (TGF)-β, naïve CD4+ T cells differentiate into Th17
cells. Th17 cells express a transcription factor ROR-γt and pro-
duce cytokines IL-17 and IL-22 (Harrington et al., 2005; Ivanov
et al., 2006); these cells are important for control of certain bacte-
rial and fungal infections. Th1, Th2, and Th17 cells are considered
to be the major effector CD4+ T cells (Mosmann et al., 1986;
London et al., 1998; O’Garra, 1998; O’Garra and Arai, 2000;
Yates et al., 2000; Murphy and Reiner, 2002; Chakir et al., 2003;
Motiwala et al., 2006; Callard, 2007; Dong, 2008; Kenneth et al.,
2008; Liao et al., 2011; Hong et al., 2012; Yamane and Paul, 2012).

FIGURE 1 | Major pathways of naïve CD4+ T cell differentiation into

effectors. Upon encountering the antigens presented by the professional
antigen-presenting cells (APCs) naïve CD4+ T cells differentiate into Th1,
Th2, or Th17 effector cells. Cytokines present in the environment during
differentiation play the major role in determining the phenotype that the
CD4+ T cell will acquire. Two other CD4+ T cell subsets include regulatory
T cells (Treg) and T follicular helper cells (Tfh). Due to cellular plasticity
differentiated effector CD4+ T cells may convert from one type into
another. For example, Th17 cells under strong polarizing conditions (e.g.,
high concentrations of IL-12) may convert into Th1 cells.

Two other subsets of CD4+ T cells have been also iden-
tified (Figure 1). Tregs express TF FoxP3; these cells secrete
anti-inflammatory cytokines like TGF-β and IL-10. Tregs main-
tain immune homeostasis by limiting the magnitude of immune
response against pathogens and control inflammatory reactions
(Sakaguchi, 2004). T follicular helper cells (Tfh) express a TF Bcl-
6 and these cells are essential for the production of high affinity
IgG antibodies (Crotty, 2011). Existence of Th9 and Th22 subsets
was also recently suggested (Veldhoen et al., 2008; Eyerich et al.,
2009).

CELLULAR PLASTICITY
It has been thought for a long time that differentiation of CD4+
T cells into various effector subsets is an irreversible event; CD4+
T cells that have differentiated into a particular subset cannot
revert into a different subset (Mosmann and Coffman, 1989).
However, recent studies suggest that effector T cells retain some
degree of functional plasticity and these cells can change their
effector phenotype (Murphy and Stockinger, 2010; O’Shea and
Paul, 2010) (Figure 1). For example, recent reports have shown
that both in vitro (Murphy et al., 1996) and in vivo (Panzer et al.,
2012) generated Th1 cells can acquire the Th2 characteristics
(Figure 1). Factors determining such cellular plasticity of CD4+
T cell effectors remain poorly understood. Experimental work
suggests that plasticity of Th1 and Th2 subsets strongly depends
on their differentiation state (Murphy et al., 1996) and that it is
very difficult to reprogram the terminally differentiated subsets.
For example, under some polarizing conditions Th2 cells cannot
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revert back to Th1 cells partly due to the loss of IL-12 receptor
on these cells (Zhu and Paul, 2010). The definition “terminally
differentiated CD4+ T cells” is very subjective, though. Long anti-
genic stimulation of naïve CD4+ T cells in vitro under either Th1
or Th2 polarizing conditions has been used as a surrogate for
strong terminal differentiation. However, CD4+ T cells are rarely
exposed to one polarizing cytokine environment in vivo. Recent
work has also shown that Th1 cells are plastic; they can convert
into Th2 cells in the presence of IL-4 (Szabo et al., 1995; Zhu
and Paul, 2010). However, this conversion of the population of
Th1 cells into Th2 effectors can also be explained by develop-
ment of Th2 cells from naïve CD4+ T cells present in the Th1
cell population (Szabo et al., 1995). Recent studies also showed
that the Th17 effector subset is unstable as compared to Th1
and Th2 effector cells, since Th17 cells can be reprogrammed to
produce Th1 and Th2 cytokines (Lee et al., 2009). Furthermore,
Tregs are plastic when cultured under Th1 (Oldenhove et al.,
2009; Wei et al., 2009) or Th17 conditions (Yang et al., 2008a).
Taken together, current data indicate that cellular plasticity of
effector CD4+ T cell responses may be rather the rule than excep-
tion (Figure 1). How such plasticity is regulated remains poorly
understood, however. Epigenetics is now considered to be one
of the key mechanisms that dictates the stability and cellular
plasticity of effector T cell subsets (Wilson et al., 2009).

Cellular plasticity of Th1 cells in vivo was demonstrated
during Nippostrongylus brasiliensis infection during which the
conversion of Th1 into Th2 cells was dependent on exogenous
IL-4 (Panzer et al., 2012). Recent work suggests that conver-
sion of Th1 into Th2 cells may occur independently of IL-4
via STAT-5-coupled cytokine receptors (Zhu et al., 2003, 2004).
Furthermore, IL-4-independent conversion of Th1 into Th2 cells
driven by signaling via the Notch receptor was also reported
(Amsen et al., 2004, 2007).

Cell heterogeneity is a factor that can partially explain the
plastic nature of effector CD4+ T cell subsets (Zhu and Paul,
2010). Such heterogeneity may arise when effectors can pro-
duce more than one cytokine. For example, while Th1 cells
can produce IFN-γ, IL-2, and TNF-α, only a few of these cells
express all the cytokines simultaneously (Darrah et al., 2007).
Data from in vitro experiments (Murphy et al., 1996) showed that
naïve CD4+ T cells differentiate into Th2 cells when stimulated
with an antigen-loaded APCs in the presence of IL-4. However,
even in such polarizing conditions a small percentage of cells
in the cultures (4%) secrete IFN-γ. Similarly, in the presence
of IL-12 and anti-IL-4 antibodies, only 80% of the cells were
IFN-γ positive (Th1) and the rest, 20%, could either be undif-
ferentiated or be cells producing IL-4 (Th2). Interestingly, using
IL-4 to re-stimulate these strongly polarized Th1 cells induces
IL-4 production in at least 8% of the population. The source
of these IL-4 producing cells is unclear as they could have been
derived from the undifferentiated naïve CD4+ T cells or from
Th1 effectors. Taken together, recent work suggests that the phe-
notype of pathogen-specific effector CD4+ T cells may change
over the course of infection due to cellular plasticity of T helper
subsets. Yet, factors that regulate the efficiency at which the con-
version from one cell subset to another occurs are still poorly
understood.

POPULATION PLASTICITY
Population plasticity is another major mechanism that may con-
tribute to the change in the dominant phenotype of effector
CD4+ T cells during chronic infections. In this mechanism, the
size of the population of T cell effectors can increase due to pref-
erential proliferation or reduced death of cells in the population
(Figure 2). Generally, T cells undergo apoptosis under various
conditions like cytokine deprivation (Cohen, 1993; Akbar et al.,
1996), TNF-α level (Zheng et al., 1995), or a repeated stimula-
tion with specific antigen due to activation-induced cell death
(AICD) (Green and Scott, 1994; Kearney et al., 1994). Various
reports claim the possibility of acquired tolerance with selective
loss of Th1 cells and the persistence of Th2 cells (Burstein et al.,
1992; De Wit et al., 1992). Additionally, the higher sensitivity of
Th1 cells to AICD compared to Th2 counterparts was demon-
strated (Ramsdell et al., 1994), which is likely to be removed due
to a higher expression level of FasL in Th1 cells. The possibility
of AICD of antigen-specific CD4+ T cell effectors during chronic
infections was reported (Zhang et al., 1997). Once the majority
of Th1 cells undergo apoptosis accompanied by the proliferation
of Th2 cells (population plasticity), few Th1 cells that are present
in the heterogeneous population could convert to Th2 subtype by
epigenetic mechanisms (cellular plasticity). Population plasticity
may be the major contributor to the change of the phenotype
of the pathogen-specific T cells in chronic infections. Yet, the
kinetics of proliferation and death of different subsets of effec-
tor CD4+ T cells during chronic infections are still lacking.
Estimating the rates of proliferation, death, and re-differentiation
of T effectors will lead to better quantitative understanding factors
regulating the size of antigen-specific T cells in many pathological
conditions.

TH1/TH2 DYNAMICS IN CHRONIC INFECTIONS
CD4+ T cell responses play a critical role in several chronic infec-
tions such as LCMV and HIV (Bevan, 2004; Wiesel and Oxenius,
2012; Streeck et al., 2013). The dynamics of pathogen-specific
Th1 and Th2 responses has been studied during a mycobacte-
rial infection with MAP called Johne’s disease (JD, Figure 3). In
early stages of MAP infection, Th1 cytokines such as IFN-γ, IL-
2, and TNF-α, are highly expressed in serum of infected animals

FIGURE 2 | Population plasticity of effector CD4+ T cells in chronic

infections. During an acute phase of infection, naïve CD4+ T cells
differentiate into a heterogeneous population consisting mainly of Th1 cells
and a few Th2 cells. However, as the disease progresses into a chronic
phase, there is a gradual loss of Th1 cells and accumulation of Th2 cells.
Accumulation of Th2 cells may occur due to a higher proliferation
rate/reduced death rate of Th2 cells than that of Th1 cells.
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(Burrells et al., 1999; Stabel, 2000a), and culture of blood samples
with MAP antigens lead to expansion of the population of IFN-γ
producing CD4+ T cells. Expression of IFN-γ and TNF-α drives
differentiation of naïve CD4+ T cells into Th1 effectors while sup-
pressing differentiation of T cells into Th2 effectors (Harris et al.,
2007; Amsen et al., 2009) (Figure 3). Th1 response via the pro-
duction of IFN-γ plays a key role in controlling bacterial infection
by promoting macrophage activation to kill intracellular bacte-
ria and by up regulating MHC-II expression (Paludan, 1998).
At later stages of MAP infection (clinical JD) infected animals
shed a significant number of MAP in feces and produce a high
level of anti-MAP serum antibody (Fecteau and Whitlock, 2010).
Production of IFN-γ and IL-12 is generally reduced in cows with
clinical JD (Stabel, 1996, 2000a; Burrells et al., 1999) whereas
expression of a Th2 cytokine (IL-4) is elevated (Sweeney et al.,
1998). IL-4 suppresses IFN-γ induced macrophage activation
(Paludan, 1998) and inhibits autophagy-mediated killing of intra-
cellular mycobacteria (Harris et al., 2007). These experimental
findings suggest that during disease progression in MAP-infected
animals there is a switch from the initially dominant MAP-specific
cellular (Th1) response to the antibody (Th2) response (Stabel,
2000b).

What regulates the dynamics of this switch remains poorly
understood, however. There are two possibilities: (1) the Th1/Th2
switch is the cause of disease progression and death of the infected
animal, or (2) the Th1/Th2 switch is the consequence of dis-
ease progression which occurs independent of whether T-helper
responses are present or not. How exactly Th1 response is lost
and Th2 response arises is also unknown. In particular, the rel-
ative contribution of cellular vs. phenotypic plasticity of CD4+
T cell responses (Figures 1, 2) to the kinetics and likelihood of
the Th1/Th2 switch in MAP-infected animals is not known. The
issue is further complicated by the results of longitudinal studies

FIGURE 3 | Schematic representation of interactions between the

bacteria and MAP-specific immune responses occurring JD. During the
infection, resting macrophages internalize extracellular MAP bacteria.
Resting macrophages are unable to clear the bacteria, and after several
rounds of replication macrophages rupture releasing more extracellular
bacteria. Naïve CD4+ (Th0) cells differentiate either into Th1 or Th2 subsets
depending on the density of infected macrophages or extracellular bacteria,
respectively. Th1 and Th2 responses interact by inhibiting differentiation of
naïve T cells and by reducing effector function of the opposite subset. Th1
response activates resting macrophages which are then able to clear the
bacteria. Th2 response may contribute to the pathogenesis of the JD by
increasing the uptake of extracellular bacteria by macrophages.

on experimental infection of sheep with MAP that showed that
the timing of Th1-Th2 switch varies between individual animals
and that Th1 response [IFN-γ] may stay high even in late stages
of MAP infection (Begg et al., 2011; Stabel and Robbe-Austerman,
2011).

The prevalence of apparently non-protective Th2 responses
during a chronic infection occurs during leprosy caused by
Mycobacterium leprae in humans. Similar to the MAP infection,
leprosy is thought to be a dynamic process with changes in
bacteria-specific cellular immune responses leading to clinical
manifestations. M. leprae infects macrophages and their activa-
tion is a critical step for clearing the bacterial infection. When
the infected macrophages are inactive, M. leprae evades the cel-
lular immune response and replicates inside of the cell until
the cell bursts. Without any external signal, macrophages are
unable to mount any significant response to the bacteria, and the
infection spreads largely unchecked. Macrophages are generally
activated by IFN-γ-producing Th1 cells. Activated macrophages
are more likely to kill intracellular bacteria by facilitating fusion of
lysosomes with bacteria-harboring phagosomes (Kenneth et al.,
2008). Patients with tuberculoid leprosy show very few lesions
which are dominated by IFN-γ and very little bacteria can be
recovered from the lesions. In the case of lepromatous leprosy, the
infection is not contained, and there is a dominance of Th2 cell
cytokines and elevated levels of anti-M. leprae antibodies in serum
(Modlin, 1994). Reversal of cytokine pattern from Th2 to Th1 was
reported during the shift from lepromatous leprosy to tuberculoid
stage by administration of either IL-12 or IFN-γ to lepromatous
patients (Modlin, 1994). Exact mechanisms by which such a ther-
apy resulted in clearance of the pathogen from lesions remain
poorly understood, but it may involve direct suppression of Th2
cell differentiation by IFN-γ, and therefore could arise due to
population plasticity of CD4+ T cell responses (Modlin, 1994;
Misra et al., 1995).

Modulation of the pathogen-specific effector T-helper
responses has been also demonstrated in the case of
Leishmaniasis, a disease caused by an infection with a pro-
tozoan Leishmania major. This parasite causes cutaneous
leishmaniasis in mice and humans. Infection of mice with a
low parasite dose leads to parasite containment associated with
a Th1 type response, whereas infection with a high parasite
dose leads to progressive disease associated with a Th2/antibody
response (Menon and Bretscher, 1998). Similarly, humans with
localized cutaneous leishmaniasis (LCL) display few lesions and
the growth of the parasite is confined to the lesions. During
diffuse cutaneous lesihmaniasis (DCL) the lesions are widely
disseminated with an uncontrolled growth of the parasite.
Th1 cytokines are dominant in LCL; they help in the elimi-
nation of the infection. However, in case of DCL prevalence
of Th2 cytokines leads to uncontrolled growth of the parasite
(Castellano et al., 2009). Whether the switch from the dominant
Th2 response to the protective Th1 response in chronic infection
is possible remains unclear, but it has been shown that clinical
cure of patients with leishmaniasis occurs concomitantly with
the loss of Th2 effectors and persistence of Th1 cells from
the acute to the chronic stage of the disease (Castellano et al.,
2009).
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MATHEMATICAL APPROACHES IN MODELING CD4+ T CELL
DIFFERENTIATION
There have been many mathematical studies aimed at improving
our understanding of mechanisms regulating T cell differentia-
tion. Studies on mathematical modeling of Th1/Th2 responses
can be categorized into three main subgroups.

The first subgroup of studies developed and analyzed math-
ematical models of differentiation of naïve CD4+ (Th0) cells
into Th1 and Th2 subsets by including the dynamics of Th1/Th2
cytokines, intracellular molecules, and gene regulatory networks
(Biedermann and Röcken, 1999; Fishman and Perelson, 1999;
Yates et al., 2000, 2004; Bergmann et al., 2001, 2002; Richter
et al., 2002; Bettelli et al., 2006; Callard, 2007; Fenton et al., 2008;
Eftimie et al., 2010; Naldi et al., 2010; Vicente et al., 2010; Groß
et al., 2011; Hong et al., 2011, 2012; Liao et al., 2011). Some of
these models described differentiation of naïve CD4+ T cells into
different effector T cell subsets via upregulation of the phenotype-
specific TF (master regulators) such as T-bet, GATA-3, FoxP3, and
ROR-γt (Höfer et al., 2002; Mariani et al., 2004; Yates et al., 2004;
Callard, 2007; Van Den Ham and De Boer, 2008; Hong et al.,
2011, 2012). These studies explained how positive and negative
feedback loops between these master regulators result in differ-
entiation of a particular subset of T effectors. Cytokines that are
present in extracellular environment and are produced by effector
T cells strongly influence the direction of naïve T cell differentia-
tion. Signals provided by cytokines binding to cytokine receptors
and by antigens binding to the T cell receptors are summarized
internally and eventually determine the direction of cell differ-
entiation. Some of the predictions of these mathematical models
found confirmation in experimental papers (Zheng and Flavell,
1997; Chakir et al., 2003; Ivanov et al., 2006; Yang et al., 2008b;
Liao et al., 2011; van den Ham et al., 2013). Further advances in
understanding of T cell differentiation have been obtained using
curated Boolean network models which included the dynamics
of multiple genes in T cells such as those encoding for cytokines
and cytokine receptors (Mendoza, 2006; Thakar et al., 2007; Kim
et al., 2008; Santoni et al., 2008; Pedicini et al., 2010). Such
multi-scale models capture communications between cells via
cytokines and integrate intra- and extracellular dynamics of such
signaling molecules (Santoni et al., 2008; Pedicini et al., 2010).
Virtual deletion experiments of the key master regulators have
been used to predict factors (e.g., TF, cytokines, or cytokine recep-
tors) influencing differentiation of cells toward either Th1 or Th2
phenotype (Pedicini et al., 2010).

The second subgroup of studies modeled population plasticity
of Th1/Th2 cell responses. These models included the processes
of cross-regulation of Th1/Th2 cell responses either directly by
cell-to-cell interactions or via production of Th1/Th2 cytokines
(Fishman and Perelson, 1999; Yates et al., 2000, 2004; Bergmann
et al., 2001, 2002; Fenton et al., 2008; Eftimie et al., 2010; Groß
et al., 2011). Some of these models offered a theoretical explana-
tion of the switch from an initially dominant pathogens-specific
Th2 response to a later dominant Th1 response (or vice versa).
These models, however, only focused on the dynamics of popula-
tions of CD4+ T cells and did not incorporate intracellular genetic
and molecular networks that enable the cells to acquire different
physiological states. For example, studies of Yates et al. (2000) and

Bergmann et al. (2001) showed that when Th1 effectors fail to
clear the antigen, initially dominant Th1 response is lost and Th2
response arises. In the Bergmann et al. (2001) model, the shift in
dominance of effector T cell populations is regulated by differ-
ences in differentiation, cross-suppression and clonal expansion
of each subset as the function of the antigen concentration. In
the Yates et al. (2000) model, dominance of the particular effec-
tor T cell subset is driven by the level of Th1/Th2 cytokines.
The latter model also investigated how population dynamics of
T-helper responses is influenced by activation-induced cell death
which limits clonal expansion and hence aids in resolving the T
cell balance. It should be noted, however, that few if any of math-
ematical models in this subgroup have been developed to address
the kinetics of effector T-helper responses during infections with
biologically relevant pathogens.

The third subgroup of studies modeled cellular plasticity of
effector CD4+ T cell responses. Mathematical models of this sub-
group predict reversible phenotypic plasticity between effector
Th17 cells to induced regulatory T cells (iTregs) and reprogram-
ming of Th2-polarised cells to Th1 phenotype in Th1-polarising
conditions (Naldi et al., 2010; Pedicini et al., 2010; Carbo et al.,
2013). A typical example of such mathematical models is the
work by Pedicini et al. (2010), which predicted master transcrip-
tion regulators as attractors associated with development of Th1
and Th2 cells using a cytokine network model. This modeling
study makes testable predictions on the mechanisms that reg-
ulate the balance between Th1 and Th2 cells and how loss of
this balance can skew lineage selection. In silico virtual knock-
out experiments of GATA-3 predicted creation of attractors with
high expression of IFN-γ. Furthermore, deletion of both T-bet
and GATA-3 predicted increase in expression of several other
non-specific Th2 TF such as IRF4, MAF, NFAT, STAT1, and
STAT6. Although models in this subgroup often generate novel
predictions these models are in general very complex involv-
ing description of tens of genes and their products. Predictions
of these models will need to be tested in specifically designed
experiments.

DISCUSSION
Discovery of several novel subsets of effector CD4+ T cells includ-
ing Th17 and Tfh cells rejuvenated interest into factors that
influence differentiation of naïve CD4+ T cells into effectors
and the stability of different effector CD4+ T cell subsets both
in vitro and following immune response to antigens in vivo. One
of the most intriguing observations is that even differentiated
effector CD4+ T cells can change their phenotype if the envi-
ronmental conditions change (Murphy and Stockinger, 2010).
Factors that regulate such cellular plasticity of effector and mem-
ory CD4+ T cell responses still remain incompletely defined, and
how and whether such plasticity can be explored therapeutically
is unknown.

In a number of conditions including infections, autoimmune
diseases, and allergic reaction, the host generates an effector
CD4+ T cell response of inadequate phenotype that may lead
to worsening of symptoms and often to exacerbation of the dis-
ease. In particular, during MAP infection of ruminants initially
protective Th1 CD4+ T cell response is lost over time, and
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non-protective Th2 response arises (Stabel, 1996, 2000a; Burrells
et al., 1999). What regulates this change in the immune response
phenotype is unclear. Conversion of MAP-specific Th1 cells into
Th2 over time (cellular plasticity) could be one potential mecha-
nism. Alternatively, there may be quantitative differences in the
rates of differentiation of naïve CD4+ T cells into two sub-
sets of effectors, differences in the rates of proliferation, death,
and migration of different subsets of CD4+ T cells to the site
of infection (population plasticity). Finally, phenotype switch
could be driven by other helper cell types, for example, thymus-
derived Tregs or periphery-induced Tregs. Experimentally, it
will be a challenge to discriminate between these alternative
mechanisms of Th1/Th2 switch during JD. As for other condi-
tions (e.g., allergic reactions) mechanisms driving the change in
phenotype of allergen-specific CD4+ T cell effectors following
immunotherapy remain to be determined (Holt and Thomas,
2005; van Oosterhout and Motta, 2005). We believe that one of
the important experimental challenges is to evaluate the rates
at which different effector T-helper cell subsets proliferate and
die during chronic inflammatory conditions (e.g., infections) and
whether these rates are influenced by the type of inflammatory
environment.

Many mathematical models on CD4+ T cell differentiation
have been developed and analyzed. The vast majority of these
models focus on the initial differentiation step of naïve CD4+
T cells into a particular effector subset. Such models are useful
for the vaccine development where induction of an appropri-
ate CD4+ T cell response will be critical for the vaccine efficacy.
The discovery of cellular plasticity of effector CD4+ T cells
calls for the need to develop novel mathematical models that

explain and predict how one T cell subset is converted into
another subset. The use of gene expression and phenotypic data
from in vitro and in vivo generated effector CD4+ T cells will
be instrumental for testing and verifying such mathematical
models.

Mathematical models have also been developed to explain
population plasticity of effector T cell responses. These models
are more relevant to chronic conditions such as persistent
infections and autoimmune diseases. Yet, most of these mod-
els have been poorly parameterized and predictions of such
models have not been adequately tested in well-designed exper-
iments. More experimental data is needed to explain how
proliferation, death, and differentiation of effector T cells are
influenced by the environment and the subsets themselves.
Also, data on the dynamics of effector T cells at the sites
of infection will be useful for the development of models
for specific infections. In all cases, development of quantita-
tive mathematical models can be greatly enhanced by closer
collaborations between mathematicians/modelers and wet-lab
experimentalists.
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