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Abstract

Animals almost always use habitats non-randomly, but the costs and benefits of using specific habitat types remain
unknown for many types of organisms. In a large lake in northwestern Australia (Lake Argyle), most hatchling (,12-month-
old) freshwater crocodiles (Crocodylus johnstoni) are found in floating vegetation mats or grassy banks rather than the more
widely available open banks. Mean body sizes of young crocodiles did not differ among the three habitat types. We tested
four potential explanations for non-random habitat selection: proximity to nesting sites, thermal conditions, food
availability, and exposure to predation. The three alternative habitat types did not differ in proximity to nesting sites, or in
thermal conditions. Habitats with higher food availability harboured more hatchlings, and feeding rates (obtained by
stomach-flushing of recently-captured crocodiles) were highest in such areas. Predation risk may also differ among habitats:
we were twice as likely to capture a crocodile after seeing it in open-bank sites than in the other two habitat types. Thus,
habitat selection of hatchling crocodiles in this system may be driven both by prey availability and by predation risk.
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Introduction

Natural habitats are highly heterogenous in space and time, and

living organisms distribute themselves in non-random ways across

that mosaic [1], [2], [3]. Habitat-selection behaviours by animals

result from species-specific proximate responses to a wide range of

abiotic and biotic cues that predict habitat suitability [4], [5], [6].

Such responses presumably have evolved through selective forces

imposed by the costs and benefits of occupancy of alternative

habitat types, and understanding the nature of such costs (e.g.

predation risk) and benefits (e.g. food availability) can clarify the

underlying causes for biotic distributions [7], [8]. However,

although the importance of costs and benefits has been shown

both theoretically and in the laboratory, relatively few field studies

on vertebrates have quantified habitat-selection trade-offs between

food and safety (see [9] for a review).

The costs and benefits of alternative habitat types depend upon

the attributes of the organism in question, and patterns of habitat

utilisation frequently differ even between closely related organisms

– for example, habitat use may differ between the sexes within a

population [10] or change seasonally or ontogenetically within the

lifetime of a single individual [11], [12], [13]. Habitat require-

ments of the most vulnerable life-stages within a population are of

particular interest for management purposes. For example, if

neonates or reproducing females require specific habitat types,

then maintaining such areas is essential for effective population

management [14], [15], [16]. For most kinds of animals, we do not

understand habitat requirements in detail.

As in many other vertebrates, the earliest life-history stages (eggs

and hatchlings) of crocodilians experience much higher mortality

rates, from a range of causes, than do larger, older conspecifics

[17]. Hatchling crocodiles often use habitats non-randomly; for

example, young Australian freshwater crocodiles (Crocodylus

johnstoni) typically select shallow water [18], [19], [20] but the

consequences of this non-random habitat use for predation risk

and/or feeding opportunities are unclear [20]. We examined the

habitat use of hatchling freshwater crocodiles in a large

impoundment (Lake Argyle) in tropical northwestern Australia,

comparing the three main habitat types available in terms of their

usage by crocodiles, and the potential costs and benefits of that

usage. Specifically, we tested hypotheses that hatchling crocodiles

may disproportionately be found in some habitats rather than

others because of proximity to nesting sites (if dispersal is risky or

difficult) [21], [22]; thermal regimes (suitable sites may provide

metabolic benefits) [23], [24], [25]; food supply (prey-rich sites

may enhance feeding rates); and/or vulnerability to predation

(crocodiles may avoid habitats where they are less likely to be able

to evade a predator).

Materials and Methods

This project was conducted under the approval of the Animal

Ethics committees of the University of Sydney (approval No. L04/

9-2009/3/5108) and the Department of Environment and

Conservation in Western Australia (approval No. DEC AEC

32/2009/research permit No. SF007535).

Study species
The freshwater crocodile Crocodylus johnstoni is endemic to

tropical mainland Australia. Juvenile freshwater crocodiles mostly
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consume invertebrates, with fish and other vertebrates becoming

more important prey for larger size-classes [18], [19], [20]. In

Lake Argyle, female C. johnstoni oviposit in August-September, with

the eggs hatching in late October though December. Hatchlings

are seen in abundance from this time, initially in groups (often

accompanied by an adult), but these crèches are no longer evident

by March-April. In this paper, we define ‘hatchlings’ as crocodiles

in their first year of life (i.e., ,12 months old). We surveyed

hatchling distributions during March-April, to ensure that we were

studying the results of habitat selection by hatchlings rather than

by their guardians. Hatchlings emerging from natural nests at

Lake Argyle ranged from 9.8 to 13.1 cm (mean = 11.7 cm) snout-

vent length (SVL) (Somaweera unpub. data). For the current

study, we define ‘‘hatchlings’’ as crocodiles ,25cm SVL. Based on

growth rates of Lake Argyle crocodiles, such animals are less than

12 months old (Somaweera unpubl. data).

Study area and habitat types
Lake Argyle, in seasonally arid northeastern Western Australia

(16u 299S, 128u 759E), is the largest man-made lake in Australia

(880 km2 at normal water level). The lake contains .30,000 non-

hatchling C. johnstoni but few saltwater crocodiles (C. porosus) [26],

[27], [28]. In the course of a broad-ranging ecological study on

this freshwater crocodile population, we rarely saw hatchling

crocodiles in deep water. Instead, we saw them in the following

three discrete habitat types (see Figure 1 for photographs of

examples).

(1) open banks - sandy or rocky shorelines without riparian

vegetation; hatchlings usually seen in shallow water close to

shoreline.

(2) grassy banks - shoreline with emergent grasses including

Eriachne sulcata, Echinochloa kimberleyensis and/or Oryza austra-

liensis extending from the banks into .1m deep water, and

(3) floating mats of vegetation - little vegetation on banks, but

thick mats of submerged and floating aquatic vegetation

comprising Najas graminea, Hydrilla verticillata, Potamogeton

tricarinatus, Valisneria spiralis, Myriophyllum verrucosum, Chara sp.

and/or Nymghoides indica growing in relatively deep (.1m)

water.

To measure availability of habitats, each habitat type was

delineated on a 1:20 000 topographical map during ground

surveys and measured to determine the amount of habitat type

available on each study site. The sites we used were located far

from any areas with tourist activity, so the level of human

disturbance among sites is similar.

Analysis of habitat use by hatchling crocodiles
We conducted spotlighting surveys from 27 March to 8 April

2010 (when hatchlings were 4-5 months old), from a boat at night

(1800–2300 h). We surveyed 30km of shoreline (6km each in five

sites), and counted the number of hatchling crocodiles seen, and

the number captured, in areas representing the three habitat types.

Our analyses are based only on animals that we approached

closely enough to estimate their body sizes.

Thermal attributes of each habitat type
Hatchling crocodiles were mostly seen in water, so we focus

attention on thermal characteristics at 10–15 cm and 50 cm below

water at 1m and 5m from the shoreline in each habitat type. We

deployed three thermochron iButton temperature loggers (pro-

grammed to record temperatures at 60 min intervals) at each

water depth and each distance from the shore in each habitat type

for 14 days.

Measurement of prey availability through sweep netting
We used sweep-net surveys to assess the abundance of potential

prey in 26 replicate areas within each of the three habitats. Sweep-

netting was done two days prior to collection of hatchlings for

stomach samples. At each of these sites, a 59066806560 mm net

(mesh-size 162 mm) was scooped 10 times on land (from the

Figure 1. The three main habitat types used by hatchling
Crocodylus johnstoni at northern Lake Argyle. A- open bank, B-
grassy bank, C- floating vegetation mats. Open banks lack riparian
vegetation, grassy banks have a shoreline with emergent grasses while
floating mats of vegetation comprise submerged and floating aquatic
vegetation along the shoreline.
doi:10.1371/journal.pone.0028533.g001
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water’s edge to 2m from the water, all at ground level) and another

10 times over an equivalent area in the water (i.e., to cover the

areas where hatchling crocodiles feed: R. Somaweera per. obs.;

[18]). Thus, we collected 26 samples (520 sweeps) from each

habitat type. Sweep-netting was conducted at 1700–1830 h,

without any artificial light. We identified the animals to order

level and counted the number of individuals in each size class (in

‘target sizes’ according to the template mentioned below). We

restricted these analyses to taxa that were actually consumed by

crocodiles (.5% of prey in the stomach contents samples: see

below).

Analysis of crocodile food intake via stomach-flushing
During surveys in March-April 2010, we hand-collected 99

hatchlings (,25 cm SVL), with equal numbers (n = 33) from each

of the three habitat types. We stomach-flushed the animals soon

after capture. A rubber ring (secured with a rubber band) held the

mouth open while a water-lubricated silicone tube (4mm inner

diameter) was inserted to the stomach. Water was then gradually

pumped in using a 60-ml syringe. The tube was moved back and

forth to stir the contents and then was gradually extracted while

the crocodile was inverted and its abdomen massaged. The

procedure was repeated until the water was devoid of food

particles (2–4 times); regurgitated stomach-content samples were

seined through cheesecloth, preserved in 70% ethanol, and stored

for later identification. We marked each crocodile by tail-scute

clipping and used a flexible tape to measure total length (TL),

snout vent length (SVL), and head length (HL) to the nearest

0.1 cm. Mass was recorded to the nearest gram using an electronic

balance.

We separated the prey samples into freshly-ingested (,24 h

prior to capture) and old (ingested .24 h before capture) items,

following criteria from [29–31]. Only freshly ingested material was

considered in our analysis, to improve certainty of identification,

and reduce the possibility that prey were captured in a habitat

different from that in which we found the crocodile. We analysed

the fresh prey samples to identify the taxa and mass (to 0.1 g) of

each prey type in each stomach sample (after washing and air-

drying for 30 min to remove excess water). The size of the prey

items was scored with a two-dimensional template of ‘target size’

(the smallest rectangle in the template that can accommodate the

maximum presentable area of the prey, excluding appendages

such as antennae [18]. When appropriate, data with non-normal

distributions were log (x + 1) transformed to achieve variance

homogeneity before statistical analysis.

Vulnerability to predation
We attempted to capture every crocodile that we sighted. The

same spotter, catcher and the driver in the same boat were used

for all surveys. Significant spatial differences in our capture success

would mean that crocodiles were harder to catch in some places

than others, hinting that natural predators might encounter similar

difficulties.

Results

Habitat use by hatchling crocodiles
Grass banks and floating vegetation mats comprised 25% and

24% of the lakeshore in our five study sites, respectively, and the

rest were open banks. Crocodile numbers were similar among the

five study sites (ANOVA, F4,10 = 0.61, p = 0.66), but crocodiles

were not distributed evenly among the three habitat types. Despite

their higher availability, open banks harboured fewer crocodiles

than did either floating mats or grassy banks (F2,12 = 5.85,

p = 0.02; posthoc Fisher’s PLSD test, p,0.05 for open banks vs

both of the other categories). Although comprising ,25% of the

available area, floating vegetation mats were the habitat most often

selected by hatchling C. johnstoni at Lake Argyle (Figure 2).

In the sample of crocodiles caught for stomach-flushing, animals

from the three habitat types had similar mean head lengths (mean

61.9613.5mm; F2,96 = 0.04, p = 0.96), snout-vent lengths (mean

181.6635.3mm; F2,96 = 0.2, p = 0.82), total lengths (mean

384.7678.2mm; F2,96 = 0.01, p = 0.99) and body masses (mean

175.26107.9g; F2,96 = 0.32, p = 0.73).

Proximity to nesting sites
Each habitat type occurred within each of our five sites, with no

significant difference among the three habitat types in their mean

distance from nesting beaches (F2,12 = 0.74, p = 0.49, Figure 3a).

Thermal attributes of each habitat type
Mean water temperature did not significantly differ among the

three habitats (F2,33 = 1.83, p = 0.18, Figure 3b), nor at different

distances from shoreline (habitat*distance: F5,30 = 1.74, p = 0.15)

nor at different depths (habitat*depth: F5,30 = 1.3, p = 0.29).

Prey availability in each habitat type
Overall, hemipterans were the most abundant potential prey

type, followed by odonates, coleopterans and arachnids (Soma-

weera unpubl. data). Sweep-netting revealed that grass banks had

the largest number of potential prey items; open banks had fewer

prey than did either grassy banks or floating mats (F2,75 = 28.33,

p,0.0001; Fisher’s PLSD test, p,0.05 for open banks vs others)

and also a lower diversity of morpho-species per sample

(F2,75 = 16.86, p,0.0001; Fisher’s PLSD test, p,0.05 for open

banks vs others). Although the modal size of prey items was larger

in open banks than the other habitats (F2,75 = 12.76, p,0.0001;

Fisher’s PLSD test, p,0.05), the total mass of potentially available

prey was highest in grassy banks and lowest in open banks

(F2,1596 = 14.83, p,0.0001; Figure 3c).

Food intake
Of the 99 animals examined, six had empty stomachs (four from

open banks and one each from floating mats and grass banks).

Stomach contents yielded 592 identifiable prey items that included

spiders, aquatic insects, terrestrial insects, crustaceans, fishes and

anurans (Figure S1). Crocodiles from open bank habitats had a

lower average number of prey items (F2, 96 = 4.17, p = 0.02), fewer

Figure 2. The density of yearling (4 to 5 month old) Crocodylus
johnstoni in five study sites in northern Lake Argyle. Higher
densities of hatchlings were found in floating vegetation mats and
grass banks compared to open banks in each study site.
doi:10.1371/journal.pone.0028533.g002
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prey taxa (F2, 96 = 6.35, p = 0.003) and fewer types of food items

(morpho-species) per stomach (F2, 96 = 8.11, p,0.001) than did

animals from grassy banks or vegetation mats (Fisher’s PLSD test

p,0.05 for open banks vs others for both comparisons). However,

the modal sizes of prey items consumed by hatchlings in open

banks were larger than those in the other habitats (F2, 90 = 4.07,

p = 0.02). Overall, the mean mass of stomach contents did not

differ significantly among crocodiles from the three habitat types

(F2,96 = 2.26, p = 0.11; Figure 3d).

The total number of food items per stomach was positively

correlated with the density of hatchlings in a survey site

(F1,86 = 8.42, p = 0.004). This pattern was similar among habitats

(interaction habitat* crocodile density F2,86 = 1.94, p = 0.15). The

total mass of food items per stomach also was significantly

correlated with the density of crocodiles (interaction habitat*

density F2,86 = 1.29, p = 0.28, so deleted; crocodile density vs

stomach contents mass, F1,97 = 4.67, p = 0.03). That is, hatchling

crocodiles were concentrated in areas that provided high rates of

food intake.

Vulnerability to predation
We saw 412 hatchlings, and captured 270 of them. The number

of animals seen vs caught differed among the three habitat types

(Logistic regression, x2 = 8.19, df = 2, p = 0.017; Figure 3e): we

failed to catch 38% of hatchlings seen in floating mats and 35% of

those seen in grassy banks, but missed only 19% that were seen in

open–bank habitat.

Discussion

The habitats that juvenile vertebrates select early in life can

profoundly affect their access to food, their growth rates, their risk

Figure 3. Habitat and prey selection by hatchling Crocodylus johnstoni found in three habitat types (grassy banks, open banks and
floating grass mats) at Lake Argyle. The three different habitats are found at similar distances from nesting beaches (a) and are similar in thermal
characteristics (b). Despite lesser food availability in some habitats (c) the total food intake of hatchlings was similar among habitats (d). However,
hatchlings that we found in open banks were easier to capture, suggesting higher vulnerability to predation (e). All graphs show standard errors.
doi:10.1371/journal.pone.0028533.g003
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of predation, and their future survival [32], [33], [34], [35]. Our

results show that in Lake Argyle in tropical Australia, hatchling

freshwater crocodiles used habitats non-randomly. Most hatch-

lings used floating vegetation mats and grassy banks, and seldom

used open-bank habitats. A similar preference for areas with

aquatic vegetation is common in hatchling crocodilians of other

species also [36], [37].

In crocodilian species with prolonged parental care, the number

of young animals in a habitat may be determined by maternal

habitat selection [38]. However, the bias in habitat use in our site

was not due to habitat selection by parents. During our sampling

period, the hatchlings had dispersed from their crèches and were

not guarded by adults. As in some other crocodilian species (e.g. C.

acutus [32], [39]) and populations (e.g. A. mississippiensis [40]), pods

of C. johnstoni disband within four weeks of hatching (Somaweera

pers. obs).

Post-hatching crèches in crocodilians commonly occur close to

the nesting site (e.g. [32], [41] but see [42], [43] for counter

examples) and hatchlings sometimes remain near their nest of

origin for more than a year [44], [45]. Because nesting beaches

were randomly located among the different habitat types within

our sites, proximity to nesting areas cannot explain the spatial

distribution of young crocodiles in our study. Neither can

disturbance by humans, because we were the only human visitors

to most of these sites. Thermal characteristics did not differ

significantly among habitat types, suggesting that this factor

cannot explain non-random habitat use during the study period

either. Water temperatures at Lake Argyle change seasonally with

air temperatures, and are lower during the dry season (April to

October) and warmer during the wet season [46]. Nonetheless, our

data suggest that inter-habitat variations in temperatures are likely

to be minor.

Two of the factors that we measured differed among habitat

types: prey consumption rates and exposure to predators. Spatial

heterogeneity both in food supply and in the risk of predation can

be important determinants of habitat use ([9], but see [47], [48]).

For example, juvenile Caiman crocodilus may select habitats based

on availability both of insects and of sheltering vegetation [38].

Increased effort to acquire resources reduces the probability of

death by starvation but increases the probability of death by

predation [47].

In our study both the total number of food items and the total

mass of fresh food ingested by hatchlings were positively correlated

with hatchling density, suggesting that hatchlings select habitats

that maximise their feeding rates. Although previous studies have

assumed that crocodilian hatchlings select habitats that are rich in

food [38], [49], [50], our field data may be the first to actually

demonstrate such a link. If the growth rates of hatchlings are

related to food availability [50], hatchlings may concentrate in

food-rich areas [32]. However our results show that despite

differences among habitats in the types and amounts of food

available, hatchlings were able to maintain similar overall

nutritional intakes. The lower number and diversity of prey items

consumed in open-bank habitats was balanced by the higher mean

mass per prey item; and presumably, the lower densities of

hatchling crocodiles reduced intraspecific competition in such

sites. Thus, overall nutritional input (presumably the most critical

parameter for crocodile fitness) did not differ among the three

habitat types, supporting the hypothesis that animals assort

themselves among alternative habitat types at densities such that

average food consumption rate is similar in all habitats [1]. Future

work could usefully examine potential differences in food quality

among habitats.

Food availability may not be the sole determinant of hatchling

distributions. For example, hatchlings were less common in grassy

banks than in vegetation mats, despite grassy banks harbouring

more potential prey items. Subaquatic habitats with more

emergent vegetation (equivalent to grassy banks in our study)

may support more insect biomass, and thus provide more food for

hatchling crocodilians [50]. Sheltered habitats also may minimize

hatchlings’ exposure to thermal extremes and wave action [39].

More importantly, hatchlings may be more vulnerable to

predation in open habitats, based on the way that our own

capture rates differed among habitat types. Although hatchlings

inhabiting open banks could dive more easily than in the other

habitats (unimpeded by vegetation), we nonetheless found them

easier to capture because they could not escape to cover (hatchling

crocodilians may seek shelter when under threat [51]). Similarly,

hatchlings from grassy banks were easier to catch than those in

vegetation mats. If vulnerability to human approach can be used

to assess ‘‘natural’’ predation risk [52], hatchling crocodiles in

more open habitats may face a higher risk of predation. However,

our capture attempts provide a useful proxy only for certain types

of predators, and may not realistically simulate some of the

predatory taxa to which hatchling crocodiles are potentially

vulnerable – especially, those that approach from underwater (e.g.

larger crocodiles, fish, turtles), the air (e.g. raptors, waders) or the

land (e.g. dingoes, goannas), by day as well as by night ([53]; [54];

Somaweera in prep.). Although it is difficult to quantify predation

risk by a large guild of predators on nocturnal, aquatic species

[55], quantitative information on the importance of alternative

predators in this system could help to further refine habitat-specific

estimates of predation risk.

Animal populations are limited by both food and predators,

because food availability affects the probability of death by

predation and predator density affects the probability of death by

starvation [46]. Most environments represent a mosaic of different

habitats that can provide different levels of these resources [56]. In

some situations animals are distributed across habitats propor-

tional to food availability (e.g., guppies Poecilia reticulata [57];

armored catfish Ancistrus spinosus [58]; current study), but if

predation risk varies among habitats, prey will not necessarily

select habitats based solely on the energetic return [9].

In conclusion, our results suggest that the selection of vegetated

habitats by young freshwater crocodiles may be a function of both

benefits (food availability) and costs (predatory risk). Given that

human-regulated water levels in Lake Argyle are stable during

most of the year, the costs and benefits of occupying alternative

habitats may be more stable seasonally than is the case in many

riverine habitats occupied by this species. Proximity to nest-sites,

suitable thermal regimes or avoidance of human disturbance

cannot explain the non-random patterns of habitat use that we

documented. The higher concentration of hatchling crocodiles in

refuge habitats such as vegetation mats and grassy banks

emphasizes the importance of these habitats for this critical life

stage. Variation in the availability of these habitats through space

and time thus may influence crocodile recruitment; and

accordingly, management of this system needs to ensure that such

habitats are retained in order to provide the resources important to

the youngest life-history stages.

Supporting Information

Figure S1 Stomach contents of 4-5 month freshwater
crocodiles (Crocodylus johnstoni) from Lake Argyle,
Western Australia.

(XLS)
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