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Bacterial translocation across the damaged mucosal epithelium has emerged as a major paradigm for chronic immune activation
observed during HIV infection. T helper 17 (Th17) cells are a unique lineage of T helper cells that are enriched in mucosal tissues
and are thought to play a central role in protecting the integrity of the mucosal barrier and maintaining immune homeostasis at
mucosal sites. Th17 cells are lost very early during the course of HIV infection, and their loss has been shown to correlate with
bacterial translocation. Interestingly, Th17 cells are unable to completely recover from the early destruction even after successful
antiretroviral therapy (ART). Here, we review some of the potential mechanisms for the loss and dysregulation ofTh17 cells during
HIV infection.

1. Introduction

T helper 17 (Th17) cells have emerged as a key player in host-
pathogen interplay at the mucosal surface. The lack of Th17
cells has been associated with recurring bacterial and fungal
infections that are a hallmark of hyper-IgE syndrome [1, 2].
Th17 cells are enriched at mucosal sites [3–5] where they are
thought to play a role inmaintenance of immune homeostasis
in response to commensal organisms and protect against
pathogens that may gain entry via these surfaces [6]. Studies
have shown that a paucity of Th17 cells in mucosal tissues is
associated with systemic translocation of bacteria across the
intestinal epithelial barrier [7].

Th17 cells are a unique lineage of T helper cells that are
induced under anti-Th1/Th2 polarizing conditions and pref-
erentially produce interleukin-17 (IL-17) [8–12] and express
markers such as CD26, CD161, and interleukin-4-inducible
gene [11, 13–15]. This newly identified subset of Th17 cells
was later found to be the key effector T-cell subset medi-
ating experimental autoimmune encephalitis (EAE) in mice
[16, 17]. Deletion of Th1 cells was found to exacerbate the
symptoms of EAE, and this finally led to identification ofTh17
cells as the primary cells mediating the development of EAE
[18–20].

IL-17 produced by Th17 cells serves as a chemoattractant
for neutrophils to sites of infection and inflammation [21,
22]. IL-17 also promotes tight junction formation at mucosal
surfaces through the upregulation of claudin-1, claudin-2,
and zona occludens-1 expression, which are all key proteins
essential for maintenance of epithelial barrier integrity [23,
24]. Studies have demonstrated that IL-17 increases the
production of antimicrobial peptides such as𝛽-defensins that
play critical roles in defense against microbial pathogens [25–
28]. Th17 cells also produce a number of other cytokines
such as IL-22 and IL-21 that have been shown to synergize
with IL-17 and enhance the expression of antimicrobial
peptides inmucosal tissues [26]. Additionally, IL-22 has been
demonstrated to be critical for enterocyte homeostasis [29].
Numerous studies have shown that Th17 cells express CCR4,
CCR6, CCR9, and 𝛼4𝛽7 [30–33] suggesting that these cells
preferentially migrate to mucosal tissues.

Th17 cells play a critical role in protection against
pathogens though they have been implicated in several
autoimmune and inflammatory disorders, including asthma
and allergy [34], psoriasis [35, 36], and inflammatory bowel
disease [37, 38]. Interestingly, recent studies have shown
that other cells such as CD8 T cells called T-cytotoxic-17
(Tc17) cells were capable of producing IL-17. Huber et al. [39]
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showed that IL-17 secretion by CD8 T cells supported Th17-
mediated autoimmune encephalomyelitis, whereas Saxena
et al. [40] demonstrated that Tc17 cells potentiated Th1-
mediated diabetes in the mouse model. Other studies have
implicated Tc17 cells in vaccine-mediated immunity against
fungal pathogens [41].

2. Th17 Cells during HIV Infection

HIV and SIV infections are characterized by massive loss
of T helper cells, particularly at mucosal sites that persists
during the course of infection, with little or no repopulation
even after long periods of antiretroviral therapy [32, 42–53].
Destruction of mucosal CD4+ T cells is accompanied by
dramatic alterations of the mucosal microenvironment, and
is characterized by a preferential loss of Th17 cells, intestinal
dysfunction and malabsorption, loss of mucosal epithelial
barrier integrity, and severe enteropathy [54].

The exact mechanisms for the loss of Th17 cells are
still under investigation. Brenchley et al. [4] reported that
Th17 cells in the mucosa express high levels of CCR5, the
coreceptor for HIV, and appear to be preferentially depleted
despite the fact that they were not preferentially infected.
On the other hand, Hed et al. using phenotypic markers
such as CCR6 expression to delineate Th17 cells reported
that direct infection by HIV likely played a central role in
their depletion [55]. Ndhlovu et al. [56] demonstrated that
IL-17 expression was dependent on the extent of infection
in HIV-1+ children whereas HIV-infected patients with a
plasma viral load below 50 copies/mL had detectable IL-17
expression. Other studies [57] have shown that HIV-1 specific
Th17 cells were present in the acute stage of HIV infection
yet were undetectable during chronic infection. The exact
role that virus-specific Th17 cells play in HIV infection is
still under investigation. Interestingly, however, HIV long-
term nonprogressors appear to preserve their Th17 subsets
[58]. In spite of ongoing debate about the exact mechanisms
for the loss of Th17 cells, it is clear from a large number
of studies in HIV-infected subjects and nonhuman primates
with pathogenic SIV infections thatTh17 cells are depleted to
some degree during infection and their depletion contributes
to the pathogenesis of HIV infection. Recent studies have
shown that the Tc17 cells like their counterparts are also
depleted during chronic HIV and SIV infections [59, 60].

In a landmark study, Brenchley et al. [61] showed that
HIV infectionwas accompanied by translocation ofmicrobial
products across the lumen of the intestinal mucosa into
systemic circulation. These translocated microbial products
are believed to be a major cause for chronic immune acti-
vation and disease progression characterized by increased
cell turnover [61–63]. A number of studies in HIV-infected
patients and nonhuman primate models have demonstrated
that the loss of Th17 cells from the mucosa most likely
plays a major role in microbial translocation. Raffatellu et
al. [7] showed that Th17 cell deficiency during SIV infection
was associated with systemic translocation of Salmonella.
Likewise, pathogenic SIV infections are accompanied by a
severe loss of Th17 cells at mucosal sites within the first

few weeks of infection that persists in chronic infection
[64]. In contrast to pathogenic infections, natural hosts of
SIV infection such as sooty mangabeys and African green
monkeys were found to preserve their Th17 cells following
infection and display little or no immune activation even
when viral replication is high [4].

The effect of HIV and SIV infections on the loss of
Th17 cells has been well documented. Not much is, however,
known about the ability ofTh17 cells to effectively repopulate
either during the course of infection or after therapy. Ciccone
et al. demonstrated that long-term highly active antiretroviral
therapy (HAART) was somewhat successful in achieving
Th17 repopulation in both peripheral blood and the mucosa
[58]. On the other hand, Macal et al. [65] suggested that
Th17 repopulation was dependent on overall levels of CD4+
T cell restoration in the gastrointestinal-associated lymphoid
tissue (GALT). Gaardbo et al. [66] reported that ∼20% of the
HIV patients on antiretroviral therapy failed to completely
reconstitute their CD4+ T cells which was accompanied by
an incomplete repopulation ofTh17 cells. Mavigner et al. [33]
showed that incomplete mucosal immune reconstitution was
associated with defective gut homing of CCR9+𝛽7+ CD4+ T
cells, a population that harbored Th17 cells. This was likely
due to the altered expression of the CCR9 ligand CCL25 in
the small intestinalmucosa ofHIV-infected individuals.He et
al. [67] reported that HIV-infected patients had significantly
low levels of Th17 cells that were partially restored after 6
months of HAART though higher levels were observed after
1 year of therapy. Likewise, elite control of HIV infection has
been associatedwith higher levels ofTh17 cells [68]. However,
others have demonstrated that HAART failed to restoreTh17
cells in HIV-infected patients undergoing therapy [55, 69].
The inability to effectively repopulate Th17 cells unlike other
subsets such as Th1 or Tregs suggests that mechanisms that
likely affect either the induction or differentiation ofTh17 cells
may be involved in the poor repopulation of Th17 cells.

Even though HAART has had limited effect on Th17
repopulation, recent studies suggest that using probiotics
can potentially enhance gastrointestinal immunity, enhance
CD4+T cell numbers, and lead to the restoration ofTh17 cells
in the mucosa [70]. Klatt et al. [71] showed that treatment of
SIV infected pigtail macaques with probiotics/prebiotics for
60 days along with antiretroviral therapy was accompanied
by an increase in IL-23 producing cells and higher levels
of multifunctional Th17 cells in the mucosa as compared
to animals that only received antiretroviral therapy. Like-
wise, Gonzalez-Hernandez et al. [72] showed that symbiotic
treatment of HIV-infected subjects with a combination of
pre- and probiotics significantly decreased microbial translo-
cation and inflammation and improved the immunological
status of patients leading to a better long-term outcome.
However, another randomized clinical trial [73] reported no
major changes in eithermicrobial translocation ormarkers of
immune activation. It is not clear if a better outcome would
have been observed with either longer periods of symbiotic
treatment or if patients were on antiretroviral therapy at
the time of symbiotic therapy. Additional studies are needed
to assess the beneficial role of symbiotic therapy on Th17
reconstitution.
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3. Regulation of Th17 Cells and HIV Infection

Like the other T helper subsets, Th17 cells are memory CD4+
T cells [30, 69] that differentiate fromnäıve CD4+T cells after
TCR stimulation and costimulation by antigen presenting
cells (APC) in the presence ofTh17 promoting cytokines [74–
76].

Development of Th17 cells requires key cytokine signals,
several of which are produced by APCs following activation
of toll-like receptors (TLRs) by pathogen-associated motifs.
Activation of TLR 1/2, TLR 3, TLR 4, TLR7/8, and TLR9
have been shown to promote development of Th17 cells [74–
78]. Fukata et al. [79] also demonstrated a role for MyD88
induction inTh17 differentiation. Reynolds et al. [80] showed
that Th17 cells express high levels of TLR2 and stimulation
with TLR2 agonists in the presence of Th17-promoting
cytokines led to increased IL-17 production and expression
of Th17-associated gene products. Signaling through other
molecules such as dectin-1 and DC-SIGN has also been
shown to promoteTh17 development [81–85].

Initial studies identified IL-6, IL-21, IL-23, and TGF𝛽 as
critical cytokines essential for the induction of Th17 cells. A
number of studies using mouse models suggested that IL-
6 and TGF𝛽 were essential for the initial differentiation of
Th17 cells. Unlike mouse, however, the studies in humans
have suggested that any of the four cytokines along with IL-
1𝛽 in different combinations were sufficient to induce Th17
cells [85–87]. Of the fourTh17 promoting cytokines, IL-6 and
TGF𝛽 appear to be critical for the polarization of Th17 cells
asTh17 cells produce IL-17 and IFN𝛾 in the absence of TGF𝛽.

IL-6 binding to the IL-6 receptor initiates signaling
through STAT3 and ROR𝛾t transcription factors leading to
the STAT3-mediated activation of the IL-17 promoter and the
induction of IL-21 and IL-23 receptor expression, two factors
that are important for subsequent stages ofTh17 development
[88]. The essential requirement of IL-6 for the generation
of Th17 cells came from studies showing that expression
of mutant gp130 IL-6R [89] or treatment with an anti-IL-6
antibody preventedTh17 polarization [76, 90].

Unlike IL-6, the ability of TGF𝛽 to polarize Th17 cells
appears to be dependent on the concentration of TGF𝛽
in the environment; low concentrations of TGF𝛽 in the
presence of other Th17-promoting cytokines drives ROR𝛾t
expression and induces Th17 cells. On the other hand, high
concentrations of TGF𝛽 in the absence of otherTh17 inducing
cytokines promote the development of T regulatory (Treg)
cells and inhibit Th17 development through an effect on the
Treg transcription factor FoxP3. TGF𝛽1 deficient mice have
low levels of Th17 cells and circulating IL-17 [91] whereas
treatment with anti-TGF𝛽1 antibodies were found to inhibit
the generation of Th17 cells [92].

The second stage of Th17 differentiation is mediated
by IL-21, a member of the common gamma chain family
of cytokines. IL-21 is an autocrine cytokine that provides
a positive feedback mechanism for the induction of Th17
cells [93, 94] and has been shown to inhibit FoxP3, thereby
skewing the development away from Tregs. IL-21 has been
shown to promote the induction of IL-17 and block IFN𝛾
production [93–96] whereas other studies have shown that

IL-21 knockout mice or IL-21R-deficient mice fail to develop
Th17 cells when stimulated with IL-6 [93–97]. Interestingly,
one study reported that IL-21 can subvert the requirement
for IL-6-mediated stimulation for inducing Th17 cells by
promoting an alternative pathway; a combination of IL-21 and
TGF𝛽 was found to induce Th17 cells in IL-6 deficient mice
[98].

Like IL-21, IL-23 appears to be critical for the differentia-
tion of Th17 cells during later stages of development. IL-23 is
a heterodimeric cytokine comprised of the IL-12p40 and p19
subunits that is induced by stimulation of dendritic cells and
macrophages with different TLR2 and dectin-1 ligands [84,
85, 99]. IL-23 binds to the IL-23 receptor which is primarily
expressed by activated memory T cells [100]. Initial studies
suggested that IL-23 was essential for the Th17 polarization.
Later studies, however, demonstrated that it was not required
for initial differentiation ofTh17 cells but was essential for the
survival and expansion of Th17 cells [8, 9, 101]. Importantly,
näıve CD4+T cells were found to lack the IL-23 receptor.This
further supports a role for IL-23 in the later stages of Th17
differentiation.

Interestingly, both HIV and SIV infections are character-
ized by high levels of IL-6 and TGF𝛽 [102–104]. Conversely,
IL-21 producing CD4+ T cells are lost very early in infection
[105–107] though other cellular subsets such as CD8 T cells
have been shown to upregulate IL-21 production [107–111].
The presence of high levels of Th17 promoting cytokines
during HIV and SIV infections suggests that the failure
to induce Th17 cells during infection is likely mediated by
mechanisms unrelated to availability of these cytokines.

Recent studies have shown that the loss of Th17 cells was
accompanied by an expansion of Treg cells. These studies
have suggested that the accumulation of byproducts of tryp-
tophan metabolism promotes the development of Treg’s and
inhibits Th17 cells. Indoleamine deoxygenase (IDO), a rate-
limiting enzyme that mediates the catabolism of tryptophan,
has been shown to be significantly upregulated during HIV
and SIV infections [68, 112–115]. Likewise the frequency of
Tregs was reported to be altered during HIV infection and
during HAART [116–120] whereas effector IL-17 absolute cell
numberswere significantly lower in allHIV(+) subjects tested
and were not restored after therapy. On the other hand,
Brandt et al. [68] showed that the ratio of Th17/Treg in elite
controllers did not differ from that of uninfected controls,
whereas the ratio was lower in viremic patients and patients
on HAART.

It is not clear if HIV infection alters the signaling
pathways that promote the induction of Th17 cells. ROR𝛾t
is a lineage specific transcription factor associated with Th17
differentiation [88, 121, 122] whose expression is regulated by
signal transducers and activators of transcription-3 (STAT3)
[123, 124]. They bind to ROR-dependent enhancer elements
in conserved noncoding sequence (CNS)-2, which is located
upstream of the IL17A promoter [124]. Rueda et al. [125]
examined expression of T helper lineage-specific transcrip-
tion factors in the GALT from healthy uninfected volunteers,
HIV-infected untreated, and patients undergoing HAART
and found that the ratio of ROR𝛾t to FoxP3 expression
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shifted in favor of FoxP3 in untreated patients, though ROR𝛾t
expression itself was not changed among the groups.

Numerous studies have demonstrated the importance of
the Janus-associated kinases (JAK)/STAT3 signaling pathway
in the development of Th17 cells [126, 127]. Binding of
Th17 promoting cytokines to their cognate receptors initiates
the signaling cascade that leads to receptor dimerization
and recruitment of JAK culminating in the activation and
phosphorylation of STAT3. Activated pSTAT3 dimerizes and
translocates to the nucleus where it binds to the IL-17
promoter and drives the induction of IL-17. Studies have
shown that STAT3 knockout mice failed to develop Th17
cells [123, 128], whereas patients with Jobs’ syndrome lack
functional STAT3 and display impaired Th17 development
[2].

STAT3 is negatively regulated by a number of factors
such as the suppressor of cytokine signaling-3 (SOCS3),
protein inhibitor of activated STAT3 (PIAS3), and protein
tyrosine phosphatase (SHP-2). Overexpression of SOCS3
has been shown to inhibit Th17 development while SOCS3
conditional knockouts were shown to have higher levels of
Th17 cells [129]. Interestingly while SOCS3 is activated by
Th17 promoting cytokines IL-6, IL-21, and IL-23 [92, 129],
TGF𝛽 has been shown to inhibit SOCS3 induction by IL-6
and IL-23, thereby promoting the activation of STAT3 and
subsequent induction of Th17 cells [92].

CD4+ T cells from HIV-infected patients have been
shown to express high levels of SOCS3 mRNA [130] though
SOCS3 protein levels were lower. Higher levels of SOCS3
mRNA have been reported in the gastrointestinal tissues of
SIV-infected rhesus macaques [131]. Interestingly, increased
levels of SOC3 have been shown to aid in HIV replication
[132] whereas high levels of SOCS3 in hepatic cells have been
associated with nonresponsiveness to therapy in HIV/HCV
infected individuals [133]. Moutsopoulos et al. [134] reported
that high levels of SOCS3 protein in mucosa-associated
lymphoid organ such as the tonsils are associated with
increased susceptibility to HIV infection.

Unlike SOCS3, PIAS3 has been shown to directly interact
with pSTAT3 and inhibit its binding to target DNA thereby
interfering with the STAT3-mediated activation of target
genes [135, 136]. Others have shown that PIAS3 directly
inhibits the transactivation of STAT3 [137]. PIAS3 transcript
levels were found to be absent inTh17 cells as compared toTh1
or Th2 cells in mice, and knockdown of PIAS3 with siRNA
resulted in severe EAE suggesting an important role for PIAS3
in Th17 regulation [138]. Recent studies have shown that
PIAS3 mRNA levels were significantly upregulated in CD4
T cells from SIV-infected rhesus macaques and high levels
of PIAS3 was found to significantly correlate with immune
activation and markers of microbial translocation [139]. Not
much is known about the effect of HIV infection on PIAS3
and if PIAS3 plays a role in dysregulating the induction of
Th17 cells.

Like SOCS3 and PIAS3, SHP2 negatively regulates IL-17
production. However, unlike the other two, SHP2 interferes
with IL-6 signaling-mediated activation of STAT3. SHP2 is
recruited to receptors following cytokine signaling and JAK
activation. Studies have shown that SHP2 is recruited to

gp130 domain of the IL6 receptor following IL-6 signaling
and dephosphorylates pSTAT3, preventing its dimerization
and translocation to the nucleus [140, 141]. The exact role of
SHP2 in preventing the induction of Th17 cells during HIV
infection is not clear. However, studies have shown that HIV-
mediated signaling throughCCR5 andC-type lectin domain-
4 (DCIR) results in recruitment of SHP-2 whereas HIV gp120
binding has been shown to increase SHP2-mediated signaling
[142].

4. Summary

Th17 cells play an essential role in host immunity and are
key players in protecting the mucosal integrity. Their loss
during HIV infection is associated with translocation of
microbial products across the damaged mucosal epithelium
leading to immune activation and poor long-term outcome
in HIV-infected patients. While progress has been made
in understanding the role of Th17 cells in HIV infection,
there are significant gaps in the field regarding the exact
mechanisms that prevent full Th17 reconstitution during
therapy. A better understanding of how these key molecular
mechanisms are altered during HIV infection and the role
these altered mechanisms play is essential to develop better
therapeutic approaches to repopulate Th17 cells and over-
come the deleterious effects associated with the loss of Th17
cells during HIV infection.
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