

Received 2 February 2021 Accepted 16 February 2021

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela

Keywords: crystal structure; drug; hydrogen bonds; molecular conformation; chalcogencentered interactions.

CCDC references: 2063226; 2063225

Supporting information: this article has supporting information at journals.iucr.org/e

Dhananjay Dey,^a I. Shruti,^a Deepak Chopra^a* and T. P. Mohan^b

^aDepartment of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhauri, Bhopal 462066, India, and ^bRallis India Ltd, Bangalore 560091, Karnataka, India. *Correspondence e-mail: dchopra@iiserb.ac.in

The compound N-[2-(4-fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]benzamide, $C_{21}H_{16}FN_3O_3S$, crystallizes in the monoclinic centrosymmetric space group $P2_1/c$ and its molecular conformation is stabilized *via* an intramolecular N-H···O hydrogen bond. The corresponding *para*-methoxy derivative, namely, N-[2-(4-fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]-4methoxybenzamide, $C_{22}H_{18}FN_3O_4S$, crystallizes in the monoclinic centrosymmetric space group C2/c. The supramolecular network mainly comprises N-H···O, N-H···S and C-H···O hydrogen bonds, which contribute towards the formation of the crystal structures for the two molecules. The different intermolecular interactions have been further analysed using Hirshfeld surface analysis and fingerprint plots.

1. Chemical context

Substituted thiosemicarbazides (TSCs) constitute an important class of organic compounds with the general formula R-(C=O)-NH-NH-(C=S)-R' and find application in the synthesis of five- and six-membered heterocyclic compounds (Gazieva & Kravchenko, 2012) and transition-metal complexes (Campbell, 1975). The chemical diversity of thiosemicarbazides, and their synthesis, including their role in biological applications, is nicely summarized in a recent review article (Acharya et al., 2021). Dibenzoylated TSCs have been synthesized and explored for their antibacterial activity (Qandil et al., 2006). Furthermore, molecular modelling studies establish the relevance of both geometry and electrondensity distribution in the observed antibacterial activity (Paneth et al., 2016). Piperidin-4-yl-based TSCs have been examined for cytotoxicity in breast cancer cell lines in addition to being possible potential topoisomerase inhibitors (Siwek et al., 2014). 1-(2-Hydroxybenzoyl)-thiosemicarbazides have been observed to exhibit antimicrobial activity and structureactivity relationship (SARs) studies establish that the 2-hydroxybenzoyl group plays an important role in enzyme inhibition, in addition to these exhibiting low cytotoxicity (Ameryckx et al., 2018). Furthermore, triazole-substituted benzoylthiosemicarbazides have been synthesized and their effect on the inhibition of corrosion on mild steel has been investigated (Yan et al., 2018). Keeping in mind the abovementioned applications of substituted TSCs, we have performed the synthesis and crystal structure analysis of two compounds, namely N-[2-(4-fluoro-3-phenoxybenzoyl)-

research communications

hydrazinecarbothioyl]benzamide (A1) and *N*-[2-(4-fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]-4-methoxybenzamide (A2) in the current study. The molecular conformations have been studied with respect to the various flexible bonds and the occurrence of various intermolecular interactions that contribute towards the stability of the molecules in the crystalline lattice has been investigated in detail *via* an investigation of the crystal packing and quantitative insights from Hirshfeld surface analysis.

2. Structural commentary

Compound A1 crystallizes in the centrosymmetric monoclinic $P2_1/c$ space group and A2 crystallizes in the centrosymmetric monoclinic C2/c space group. The molecular structure comprises one fluoro-substituted phenoxybenzoyl ring, a rigid and planar (C=O)-NH-NH-(C=S) moiety and a benzamide ring. The bond lengths and bond angles are in accordance with the magnitudes in the literature. The molecular conformations of A1 (Fig. 1) and A2 (Fig. 2) are both conformationally locked via the presence of an N-H···O hydrogen bond (involving H2N and O3), the N2···O3 distance being 2.555 (2) and 2.589 (4) Å in A1 and A2, respectively. The molecular structure possesses four conformational degrees of freedom due to the free rotation with respect to the N1-N2, C7-O1, O1-C1 and C15-C16 single bonds. The torsion angles C13-N1-N2-C14, C8-C7-O1-C1, C7-O1-C1-C2 and N3-C15-C16-C21 are 163.27 (16)/-143.5 (4)°, 97.3 (2)/149.6 (5)°, 167.18 (18)/ 148.1 (4)° and -160.26 (15)/-174.7 (3)° in A1/A2, respectively.

Table 1	
Hydrogen-bond geometry (Å, °)) for A1.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot$	··A
$N2-H2N\cdots O3$	0.86	1.88	2.555 (2)	135	
$C18-H18\cdots O3^{i}$	0.93	2.45	3.218 (2)	141	
$N3-H3N\cdots O2^{i}$	0.86	2.28	3.067 (2)	152	
C19-H19···S1 ⁱⁱ	0.93	2.98	3.778 (2)	145	
$C20-H20\cdots O1^{iii}$	0.93	2.77	3.510 (3)	138	
Symmetry codes: $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}.$	(i) $x, -y - x$	$+\frac{1}{2}, z + \frac{1}{2};$ (ii)) $-x+1, y+\frac{1}{2}$	$z_{i}, -z + \frac{5}{2};$	(iii)
Table 2					

		0			
Hydrogen-bond	geometry	(Å,	°)	for	A2.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
	0.96	1.02	2 590 (4)	124
$N_2 = H_2 N_1 \cdots N_3$ $N_3 = H_3 N_2 \cdots S_1^{i}$	0.86	2.80	2.389 (4)	159
$C17-H17\cdots S1^{i}$	0.93	2.69	3.614 (4)	174
$N1-H1\cdots O2^{ii}$	0.86	2.15	2.915 (4)	148
$C21 - H21 \cdots O3^{m}$	0.93	2.57	3.399 (4)	148

Symmetry codes: (i) -x + 1, y, $-z + \frac{1}{2}$; (ii) x, y + 1, z; (iii) -x + 1, -y - 1, -z.

3. Supramolecular features

In the crystal structure of A1, the molecules are primarily assembled through the presence of N3-H3 $N \cdot \cdot \cdot O2$ and C18-H18 $\cdot \cdot \cdot O3$ hydrogen bonds (Table 1), forming molecular chains along the *c*-axis direction utilizing the *c*-glide as the symmetry element (Fig. 3). Adjacent layers are held together *via* C20-H20 $\cdot \cdot \cdot O1$ and C19-H19 $\cdot \cdot \cdot S1$ hydrogen bonds. The crystal packing of A2 (Fig. 4) primarily consists of N1-H1 $\cdot \cdot \cdot O2$ hydrogen bonds (Table 2), forming molecular chains along the *b*-axis direction. Two such adjacent layers are held *via* N3-H3 $N \cdot \cdot \cdot S1$ and C17-H17 $\cdot \cdot \cdot S1$ hydrogen bonds. In addition S1 $\cdot \cdot \cdot C17$ contacts (S $\cdot \cdot \cdot \pi$ type), [3.384 (4) Å, 174.9 (1)°, -x + 1, y + 1, $-z + \frac{1}{2}$] chalcogen-centered contacts are also present in the crystal packing (Fig. 4). Intermolecular

Figure 1

Ellipsoid plot of A1 drawn with 50% ellipsoidal probability. The cyan line indicates the intramolecular $N-H\cdots O$ hydrogen bond.

Ellipsoid plot of A2 drawn with 50% ellipsoidal probability. The cyan line indicates the intramolecular $N-H\cdots O$ hydrogen bond.

Figure 3

Crystal packing of A1 showing the formation of the crystal structure primarily *via* $N-H\cdots O$ and $C-H\cdots O$ intermolecular interactions.

contacts involving chalcogens are well-recognized in the literature [Pramanik & Chopra, 2020]. Furthermore, additional C21-H21 \cdots O3 hydrogen bonds form centrosymmetric dimers and provide additional stability to the crystal packing.

4. Database survey

A search for the dibenzoylthiosemicarbazide skeleton, Ph-(C=O)-NH-NH-(C=S)-NH-(C=O)-Ph was carried out in the Cambridge Structural Database (CSD version 5.40, updates of Aug 2019; Groom *et al.*, 2016). No hits were obtained. Thus, further systematic studies related to the investigation of the role of differently substituted thiosemicarbazide molecules towards the crystal packing, including a detailed investigation of polymorphism in this class of compounds, is of relevance.

5. Hirshfeld surface analysis and fingerprint plots

The relevance of different intermolecular interactions can be established *via* Hirshfeld surface analysis (Spackman & Jayatilaka, 2009). These surfaces, along with the two-dimensional fingerprint plots, were evaluated using *Crystal Explorer 17.5* (Turner *et al.*, 2017). The surfaces mapped over d_{norm} for A1, Fig. 5(*a*), and A2, Fig. 5(*b*) and 5(*c*), show the important

Figure 4

Crystal packing of A2 showing the formation of the crystal structure primarily *via* $N-H\cdots O$, $N-H\cdots S$, $C-H\cdots S$ and $S\cdots C$ intermolecular interactions.

Figure 5 The Hirshfeld sur

The Hirshfeld surface mapped over d_{norm} for (a) A1, (b) A2 depicting N-H···O hydrogen bonds and (c) A2 depicting C-S··· π interactions.

hydrogen bonds. The red and blue spots correspond to intermolecular interactions that are less or greater than the sum of

Figure 6

The fingerprint plots for A1 showing the different contributions derived from the H \cdots H, C \cdots H/H \cdots C, O \cdots H/H \cdots O, H \cdots F/F \cdots H,S \cdots H/S \cdots H and C \cdots S/S \cdots C contacts.

Figure 7

The fingerprint plots for A2 showing the different contributions derived from the $H \cdots H$, $C \cdots H/H \cdots C$, $O \cdots H/H \cdots O$, $H \cdots F/F \cdots H$, $S \cdots H/S \cdots H$ and $C \cdots S/S \cdots C$ contacts.

research communications

 Table 3

 Experimental details.

A1		A2
Crystal data		
Chemical formula	$C_{21}H_{16}FN_3O_3S$	$C_{22}H_{18}FN_3O_4S$
M_r	409.43	439.45
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, C2/c
Temperature (K)	298	298
a, b, c (Å)	18.3849 (13), 7.7063 (6), 13.9216 (10)	47.298 (3), 4.8054 (3), 18.4939 (10)
β (°)	100.136 (5)	100.429 (6)
$V(\dot{A}^3)$	1941.6 (2)	4134.0 (4)
Z	4	8
Radiation type	Μο <i>Κα</i>	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.20	0.20
Crystal size (mm)	$0.27 \times 0.20 \times 0.14$	$0.25\times0.17\times0.10$
Data collection		
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2008)	Multi-scan (SADABS; Bruker, 2008)
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	31160, 4460, 2753	9841, 2188, 1751
R _{int}	0.043	0.062
θ_{\max} (°)	27.7	20.9
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.653	0.503
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.119, 1.04	0.046, 0.122, 1.06
No. of reflections	4460	2188
No. of parameters	262	281
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.15, -0.17	0.20, -0.16

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), Mercury (Macrae et al., 2020), WinGX (Farrugia, 2012) and PLATON (Spek, 2020).

the van der Waals radii. The fingerprint plots depict the individual contributions of the different interactions. The fingerprint plots for A1/A2 (Figs. 6 and 7) show that the greatest contributions are from H...H (31.3/32%) contacts, followed by $C \cdots H/H \cdots C$ (23.2/23.2%), $O \cdots H/H \cdots O$ (14.3/ 16.7%), S···H/H···S (7/5.7%), S···C/C···S (4.9/2.8%) and $F \cdots H/H \cdots F$ (8.8/6.9%) contacts. The $O \cdots H/H \cdots O$ contribution is slightly higher in the case of A2 (16.7%) due to the presence of an additional methoxy group in the molecule. Further interactions, involving $F \cdots H/H \cdots F$, contributing around 7–9% (A1: 8.8% and A2: 6.9%) and S···H (A1: 7.0% and A2: 5.7%) correspond to the presence of highly directional interactions, involving fluorine and sulfur in A2, and are important; this is clearly illustrated in the fingerprint plot (Fig. 7). The percentage contribution of $S \cdots C/C \cdots S$ contacts in A2 is 2.8% lower than in A1. However, the relevance of this contact is greater in A2 on account of the presence of the highly directional $C-S\cdots\pi$ intermolecular contact and this feature is also clearly visible in the 2D fingerprint plot (Fig. 7).

6. Synthesis and Crystallization

The title compounds were synthesized in accordance with the procedure reported in the literature (Mohan, 2006). Crystallization was performed in 5.0 ml beakers at room temperature *via* the slow evaporation method from methanol solvent.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were placed in idealized positions (N-H = 0.86 Å, C-H = 0.93 Å) and refined using a riding model with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C},{\rm N})$ or $1.5U_{\rm eq}({\rm C-methyl})$.

Acknowledgements

The authors are thankful to the CIF of IISER Bhopal for research facilities and infrastructure.

References

- Acharya, P. T., Bhavsar, Z. A., Jethava, D., Patel, D. B. & Patel, H. D. (2021). J. Mol. Struct. **1226**, 129268.
- Ameryckx, A., Thabault, L., Pochet, L., Leimanis, S., Poupaert, J. H., Wouters, J., Joris, B., Van Bambeke, F. & Frédérick, R. (2018). *Eur.* J. Med. Chem. 159, 324–338.
- Bruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2012). *APEX2*. Bruker AXS Inc., Madison, Wisconsin, USA. Campbell, M. J. M. (1975). *Coord. Chem. Rev.* **15**, 279–319.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gazieva, G. A. & Kravchenko, A. N. (2012). Russ. Chem. Rev. 81, 494-523.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). *J. Appl. Cryst.* 53, 226–235.

- Mohan, T. P. (2006). PhD Thesis, Mangalore University, Mangalore, Karnataka, India.
- Paneth, A., Stączek, P., Plech, T., Strzelczyk, A., Dzitko, K., Wujec, M., Kuśmierz, E., Kosikowska, U., Grzegorczyk, A. & Paneth, P. (2016). J. Enzyme Inhib. Med. Chem. 31, 14–22.
- Pramanik, S. & Chopra, D. (2020). J. Indian Inst. Sci. 100, 43-59.
- Qandil, A. M., Tumah, H. N. & Hassan, M. A. (2006). Acta. Pharm. Sci. 48, 95–107.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

- Siwek, A., Bielawska, A., Maciorkowska, E., Lepiarczyk, M., Bielawski, K., Trotsko, N. & Wujec, M. (2014). J. Enzyme Inhib. Med. Chem. 29, 243–248.
- Spackman, M. A. & Jayatilaka, D. (2009). *CrystEngComm*, **11**, 19–32. Spek, A. L. (2020). *Acta Cryst.* E**76**, 1–11.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer* 17.5. University of Western Australia, Perth.
- Yan, Y., Dai, L., Zhang, L., Zhong, S., Zhou, H., Wu, L. & Cai, L. (2018). Res. Chem. Intermed. 44, 3437–3454.

Acta Cryst. (2021). E77, 277-281 [https://doi.org/10.1107/S2056989021001900]

Structural investigation of *N*-[2-(4-fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]benzamide and *N*-[2-(4-fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]-4-methoxybenzamide

Dhananjay Dey, I. Shruti, Deepak Chopra and T. P. Mohan

Computing details

For both structures, data collection: *APEX2* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2020), *WinGX* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2020).

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]benzamide (A1)

Crystal data

 $C_{21}H_{16}FN_{3}O_{3}S$ $M_{r} = 409.43$ Monoclinic, $P2_{1}/c$ a = 18.3849 (13) Å b = 7.7063 (6) Å c = 13.9216 (10) Å $\beta = 100.136 (5)^{\circ}$ $V = 1941.6 (2) Å^{3}$ Z = 4

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2008)

31160 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.119$ S = 1.044460 reflections 262 parameters 0 restraints F(000) = 848 $D_x = 1.401 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 10485 reflections $\theta = 2.2-28.6^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$ T = 298 KPlates, colorless $0.27 \times 0.20 \times 0.14 \text{ mm}$

4460 independent reflections 2753 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 27.7^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -23 \rightarrow 21$ $k = -10 \rightarrow 10$ $l = -18 \rightarrow 18$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0531P)^2 + 0.1773P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

$\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N2	0.35731 (8)	0.0786 (2)	0.88306 (10)	0.0603 (4)	
H2N	0.398146	0.108884	0.865793	0.072*	
O2	0.35727 (7)	0.08997 (19)	0.69344 (9)	0.0715 (4)	
N1	0.30299 (8)	0.0015 (2)	0.81656 (10)	0.0635 (4)	
H1	0.267495	-0.053998	0.835584	0.076*	
C15	0.47522 (9)	0.2198 (2)	1.01326 (12)	0.0544 (4)	
N3	0.40609 (7)	0.18548 (18)	1.03435 (9)	0.0538 (4)	
H3N	0.398570	0.216229	1.091172	0.065*	
C19	0.63953 (10)	0.4486 (3)	1.22873 (13)	0.0637 (5)	
H19	0.675815	0.500499	1.274731	0.076*	
C13	0.30627 (10)	0.0143 (2)	0.72070 (12)	0.0546 (4)	
C11	0.24397 (10)	-0.0680(2)	0.65341 (12)	0.0548 (4)	
O3	0.48982 (7)	0.18773 (19)	0.93243 (8)	0.0737 (4)	
C12	0.23455 (10)	-0.0202 (2)	0.55602 (12)	0.0587 (5)	
H12	0.267655	0.056422	0.535242	0.070*	
C18	0.58177 (10)	0.3634 (3)	1.25799 (13)	0.0651 (5)	
H18	0.579476	0.355776	1.324057	0.078*	
C16	0.53052 (9)	0.2979 (2)	1.09115 (11)	0.0509 (4)	
C7	0.17640 (11)	-0.0857 (3)	0.48974 (13)	0.0650 (5)	
C17	0.52695 (10)	0.2888 (2)	1.19000 (12)	0.0589 (5)	
H17	0.487572	0.232436	1.210329	0.071*	
01	0.16903 (8)	-0.0470 (2)	0.39147 (9)	0.0815 (4)	
C20	0.64377 (11)	0.4571 (3)	1.13081 (13)	0.0683 (5)	
H20	0.683089	0.514503	1.110943	0.082*	
C14	0.34729 (9)	0.1066 (2)	0.97367 (11)	0.0524 (4)	
C1	0.13186 (10)	0.1053 (3)	0.35731 (13)	0.0658 (5)	
C10	0.19555 (10)	-0.1858 (3)	0.68345 (14)	0.0678 (5)	
H10	0.202440	-0.221053	0.748315	0.081*	
C21	0.59024 (10)	0.3814 (3)	1.06281 (12)	0.0610 (5)	
H21	0.593940	0.385998	0.997084	0.073*	
C8	0.12811 (11)	-0.1982 (3)	0.52212 (15)	0.0755 (6)	
F1	0.07018 (8)	-0.2577 (2)	0.45739 (10)	0.1157 (5)	
C9	0.13740 (12)	-0.2507 (3)	0.61757 (16)	0.0828 (6)	
H9	0.104704	-0.329362	0.637526	0.099*	
C6	0.09068 (11)	0.2008 (3)	0.41052 (15)	0.0756 (6)	
H6	0.086151	0.166959	0.473327	0.091*	
C4	0.06114 (16)	0.3971 (4)	0.2770 (2)	0.1119 (9)	
H4	0.036467	0.495305	0.249363	0.134*	

C2	0.13978 (13)	0.1537 (3)	0.26449 (15)	0.0849 (7)	
H2	0.169036	0.089353	0.229477	0.102*	
C3	0.10316 (18)	0.3001 (4)	0.2249 (2)	0.1101 (9)	
H3	0.107028	0.333605	0.161870	0.132*	
C5	0.05585 (13)	0.3485 (4)	0.3694 (2)	0.0958 (7)	
H5	0.028365	0.415792	0.405426	0.115*	
S1	0.26986 (3)	0.05350 (8)	1.01272 (3)	0.07183 (19)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N2	0.0605 (9)	0.0788 (10)	0.0420 (8)	-0.0123 (8)	0.0097 (7)	-0.0069 (7)
O2	0.0662 (8)	0.0981 (10)	0.0499 (7)	-0.0220 (7)	0.0097 (6)	0.0030 (7)
N1	0.0659 (10)	0.0808 (11)	0.0435 (8)	-0.0197 (8)	0.0090 (7)	-0.0051 (8)
C15	0.0558 (10)	0.0637 (11)	0.0457 (9)	0.0021 (8)	0.0147 (8)	-0.0033 (8)
N3	0.0539 (8)	0.0702 (10)	0.0381 (7)	-0.0016 (7)	0.0100 (6)	-0.0055 (7)
C19	0.0562 (11)	0.0809 (13)	0.0525 (10)	-0.0022 (10)	0.0053 (8)	-0.0055 (10)
C13	0.0590 (11)	0.0618 (11)	0.0425 (9)	-0.0026 (9)	0.0076 (8)	0.0010 (8)
C11	0.0566 (10)	0.0612 (11)	0.0457 (9)	-0.0014 (9)	0.0070 (8)	-0.0016 (8)
03	0.0684 (8)	0.1078 (11)	0.0495 (7)	-0.0126 (7)	0.0229 (6)	-0.0201 (7)
C12	0.0637 (11)	0.0683 (12)	0.0444 (9)	-0.0035 (9)	0.0107 (8)	-0.0032 (8)
C18	0.0610(11)	0.0937 (14)	0.0408 (9)	0.0028 (10)	0.0095 (8)	-0.0040 (9)
C16	0.0512 (10)	0.0590 (10)	0.0433 (8)	0.0056 (8)	0.0104 (7)	-0.0012 (8)
C7	0.0693 (12)	0.0775 (13)	0.0450 (10)	0.0071 (10)	0.0012 (9)	-0.0073 (9)
C17	0.0540 (10)	0.0781 (12)	0.0467 (9)	-0.0011 (9)	0.0149 (8)	-0.0006 (9)
01	0.0998 (11)	0.0991 (11)	0.0421 (7)	0.0170 (9)	0.0026 (7)	-0.0105 (7)
C20	0.0595 (11)	0.0891 (14)	0.0576 (11)	-0.0121 (10)	0.0136 (9)	0.0041 (10)
C14	0.0585 (11)	0.0573 (10)	0.0409 (8)	0.0019 (8)	0.0076 (8)	0.0015 (8)
C1	0.0568 (11)	0.0850 (14)	0.0496 (10)	-0.0092 (10)	-0.0068 (9)	-0.0020 (10)
C10	0.0663 (12)	0.0775 (13)	0.0573 (11)	-0.0110 (10)	0.0048 (9)	0.0084 (10)
C21	0.0609 (11)	0.0792 (13)	0.0443 (9)	-0.0033 (10)	0.0134 (8)	0.0014 (9)
C8	0.0648 (13)	0.0863 (15)	0.0666 (13)	-0.0101 (11)	-0.0126 (10)	-0.0100 (11)
F1	0.0972 (10)	0.1390 (12)	0.0957 (9)	-0.0334 (9)	-0.0246 (8)	-0.0135 (9)
C9	0.0714 (13)	0.0906 (15)	0.0824 (15)	-0.0234 (12)	0.0023 (11)	0.0080 (13)
C6	0.0658 (13)	0.0965 (17)	0.0625 (12)	0.0016 (11)	0.0058 (10)	-0.0011 (12)
C4	0.101 (2)	0.112 (2)	0.116 (2)	0.0046 (17)	0.0013 (18)	0.034 (2)
C2	0.0881 (16)	0.1073 (18)	0.0569 (12)	-0.0178 (14)	0.0063 (11)	-0.0009 (13)
C3	0.128 (2)	0.122 (2)	0.0745 (16)	-0.0238 (19)	0.0032 (16)	0.0288 (17)
C5	0.0718 (15)	0.1026 (19)	0.111 (2)	0.0045 (14)	0.0110 (14)	0.0038 (16)
S1	0.0630 (3)	0.1025 (4)	0.0515 (3)	-0.0143 (3)	0.0141 (2)	-0.0031 (3)

Geometric parameters (Å, °)

N2-C14	1.3242 (19)	C7—O1	1.383 (2)	
N2—N1	1.3718 (19)	С17—Н17	0.9300	
N2—H2N	0.8600	O1—C1	1.399 (2)	
O2—C13	1.220 (2)	C20—C21	1.370 (3)	
N1—C13	1.350 (2)	C20—H20	0.9300	

N1—H1	0.8600	C14—S1	1.6617 (17)
C15—O3	1.2272 (18)	C1—C6	1.364 (3)
C15—N3	1.379 (2)	C1—C2	1.377 (3)
C15—C16	1.478 (2)	C10—C9	1.374 (3)
N3—C14	1.389 (2)	C10—H10	0.9300
N3—H3N	0.8600	C21—H21	0.9300
C19—C18	1.370 (3)	C8—F1	1.349 (2)
C19—C20	1.381 (2)	C8—C9	1.371 (3)
С19—Н19	0.9300	С9—Н9	0.9300
C13—C11	1.488 (2)	C6—C5	1.380 (3)
C11—C12	1.386 (2)	С6—Н6	0.9300
C11—C10	1.387 (2)	C4—C5	1.360 (4)
C12—C7	1.379 (3)	C4—C3	1.370 (4)
C12—H12	0.9300	C4—H4	0.9300
C18—C17	1.381 (2)	C2—C3	1.378 (4)
C18—H18	0.9300	С2—Н2	0.9300
C16—C21	1.389 (2)	С3—Н3	0.9300
C16—C17	1.391 (2)	С5—Н5	0.9300
C7—C8	1.372 (3)		
C14—N2—N1	120.44 (14)	C21—C20—C19	120.23 (17)
C14—N2—H2N	119.8	C21—C20—H20	119.9
N1—N2—H2N	119.8	C19—C20—H20	119.9
C13—N1—N2	118.79 (14)	N2—C14—N3	115.25 (14)
C13—N1—H1	120.6	N2-C14-S1	122.85 (13)
N2—N1—H1	120.6	N3—C14—S1	121.90 (12)
03—C15—N3	120.99 (16)	C6-C1-C2	121.6 (2)
03-C15-C16	121.44 (15)	C6-C1-O1	123.55(18)
N3-C15-C16	117.57 (13)	C2-C1-O1	114.8 (2)
$C_{15} N_{3} C_{14}$	127.02 (13)	C9—C10—C11	120.14(18)
C15 - N3 - H3N	116.5	C9—C10—H10	119.9
C14—N3—H3N	116.5	C11—C10—H10	119.9
C18 - C19 - C20	119.86 (17)	C_{20} C_{21} C_{16}	120.58 (16)
C18—C19—H19	120.1	C_{20} C_{21} H_{21}	1197
C20-C19-H19	120.1	$C_{16} - C_{21} - H_{21}$	119.7
02-C13-N1	120.86 (16)	F1-C8-C9	119.7(2)
02-C13-C11	123.81 (15)	F1—C8—C7	118.42 (19)
N1-C13-C11	115 33 (15)	C9 - C8 - C7	121 84 (18)
C_{12} C_{11} C_{10} C	119.53 (17)	C8 - C9 - C10	119 28 (19)
C_{12} C_{11} C_{13}	116.91 (16)	С8—С9—Н9	120.4
C10-C11-C13	123 57 (16)	C10-C9-H9	120.1
C7-C12-C11	120.40(18)	C1 - C6 - C5	1187(2)
C7—C12—H12	119.8	C1—C6—H6	120.6
C11—C12—H12	119.8	C5—C6—H6	120.6
C19 - C18 - C17	120 41 (16)	$C_{5} - C_{4} - C_{3}$	119 4 (3)
C19—C18—H18	119.8	C5—C4—H4	120.3
C17—C18—H18	119.8	C3—C4—H4	120.3
C21—C16—C17	118.81 (16)	C1—C2—C3	118.1 (2)

C21—C16—C15 C17—C16—C15 C8—C7—C12 C8—C7—O1 C12—C7—O1 C18—C17—C16 C18—C17—H17 C16—C17—H17 C7—O1—C1	117.16 (14) 124.01 (15) 118.78 (17) 120.31 (18) 120.81 (18) 120.09 (16) 120.0 120.0 118.30 (15)	C1—C2—H2 C3—C2—H2 C4—C3—C2 C4—C3—H3 C2—C3—H3 C4—C5—C6 C4—C5—H5 C6—C5—H5	120.9 120.9 121.1 (2) 119.4 119.4 121.0 (3) 119.5 119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	163.27 (16) 3.4 (3) -177.17 (15) 1.4 (3) -178.11 (15) -15.9 (3) 163.59 (16) 164.89 (19) -15.6 (3) 1.7 (3) -177.53 (17) -1.2 (3) 19.2 (3) -160.26 (15) -159.26 (18) 21.3 (3) 0.2 (3) -176.13 (16) 0.8 (3) 0.6 (3) 179.02 (17) 97.3 (2) -86.4 (2)	$\begin{array}{c} N1 & - N2 & - C14 & - S1 \\ C15 & - N3 & - C14 & - N2 \\ C15 & - N3 & - C14 & - S1 \\ C7 & - O1 & - C1 & - C6 \\ C7 & - O1 & - C1 & - C2 \\ C12 & - C11 & - C10 & - C9 \\ C13 & - C11 & - C10 & - C9 \\ C13 & - C11 & - C10 & - C9 \\ C19 & - C20 & - C21 & - C16 \\ C17 & - C16 & - C21 & - C20 \\ C15 & - C16 & - C21 & - C20 \\ C15 & - C16 & - C21 & - C20 \\ C12 & - C7 & - C8 & - F1 \\ O1 & - C7 & - C8 & - F1 \\ O1 & - C7 & - C8 & - F1 \\ C12 & - C7 & - C8 & - C9 \\ O1 & - C7 & - C8 & - C9 \\ O1 & - C7 & - C8 & - C9 \\ F1 & - C8 & - C9 & - C10 \\ C7 & - C8 & - C9 & - C10 \\ C7 & - C8 & - C9 & - C10 \\ C11 & - C10 & - C9 & - C8 \\ C2 & - C1 & - C6 & - C5 \\ O1 & - C1 & - C6 & - C5 \\ O1 & - C1 & - C2 & - C3 \\ O1 & - C1 & - C2 & - C3 \\ C5 & - C4 & - C3 & - C2 \\ C1 & - C2 & - C3 & - C4 \\ \end{array}$	$\begin{array}{c} -0.5 (2) \\ -7.4 (2) \\ 173.17 (14) \\ -12.8 (3) \\ 167.18 (18) \\ -1.9 (3) \\ 177.23 (19) \\ 1.1 (3) \\ -1.5 (3) \\ 179.92 (17) \\ 178.13 (18) \\ -5.5 (3) \\ -1.9 (3) \\ 174.4 (2) \\ -178.4 (2) \\ 1.7 (4) \\ 0.3 (3) \\ 0.5 (3) \\ -1.7 (3) \\ 178.36 (19) \\ 0.4 (4) \\ 1.3 (4) \end{array}$
C18—C19—C20—C21 N1—N2—C14—N3	0.3 (3) -179.95 (15)	C3—C4—C5—C6 C1—C6—C5—C4	-1.6 (4) 1.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2 <i>N</i> ···O3	0.86	1.88	2.555 (2)	135
C18—H18…O3 ⁱ	0.93	2.45	3.218 (2)	141
N3—H3 <i>N</i> ···O2 ⁱ	0.86	2.28	3.067 (2)	152
C19—H19…S1 ⁱⁱ	0.93	2.98	3.778 (2)	145
C20—H20…O1 ⁱⁱⁱ	0.93	2.77	3.510 (3)	138

Symmetry codes: (i) *x*, -*y*+1/2, *z*+1/2; (ii) -*x*+1, *y*+1/2, -*z*+5/2; (iii) -*x*+1, *y*+1/2, -*z*+3/2.

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]-4-methoxybenzamide (A2)

F(000) = 1824

 $\theta = 2.3 - 21.0^{\circ}$

 $\mu = 0.20 \text{ mm}^{-1}$

Plates, colorless

 $0.25 \times 0.17 \times 0.10 \text{ mm}$

 $\theta_{\rm max} = 20.9^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$

2188 independent reflections 1751 reflections with $I > 2\sigma(I)$

T = 298 K

 $R_{\rm int} = 0.062$

 $h = -46 \rightarrow 38$ $k = -4 \rightarrow 4$ $l = -18 \rightarrow 18$

 $D_{\rm x} = 1.412 \text{ Mg m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 9864 reflections

Crystal data

 $C_{22}H_{18}FN_{3}O_{4}S$ $M_{r} = 439.45$ Monoclinic, C2/c a = 47.298 (3) Å b = 4.8054 (3) Å c = 18.4939 (10) Å $\beta = 100.429 (6)^{\circ}$ $V = 4134.0 (4) \text{ Å}^{3}$ Z = 8

Data collection

9841 measured reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.122$	neighbouring sites
<i>S</i> = 1.06	H-atom parameters constrained
2188 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0421P)^2 + 7.4575P]$
281 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta ho_{ m max} = 0.20 \ { m e} \ { m \AA}^{-3}$
	$\Delta ho_{\min} = -0.16 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional	atomic	coordinates	and is	sotropic	or ed	juivalent	isotrop	ic dis	placement	parameters ($(Å^2$:)
										1	1	/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S 1	0.46155 (2)	0.5067 (2)	0.20257 (5)	0.0570 (4)
03	0.48485 (5)	-0.1767 (5)	0.05581 (13)	0.0564 (7)
02	0.40193 (5)	-0.2064 (6)	0.06269 (16)	0.0693 (8)
N3	0.49466 (6)	0.1596 (6)	0.14319 (15)	0.0476 (8)
H3N	0.508458	0.244009	0.171425	0.057*
O4	0.61871 (6)	-0.3864 (7)	0.15455 (17)	0.0846 (9)
N2	0.44651 (6)	0.1428 (6)	0.09635 (17)	0.0548 (8)
H2N	0.450510	0.022383	0.065314	0.066*
F1	0.28801 (5)	0.3872 (7)	0.11032 (16)	0.1091 (10)
C16	0.53329 (7)	-0.1387 (7)	0.11626 (18)	0.0431 (9)
				. /

N1	0.41856 (7)	0.2174 (7)	0.09631 (18)	0.0636 (9)
H1	0.414588	0.386840	0.105555	0.076*
C13	0.39757 (8)	0.0319 (9)	0.0822 (2)	0.0514 (10)
C11	0.36866 (8)	0.1329 (8)	0.0915 (2)	0.0516 (10)
C14	0.46729 (8)	0.2578 (7)	0.14456 (18)	0.0438 (9)
01	0.29250 (6)	0.0013 (8)	0.01236 (19)	0.1023 (12)
C21	0.54221 (8)	-0.3385 (8)	0.0720 (2)	0.0547 (10)
H21	0.528867	-0.416711	0.034349	0.066*
C15	0.50265 (8)	-0.0588 (7)	0.10183 (19)	0.0441 (9)
C19	0.59029 (8)	-0.3153 (9)	0.1383 (2)	0.0576 (10)
C20	0.57034 (9)	-0.4253 (8)	0.0820(2)	0.0603 (11)
H20	0.575894	-0.558120	0.050737	0.072*
C17	0.55367 (9)	-0.0281 (8)	0.1725 (2)	0.0601 (11)
H17	0.548250	0.107588	0.203190	0.072*
C12	0.34481 (8)	0.0178 (9)	0.0473 (2)	0.0638 (11)
H12	0.347192	-0.119851	0.013548	0.077*
C18	0.58180 (9)	-0.1171 (10)	0.1835 (2)	0.0678 (12)
H18	0.595147	-0.042543	0.221674	0.081*
C10	0.36521 (9)	0.3291 (9)	0.1432 (2)	0.0663 (11)
H10	0.381175	0.405703	0.173417	0.080*
C7	0.31751 (9)	0.1059 (10)	0.0528 (2)	0.0710 (12)
C8	0.31463 (9)	0.3024 (10)	0.1041 (3)	0.0714 (12)
C9	0.33763 (11)	0.4125 (10)	0.1500 (3)	0.0804 (14)
H9	0.334955	0.542017	0.185500	0.096*
C1	0.29108 (10)	-0.0900 (12)	-0.0591 (3)	0.0824 (15)
C22	0.62909 (10)	-0.5808 (11)	0.1078 (3)	0.0994 (17)
H22A	0.619623	-0.756318	0.110327	0.149*
H22B	0.649439	-0.604267	0.123394	0.149*
H22C	0.625228	-0.513264	0.058166	0.149*
C2	0.27240 (11)	-0.3041 (13)	-0.0798 (3)	0.1014 (17)
H2	0.262932	-0.386389	-0.045353	0.122*
C5	0.30114 (16)	-0.0664 (17)	-0.1801 (4)	0.120 (2)
Н5	0.310776	0.012404	-0.214659	0.144*
C4	0.28168 (18)	-0.2822 (19)	-0.1998 (4)	0.128 (3)
H4	0.278282	-0.348577	-0.247824	0.153*
C6	0.30602 (11)	0.0306 (13)	-0.1075 (3)	0.1001 (17)
H6	0.319071	0.173145	-0.092598	0.120*
C3	0.26762 (14)	-0.3964 (17)	-0.1492 (5)	0.131 (2)
H3	0.254553	-0.539896	-0.162868	0.157*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0682 (7)	0.0481 (6)	0.0553 (6)	0.0142 (5)	0.0124 (5)	-0.0014 (5)
03	0.0554 (16)	0.0545 (17)	0.0589 (16)	0.0012 (14)	0.0092 (13)	-0.0131 (14)
O2	0.0576 (17)	0.0393 (18)	0.109 (2)	0.0029 (14)	0.0092 (15)	-0.0124 (16)
N3	0.0473 (19)	0.0409 (18)	0.0556 (18)	-0.0008 (16)	0.0119 (14)	-0.0034 (16)
O4	0.0587 (19)	0.094 (2)	0.098 (2)	0.0215 (18)	0.0072 (16)	-0.0099 (19)

N2	0.047 (2)	0.0453 (19)	0.074 (2)	0.0059 (17)	0.0161 (17)	-0.0125 (17)
F1	0.0701 (18)	0.141 (3)	0.127 (2)	0.0232 (18)	0.0454 (15)	-0.0117 (19)
C16	0.051 (2)	0.036 (2)	0.045 (2)	0.0000 (19)	0.0154 (19)	0.0032 (18)
N1	0.050 (2)	0.036 (2)	0.107 (3)	0.0023 (18)	0.0183 (18)	-0.0086 (18)
C13	0.052 (3)	0.039 (3)	0.062 (2)	0.003 (2)	0.0088 (19)	0.003 (2)
C11	0.047 (2)	0.044 (2)	0.065 (2)	0.001 (2)	0.013 (2)	0.002 (2)
C14	0.050 (2)	0.036 (2)	0.047 (2)	0.000 (2)	0.0138 (19)	0.0088 (18)
01	0.0447 (18)	0.159 (3)	0.104 (3)	-0.010 (2)	0.0170 (17)	-0.039 (2)
C21	0.055 (3)	0.053 (3)	0.058 (2)	0.001 (2)	0.0142 (19)	-0.006 (2)
C15	0.052 (2)	0.039 (2)	0.045 (2)	0.000 (2)	0.018 (2)	0.0040 (19)
C19	0.053 (3)	0.057 (3)	0.063 (3)	0.008 (2)	0.010 (2)	0.005 (2)
C20	0.065 (3)	0.052 (3)	0.068 (3)	0.007 (2)	0.022 (2)	-0.011 (2)
C17	0.063 (3)	0.060 (3)	0.059 (2)	0.005 (2)	0.015 (2)	-0.011 (2)
C12	0.051 (3)	0.064 (3)	0.079 (3)	0.003 (2)	0.020 (2)	-0.014 (2)
C18	0.056 (3)	0.080 (3)	0.064 (3)	0.008 (2)	0.002 (2)	-0.013 (2)
C10	0.060 (3)	0.066 (3)	0.075 (3)	-0.004 (2)	0.017 (2)	-0.010 (3)
C7	0.059 (3)	0.082 (3)	0.074 (3)	0.001 (3)	0.017 (2)	-0.003 (3)
C8	0.053 (3)	0.084 (3)	0.084 (3)	0.012 (3)	0.031 (3)	-0.001 (3)
C9	0.089 (4)	0.073 (3)	0.088 (3)	0.003 (3)	0.039 (3)	-0.017 (3)
C1	0.050 (3)	0.104 (4)	0.088 (4)	0.017 (3)	0.000 (3)	-0.024 (3)
C22	0.077 (3)	0.097 (4)	0.129 (4)	0.028 (3)	0.031 (3)	-0.010 (4)
C2	0.073 (3)	0.121 (5)	0.106 (4)	0.014 (4)	0.005 (3)	-0.023 (4)
C5	0.118 (5)	0.142 (6)	0.099 (5)	0.046 (5)	0.015 (4)	0.027 (5)
C4	0.128 (6)	0.151 (7)	0.091 (5)	0.056 (5)	-0.015 (5)	-0.018 (5)
C6	0.082 (4)	0.117 (5)	0.101 (4)	0.013 (3)	0.015 (3)	0.001 (4)
C3	0.100 (5)	0.158 (7)	0.125 (6)	0.022 (5)	-0.006 (5)	-0.039 (6)

Geometric parameters (Å, °)

S1—C14	1.661 (4)	С20—Н20	0.9300
O3—C15	1.223 (4)	C17—C18	1.377 (5)
O2—C13	1.229 (4)	C17—H17	0.9300
N3—C14	1.383 (4)	C12—C7	1.380 (5)
N3—C15	1.391 (4)	C12—H12	0.9300
N3—H3N	0.8600	C18—H18	0.9300
O4—C19	1.367 (4)	C10—C9	1.392 (6)
O4—C22	1.419 (5)	C10—H10	0.9300
N2-C14	1.322 (4)	C7—C8	1.362 (6)
N2—N1	1.369 (4)	C8—C9	1.360 (6)
N2—H2N	0.8600	С9—Н9	0.9300
F1—C8	1.348 (4)	C1—C2	1.365 (7)
C16—C21	1.377 (5)	C1—C6	1.365 (7)
C16—C17	1.390 (5)	C22—H22A	0.9600
C16—C15	1.476 (5)	C22—H22B	0.9600
N1-C13	1.325 (5)	C22—H22C	0.9600
N1—H1	0.8600	C2—C3	1.338 (8)
C13—C11	1.490 (5)	C2—H2	0.9300
C11—C10	1.373 (5)	C5—C4	1.390 (9)

C11—C12	1.383 (5)	C5—C6	1.401 (8)
O1—C7	1.375 (5)	С5—Н5	0.9300
01—C1	1.383 (5)	C4—C3	1.359 (9)
C21—C20	1.374 (5)	C4—H4	0.9300
C21—H21	0.9300	С6—Н6	0.9300
C19—C18	1.374 (5)	С3—Н3	0.9300
C19—C20	1.378 (5)		
C14—N3—C15	128.0 (3)	C11—C12—H12	119.8
C14—N3—H3N	116.0	C19 - C18 - C17	120 5 (4)
C15 - N3 - H3N	116.0	C19 - C18 - H18	119.8
C19 - 04 - C22	117.7(3)	C17 - C18 - H18	119.8
C14 - N2 - N1	1194(3)	$C_{11} - C_{10} - C_{9}$	119.4 (4)
C14 $N2$ $H2N$	120.3	$C_{11} - C_{10} - H_{10}$	120.3
N1N2H2N	120.3	C9-C10-H10	120.3
C_{21} C_{16} C_{17}	117.8 (3)	$C_{8} - C_{7} - O_{1}$	120.5 1166(4)
$C_{21} = C_{16} = C_{15}$	118.1 (3)	C_{8} C_{7} C_{12}	110.0(4) 118 5 (4)
$C_{17} = C_{16} = C_{15}$	1241(3)	C_{3} $-C_{7}$ $-C_{12}$	124.0(4)
C17 - C10 - C13	124.1(3) 120.0(3)	$F_1 = C_2 = C_1 = C_1 = C_2$	124.9(4) 1180(4)
$C_{13} = N_1 = N_2$	120.9 (3)	$F_1 = C_0 = C_7$	110.9(4)
N2 N1 H1	119.0	$\Gamma = C = C / C = C / C = C / C = C = C = C$	110.0(4) 122.2(4)
$N_2 = N_1 = H_1$	119.0 121.7(2)	$C_{2} = C_{3} = C_{1}$	122.5(4)
02 - C13 - N1	121.7(3) 122.0(4)	C_{8}	119.5 (4)
02	122.9 (4)	C10 C0 H9	120.4
	115.4 (4)	C10—C9—H9	120.4
C10-C11-C12	120.0 (4)	C_2 — C_1 — C_6	121.5 (5)
C10—C11—C13	122.1 (4)	C2—C1—O1	115.1 (5)
C12—C11—C13	117.9 (4)	C6-C1-O1	123.4 (5)
N2-C14-N3	115.4 (3)	O4—C22—H22A	109.5
N2—C14—S1	123.2 (3)	O4—C22—H22B	109.5
N3—C14—S1	121.4 (3)	H22A—C22—H22B	109.5
C7—O1—C1	121.6 (4)	O4—C22—H22C	109.5
C20—C21—C16	121.7 (4)	H22A—C22—H22C	109.5
C20—C21—H21	119.2	H22B—C22—H22C	109.5
C16—C21—H21	119.2	C3—C2—C1	120.4 (7)
O3—C15—N3	120.7 (3)	C3—C2—H2	119.8
O3—C15—C16	122.3 (3)	C1—C2—H2	119.8
N3—C15—C16	116.9 (3)	C4—C5—C6	119.0 (7)
O4—C19—C18	115.0 (4)	C4—C5—H5	120.5
O4—C19—C20	125.6 (4)	C6—C5—H5	120.5
C18—C19—C20	119.3 (4)	C3—C4—C5	120.3 (7)
C21—C20—C19	119.9 (4)	C3—C4—H4	119.9
C21—C20—H20	120.0	C5—C4—H4	119.9
С19—С20—Н20	120.0	C1—C6—C5	118.2 (6)
C18—C17—C16	120.8 (4)	С1—С6—Н6	120.9
С18—С17—Н17	119.6	С5—С6—Н6	120.9
С16—С17—Н17	119.6	C2—C3—C4	120.6 (7)
C7—C12—C11	120.5 (4)	С2—С3—Н3	119.7
C7—C12—H12	119.8	С4—С3—Н3	119.7

C14—N2—N1—C13	-143.5 (4)	C13—C11—C12—C7	-179.2 (4)
N2—N1—C13—O2	-6.2 (6)	O4—C19—C18—C17	180.0 (4)
N2—N1—C13—C11	173.9 (3)	C20-C19-C18-C17	-0.2 (6)
O2-C13-C11-C10	147.9 (4)	C16—C17—C18—C19	0.7 (6)
N1-C13-C11-C10	-32.2 (5)	C12-C11-C10-C9	-0.6 (6)
O2-C13-C11-C12	-30.6 (5)	C13—C11—C10—C9	-179.1 (4)
N1—C13—C11—C12	149.3 (4)	C1—O1—C7—C8	149.6 (5)
N1—N2—C14—N3	176.7 (3)	C1—O1—C7—C12	-33.4 (7)
N1—N2—C14—S1	-4.1 (5)	C11—C12—C7—C8	-1.8 (6)
C15—N3—C14—N2	-5.7 (5)	C11—C12—C7—O1	-178.8 (4)
C15—N3—C14—S1	175.2 (3)	O1—C7—C8—F1	-2.0 (6)
C17—C16—C21—C20	-0.7 (5)	C12—C7—C8—F1	-179.3 (4)
C15—C16—C21—C20	-179.7 (3)	O1—C7—C8—C9	176.8 (4)
C14—N3—C15—O3	5.9 (5)	C12—C7—C8—C9	-0.4 (7)
C14—N3—C15—C16	-174.1 (3)	F1-C8-C9-C10	-179.1 (4)
C21—C16—C15—O3	5.2 (5)	C7—C8—C9—C10	2.1 (7)
C17—C16—C15—O3	-173.8 (3)	C11—C10—C9—C8	-1.5 (7)
C21—C16—C15—N3	-174.7 (3)	C7—O1—C1—C2	148.1 (4)
C17—C16—C15—N3	6.3 (5)	C7—O1—C1—C6	-34.9 (7)
C22—O4—C19—C18	-177.2 (4)	C6—C1—C2—C3	-2.0 (8)
C22—O4—C19—C20	3.0 (6)	O1—C1—C2—C3	175.1 (5)
C16—C21—C20—C19	1.2 (6)	C6—C5—C4—C3	0.1 (9)
O4—C19—C20—C21	179.1 (4)	C2—C1—C6—C5	1.7 (8)
C18—C19—C20—C21	-0.7 (6)	O1—C1—C6—C5	-175.1 (4)
C21—C16—C17—C18	-0.2 (6)	C4—C5—C6—C1	-0.7 (8)
C15—C16—C17—C18	178.8 (3)	C1—C2—C3—C4	1.3 (9)
C10—C11—C12—C7	2.3 (6)	C5—C4—C3—C2	-0.4 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2 <i>N</i> ···O3	0.86	1.92	2.589 (4)	134
N3—H3 <i>N</i> ···S1 ⁱ	0.86	2.80	3.615 (3)	159
C17—H17…S1 ⁱ	0.93	2.69	3.614 (4)	174
N1—H1···O2 ⁱⁱ	0.86	2.15	2.915 (4)	148
C21—H21…O3 ⁱⁱⁱ	0.93	2.57	3.399 (4)	148

Symmetry codes: (i) -*x*+1, *y*, -*z*+1/2; (ii) *x*, *y*+1, *z*; (iii) -*x*+1, -*y*-1, -*z*.