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The NLRP3 inflammasome is an intracellular multiprotein complex that plays an essential role
in the innate immune system by identifying and eliminating a plethora of endogenous and
exogenous threats to the host. Upon activation of the NLRP3 complex, pro-inflammatory
cytokines are processed and released. Furthermore, activation of the NLRP3 inflammasome
complex can induce pyroptotic cell death, thereby propagating the inflammatory response.
The aberrant activity and detrimental effects of NLRP3 inflammasome activation have been
associated with cardiovascular, neurodegenerative, metabolic, and inflammatory diseases.
Therefore, clinical strategies targeting the inhibition of the self-propelled NLRP3
inflammasome activation are required. The transcription factor Nrf2 regulates cellular
stress response, controlling the redox equilibrium, metabolic programming, and
inflammation. The Nrf2 pathway participates in anti-oxidative, cytoprotective, and anti-
inflammatory activities. This prominent regulator, through pharmacologic activation, could
provide a therapeutic strategy for the diseases to the etiology and pathogenesis of which
NLRP3 inflammasome contributes. In this review, current knowledge on NLRP3
inflammasome activation and Nrf2 pathways is presented; the relationship between
NLRP3 inflammasome signaling and Nrf2 pathway, as well as the pre/clinical use of Nrf2
activators against NLRP3 inflammasome activation in disorders of the central nervous
system, are thoroughly described. Cumulative evidence points out therapeutic use of Nrf2
activators against NLRP3 inflammasome activation or diseases that NLRP3 inflammasome
contributes to would be advantageous to prevent inflammatory conditions; however, the side
effects of these molecules should be kept in mind before applying them to clinical practice.
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NEUROINFLAMMATION AND
INFLAMMASOMES

Neuroinflammation, a term used to define a wide variety of innate
and adaptive immune responses within the brain and the spinal
cord, contributes greatly to the pathogenesis of acute and chronic
central nervous system (CNS) disorders (1). In the CNS, the
primary players of innate immunity are microglia, astrocytes,
and trafficking macrophages (2). These cells interact with their
surrounding environment and recognize a wide range of
endogenous and exogenous stimuli. These stimuli could vary
from cytokines, growth factors, chemokines, adenosine
triphosphate (ATP) to pathogenic signals. Among these stimuli,
inflammatory signals could be grouped as Danger-Associated
Molecular Patterns (DAMPs), Pathogen-Associated Molecular
Patterns (PAMPs), or Homeostasis-Altering Molecular Processes
(HAMPs) (3). Of note, Liston and Master recently suggested the
term “HAMPs” to describe the functional consequences of
pathogens on cellular processes rather than simple molecular
patterns. HAMPs sense loss of cellular homeostasis of cells and
initiate immune responses with or without DAMPs or PAMPs.
Alteration of homeostasis within the cells, such as low potassium
levels, reduced fatty acid oxidation amino acid starvation, and loss
of pyrin phosphorylation, could be an inducer of HAMPs. These
signals, PAMPs, DAMPs, and HAMPs, are detected by pattern
recognition receptors (PRRs) which are primarily localized on
innate immune cells of the CNS, especially microglia (4). The
nucleotide-binding domain and leucine-rich repeat-containing
receptors (NLRs) and absent in melanoma 2 (AIM2)-like
receptors (ALRs), a group of cytosolic PRRs, recognize
intracellular signals and cause immune response to sustain
homeostasis. During this process, these receptors are involved in
the formation of multiprotein complexes called inflammasomes.
Once formed and activated, inflammasomes trigger proteolytic
cleavage and release of pro-inflammatory cytokines, such as
interleukin (IL)-1b and IL-18, and further pyroptotic cell death
(5). Among all inflammasome complexes, NLR Family Pyrin
Domain Containing Protein 3 (NLRP3) inflammasome is the
most studied and best-characterized, as it is involved in both
pathogenic and sterile inflammation activated by a wide range of
signals (6).

Structure of NLRP3 Inflammasomes
NLRP3 inflammasome is an essential component of the innate
immune system, which provides defense against infections
caused by bacteria, fungi, and viruses (7, 8). The NLRP3
inflammasome also recognizes DAMPs and HAMPs such as
ATP, uric acid crystals, silica, asbestos, alum, and protein
deposits. The NLRP3 multiprotein complex consists of three
components, namely, the sensor protein NLRP3, an adaptor
protein apoptosis-associated speck-like protein containing a
CARD domain (ASC), and an effector pro-caspase-1 protein.
There are three domains in the NLRP3 protein, that is, the
NACHT domain, C-terminal leucine-rich repeats (LRRs), and
the N-terminal pyrin domain (PYD) (9). It has been shown that
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the NACHT domain has ATPase activity which is necessary for
oligomerization of NLRP3 (10). The LRR domain has both signal
recognition and autoinhibition functions. The PYR domain of
NLRP3 binds to the adaptor protein ASC via PYR-
PYR interaction.

The Mechanisms of NLRP3
Inflammasome Activation
The activation of the NLRP3 inflammasome complex is
mediated by the canonical, the non-canonical, and the
alternative pathways. The canonical pathway proposes a two-
step activation model, the priming and the activation steps (11).
The first step primes cells to induce an immune response since
the intracellular levels of pro-inflammatory cytokine IL-1b and
NLRP3 are insufficient to activate the inflammasome complex.
The priming stage can be triggered by ligands of Toll-like
receptors (TLRs) such as lipopolysaccharide (LPS), cytokines,
as well as NLRs such as NOD1 and NOD2. These stimuli lead to
the activation of the TLR4 receptor, which further translocates
Nuclear Factor Kappa B (NF-kB) into the nucleus and initiates
transcription of NLRP3 and pro-inflammatory cytokines,
including pro-IL-1b (12). Recent studies suggested that in the
priming step, NLRP3 protein undergoes post-translational
modification such as phosphorylation and ubiquitination.
JNK1-mediated S194 phosphorylation of NLRP3 is necessary
for self-association and inflammasome assembly (13). In the
activation step, NLRP3 recognizes various danger signals
(PAMPs, DAMPs) or events causing perturbations in
homeostasis, such as lysosomal disruption and mitochondrial
dysfunction. These result in conformational change and
oligomerization of the sensor protein NLRP3, subsequently
leading to its interaction with adaptor proteins via its PYD
domain. After that, the NLRP3-ASC complex recruits pro-
caspase-1 via the CARD domain. The activated caspase-1
cleaves pro-IL-1b and pro-IL-18 (14). Furthermore, caspase-1
cleaves a protein called Gasdermin D (GSDMD), resulting in
inflammatory programmed cell death called pyroptosis. Once
cleaved, GSDMD yields two different fragments, namely C-
terminal and N-terminal GSDMDs. Self-assembled N-terminal
GSDMDs create pores on the plasma membrane leading to the
release of the pro-inflammatory cytokines IL-1b and IL-18, loss
of cellular integrity, and eventually, inflammatory cell death
called pyroptosis (15).

Besides the caspase-1-mediated canonical pathway, two
different pathways also mediate NLRP3 inflammasome
activation. The first one, the non-canonical pathway, is
mediated by catalytic activities of caspase 11 and its human
homologs caspase-4 and caspase-5 (16, 17). In the non-canonical
NLRP3 inflammasome activation model, TLRs are stimulated by
LPS and activate NF-kB and type I interferon production, which
causes the expression of caspase‐4/5/11 via the JAK/STAT
pathway (18). Type I interferons also activate guanylate-
binding proteins (GBPs) and eventually contribute to the
autocatalytic activation of caspase-4/5/11 (19). Caspase-4/5/11
-mediated cleavage of GSDMD induces K+ efflux-dependent
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canonical activation of NLRP3 inflammasome complex (20). The
second pathway, called alternative activation, only occurs in
human and porcine monocytes. This activation pathway,
unlike the others, does not depend on potassium efflux,
formation of ASC speck, or pyroptotic cell death. The effector
caspase-8 is induced in the TLR4–TRIF–RIPK1–FADD axis.
Gaidt and colleagues demonstrated that this alternative
activation pathway does not end with pyroptotic cell death (21).

Regulation of NLRP3
Inflammasome Activation
Regulation of NLRP3 inflammasome activation can be achieved
at many different levels, DNA level, transcriptional, post-
transcriptional, translation, and post-translation levels. DNA
methylation and histone acetylation are two mechanisms that
have been shown to participate in NLRP3 regulation at the DNA
level. Promoter hypomethylation of NLRP3 activates the NLRP3
inflammasome, and Histone deacetylase 6 (HDAC6) regulates
NLRP3inflammasome via directly binding NLRP3 at the
ubiquitin-binding domain (22). Aryl hydrocarbon receptor
(AhR) (23), B-cell lymphoma 6 (BCL6) (24), cAMP-PKA
signaling (25), AMPK-GSK3b-Nrf2 signaling (26), and Rev-
erba (27) inhibit NLRP3 inflammasome-mediated regulation
at the transcriptional level. On the other hand, FADD-caspase-
8 signaling pathway (28), TLR signaling pathways including
TLR4/6-IRAK4/1 (29) and TLR4/Myd88/NF-kB (30), mTOR
signaling pathways such as NF-kB/mTOR (31), MAPK signaling
pathways like ROS/TXNIP/MAPK (32), and NF-kB/MAPK (33)
activate NLRP3 inflammasome at the transcriptional level.
Numerous non-coding RNA products, namely microRNAs
(miRNAs) and long non-coding RNAs (lncRNAs) can regulate
NLRP3 inflammasome expression at the post-transcriptional
level by complementary binding to their target NLRP3 gene.
Several miRNAs such as miR-7 (34), miR-22 (35), miR-30e (36),
miR-133b (37), miR-223 (38) were found to block NLRP3
inflammasome. LncRNAs represent another type of non-
coding RNAs that regulate the expression of their target genes.
Some well-studied lncRNAs such as NEAT1 (39), Meg3 (40),
HOTAIR (41), MALAT1 (42), NLRP3 (43) were shown to
promote NLRP3 inflammasome activation. On the contrary,
several lncRNAs like XIST (44), GAS5 (45), and SNHG7 (46)
were found to inhibit NLRP3 inflammasome activation at the
post-transcriptional level. Post-translational modifications are
the enzymatic changes that proteins undergo to convert into a
mature form. Such modifications include ubiquitination,
phosphorylation, SUMOylation, alkylation, and nitrosylation.
Ubiquitination of NLRP3 is accomplished by several E3 ligases
and deubiquitinating enzymes including BRCC3 and BRCC36
deubiquitinate (47) and ARIH2 (48), CUL1 (49), FBXL2 (50),
and TRIM31 (51) ubiquitinate NLRP3 protein. Phosphorylation
by JNK1 (13), dephosphorylation by PTPN22 (52), and PP2A
(53) activate the NLRP3 inflammasome. The addition of a Small
Ubiquitin-like Modifier (SUMO) is another post-translational
modification that helps to regulate transcription, responses to
DNA damage, and hypoxic response. UBC9, a Sumo-
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conjugating enzyme, was shown to activate SUMO1 to
SUMOylate NLRP3 and activate it while SUMO-specific
protease 3 (SENP3) deSUMOylate NLRP3 for deactivation (54).

NLRP3 Inflammasome Activation in
CNS Disorders
There are many diseases of the CNS to which NLRP3
inflammasome activation is linked and involved in their
etiology and pathogenesis. The activation of the NLRP3
inflammasome in both acute and chronic CNS disorders
including Alzheimer’s disease (AD) (55), Parkinson’s disease
(PD) (56), amyotrophic lateral sclerosis (ALS) (57), multiple
sclerosis (MS) (58), neuropsychiatric diseases such as depression,
schizophrenia (59), stroke, traumatic brain and spinal cord
injuries (60) has been extensively studied.

AD is the most common progressive neurodegenerative
disorder of the CNS, characterized by abnormal accumulation
of b-amyloid plaques in the extracellular space and
hyperphosphorylation of tau protein in cytoplasmic
neurofibrillary tangles. Previous studies have demonstrated
that both hyperphosphorylation of tau (61) and aggregation of
b-amyloid peptides (62) caused activation of the NLRP3
inflammasome in microglia. Evidently, a recent postmortem
study demonstrated the increased expression of ASC, caspase-
1, and IL-1b in the cerebral cortex of AD patients (63). NLRP3
inflammasome is also activated in PD by a-Synuclein deposits
acting as DAMPs to activate the microglial NLRP3
inflammasome. Clustered a-Synuclein leads to mitochondrial
impairment, Reactive Oxygen Species (ROS) production,
enhanced Cathepsin B activity, and the NLRP3 inflammasome
complex formation. Furthermore, the use of genetic and MPTP-
induced PD models has revealed the involvement of the
microglial NLRP3 inflammasome in PD pathogenesis (34, 64–
66). NLRP3 inflammasome activation by known inflammasome
activators, including nigericin, aluminum potassium sulfate
crystals, bacterial LPS, and vitamin K3 (menadione), leads to
truncation and aggregation of a-Syn by caspase-1 in a neuronal
cell model of PD (67).

Preclinical studies have demonstrated that the inhibition of
NLRP3 reduces behavioral outcomes and abnormal protein
accumulation associated with neurodegenerative diseases,
suggesting that targeting NLRP3 inflammasome could
represent a novel therapeutic approach for neurodegenerative
disorders. Evaluation of the efficacy, safety, and tolerability of
specific NLRP3 inflammasome inhibitors should be completed.
These inhibitors could indirectly inhibit NLRP3 inflammasome
activation via distinct mechanisms like obstruction of K+ efflux
(Glyburide, BHB), hampering oligomerization, or binding of
ASC (16673-34-0, BHB), and preventing auto-cleavage of pro-
caspase-1 (FC11A-2) (68). They also can act as a direct inhibitor
of inflammasome components; Caspase-1 (VX-740, VX-765,
Parthenolide) or NLRP3 itself (MCC950, MNS, Oridonin,
Parthenolide, OLT1177, CY-09) (68).Clinical studies on the
efficacy, safety, and tolerability of these specific NLRP3
inflammatory inhibitors have started (VX-740, VX-765,
March 2022 | Volume 13 | Article 8657
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MCC950, Oridonin), and the results of these studies are awaited
for the application of specific NLRP3 inhibitors (69, 70).
Although these developments positively impact novel
therapeutic approaches, inflammasomes are part of the innate
immune system and required for a proper defense system might
limit their use in the future. Nevertheless, it may be possible to
use naturally derived drug substances such as Nrf2 activators that
inhibit NLRP3 inflammasome activation in inflammatory
conditions or sterile inflammasome activation.
NRF2/KEAP1 SIGNALING PATHWAY

Maintaining homeostasis is indispensable to an organism’s
health and survival. Environmental stressors are present
everywhere and are meant to disrupt cell functions. Organisms
respond and adapt to these stresses through defined regulatory
mechanisms. The transcription factor nuclear factor erythroid 2-
related factor 2 (Nrf2 or Nfe2l2) is a basic leucine zipper (bZIP)
that belongs to the Cap ‘N’ Collar (CNC) family, and with its
cytoplasmic repressor Kelch-like ECH-associated protein 1
(KEAP1), are the master regulators of redox homeostasis in
the cells (71). Under non-stress conditions, Ntrf2 is localized in
the cytoplasm; after activation, the nuclear translocation of Nrf2
is dependent on the balance of nuclear import and export signals.
Nrf2 contains three nuclear localization sequences and two
nuclear export sequences. Redox-sensitive signal leads to Nrf2
nuclear accumulation via blocking the interaction between
nuc l ea r expor t in and nuc l e a r expor t s equence s .
Heterodimerization of Nrf2 with Maf protein promotes nuclear
retention of Nrf2. The heterodimer of Nrf2-Maf plays a master
regulatory role against stress conditions by activating
antioxidant-responsive element (ARE) or electrophile-
responsive element (EpRE) containing genes. As one of the
essential tasks of Nrf2 is to provide the necessary anti-
oxidative response, it can be considered as a pioneer cell
survival tool. Therefore, Nrf2 can be found dysregulated or
disrupted in many diseases such as metabolic diseases,
neurodegenerative diseases, aging, inflammatory diseases,
cancer, and cardiovascular diseases (72).

Nrf2/KEAP1 Structure
Nrf2 has seven Nrf2-ECH homology regions, Neh1–7, each
performing different functions. Neh1 contains the CNC-bZIP
region required for DNA binding and association with small
musculoaponeurotic fibrosarcoma (sMaf) proteins, which are
partners of Nrf2 dimerization (73). Neh2 contains highly
conserved DLG and ETGE motifs involved in the interaction
with the Nrf2 cytoplasmic repressor KEAP1 and seven lysine
residues that serve as ubiquitylation targets (74). The C-terminal
Neh3 domain, which has transcriptional activity, co-operates
with Neh4 and Neh5 to upregulate Nrf2 target genes (75). Neh4
and Neh5 recruit the transcriptional co-activators CREB-binding
protein (CBP) and the repressor-associated coactivator (RAC).
The serine-rich Neh6 domain participates in the KEAP1-
Frontiers in Immunology | www.frontiersin.org 4
independent removal of Nrf2 through binding to the b-
transducin repeat-containing protein (76). Neh7 domain
suppresses Nrf2 activity by interacting with the retinoic X
receptor a (77).

KEAP1 is a substrate adaptor molecule for Cul3-containing
E3 ubiquitin ligase which interacts with Nrf2 and downregulates
Nrf2. KEAP1 has five domains, namely N-terminal region
(NTR), Broad complex Tramtrack and Bric-à-Brac (BTB)
domain, intervening region (IVR), Kelch domain/double
glycine repeat (DGR), and C-terminal region (CTR) (78). The
DGR domain binds to DLG (latch) and the ETGE (hinge)
domains of Nrf2; the IVR domain, containing specific cysteine
residues, facilitates KEAP1-dependent Nrf2 ubiquitination; the
BTB domain, known as homodimerization domain, also binds to
Cul3-Rbx1 ligase.

Nrf2 Activation and Regulation
Regulation of Nrf2 activation occurs at the transcriptional and
post-transcriptional levels and the post-translational level via
modification of protein stability and binding partners. KEAP1
protein is responsible for mediating the first and most important
mode of regulation of Nrf2 activation. Under homeostatic
conditions, two KEAP1 molecules bind to Nrf2 via the ETGE
and DLG motifs to the Neh2 domain (79). KEAP1 functions as
an adapter protein for the Cul3 E3 ubiquitin ligase, responsible
for the sustained ubiquitin addition and degradation of Nrf2
(79). GSK-3 regulates Nrf2 activity by phosphorylating Nrf2 at
the Neh6 domain, leading to recruitment of the ubiquitin ligase
adapter b-TrCP and initiation of proteasomal degradation of
Nrf2 by a Cullin1/Rbx1 complex. KEAP1-interacting region
(KIR)-like ETGE motif-containing proteins such as dipeptidyl
peptidase 3 (DPP3), partner and localizer of BRCA2 (PALB2),
and SQSTM1/p62 contribute to Nrf2 stabilization via the non-
canonical mechanism.

Nrf2 is activated by KEAP1-dependent and independent
mechanisms. In the former mechanism, when oxidative or
electrophilic stress occurs in the cell, KEAP1 is oxidized at the
reactive cysteine residues, resulting in its conformational change,
which in turn initiates Nrf2 dissociation from KEAP1 (79). The
mechanism of Nrf2’s detachment from KEAP1 has not been fully
elucidated. Two different models have been proposed to explain
this mechanism, i) the hinge and latch model and ii)
the quaternary model. Inhibition of GSK3-dependent
phosphorylation of the Nrf2 domain, Hrd1-and WDR23-
mediated ubiquitination constitute the KEAP1-independent
regulation mechanisms of Nrf2 activity. The phosphorylation
of Nrf2 by kinases including PKC, MAPK, PI3K, and AMPK
regulates nuclear translocation and activity of Nrf2.

Nrf2 gene transcription is controlled by various transcription
factors such as aryl hydrocarbon receptor (AhR) (80) and NF-kB
(81). The promoter region of Nrf2 also contains an ARE-like
sequence which contributes to the autoregulation of Nrf2 activity
(82). Recent findings supporting that the expression of Nrf2 is
epigenetically suppressed by promoter methylation still need
further confirmation (83).
March 2022 | Volume 13 | Article 865772
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Nrf2 activity can be regulated at the post-transcriptional level
by miRNAs and lncRNAs. In an earlier -study, miR-144, the level
of which is increased in sickle cell anemia, was shown to
modulate oxidative stress tolerance by targeting Nrf2 (84).
Later, many miRNAs, including miR-34, miR-27a, miR-142-
5p, and miR-153, were shown to participate in the regulation of
Nrf2 expression by targeting Nrf2 or KEAP1 (85). As functional
gene regulators, lncRNAs may also participate in the epigenetic
regulation of Nrf2 activity. MALAT, ROR, ODRUL, and Nrf2-
lncRNA are some of the lncRNAs shown to contribute to
Nrf2 regulation in different tissues” (86). It has been shown
that Nrf2 expression in human cancers can be regulated by
alternative splicing. For example, alternative splicing of the Nrf2
gene disrupts the KEAP1/Nrf2 interaction, thereby leading to
enhanced Nrf2 activity (87).
THE INTERPLAY BETWEEN NLRP3
INFLAMMASOME AND NRF2

To develop new strategies based on Nrf2 inducers to target NLRP3
inflammasome activation in different conditions, the cross-talk
between NLRP3 inflammasome and Nrf2 signaling pathways
must be well acknowledged. The main link between NLRP3 and
Nrf2 signaling pathways is their ability to respond to oxidative
stress/ROS formation. It is known that ROS accumulation disrupts
redox homeostasis and acts as an upstream signal for both NLRP3
inflammasome and Nrf2 activation due to the ROS-generated
Frontiers in Immunology | www.frontiersin.org 5
oxidative stress (88). The NLRP3 inflammasome is activated by a
protein called thioredoxin-interacting protein (TXNIP), which
negatively regulates the anti-oxidative thioredoxin system. ROS
formation leads to binding of TXNIP to the NLRP3 and
subsequent conformational change and assembly of the NLRP3
inflammasome complex (89). On the other hand, the presence of
ROS or free radicals derived by ROS liberates Nrf2 from its
stabilized complex with KEAP1 and causes translocation of Nrf2
to the nucleus, thereby activating transcription of detoxifying genes.

There is also a link between Nrf2 and the transcription factor
NF-kB which is an upstream signaling pathway required for the
priming step of NLRP3 inflammasome activation (Figure 1).
Several studies have reported the anti-inflammatory role of Nrf2
in NF-kB-mediated inflammation (90–92). At this point, the role
of HO-1, a Nrf2 target gene, is significant. HO-1 processes heme
yielding carbon monoxide, free Fe++, and biliverdin which is
catalyzed into bilirubin (93). Free Fe++ and bilirubin inhibited
NF-kB activity and the production of pro-inflammatory
cytokines TNF-a and IL-1b. Along with HO-1, another Nrf2
target gene, NQO1, reduced NLRP3 inflammasome activation
(94). Of note, in a study by Kobayashi et al., it was shown, with
the usage of ChIp-Seq technology, that Nrf2 regulates the
transcription of IL-6 and IL-1b by binding to the promoter
regions of these NF-kB-mediated pro-inflammatory cytokines
(95). Importantly, inhibition of transcription of pro-
inflammatory cytokines by Nrf2 is achieved by preventing any
interaction of RNA Pol II with the NF-kB complex. Along with
Nrf2, KEAP1 also plays a regulatory role in NF-kB activity.
FIGURE 1 | Graphical illustration of the interconnection between the NLRP3/NF-kB signaling and the Nrf2 signaling pathway.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Tastan et al. Nrf2 Modulates NLRP3 Inflammasome Activation
After Nrf2 disassociation, KEAP1 ubiquitinates the IkB kinase b,
leading to its degradation, prevention of phosphorylation of the
NF-kB complex, and subsequent inhibition of NF-kB activity
(96). Furthermore, the activity of NF-kB induces the release of
some secondary inflammatory mediators such as COX2. A
COX2 derived product, 15d-PGJ2, inhibits NF-kB via PPARg
(97, 98) and target cysteine residues of KEAP1 via its
electrophilic structure (99). Lastly, there is also an inhibitory
interaction between the Nrf2 and NF-kB signaling pathways. In
particular, the activation of NF-kB leads to translocation of its
subunits p65 and p50 to the nucleus, then p65 antagonizes with a
transcriptional cofactor of Nrf2, CBP, which further prevents
Nrf2 binding to and transcription of its target genes (100).

Although the protective and inhibitory effects of Nrf2 on
NLRP3 inflammasome activation have been investigated (94), it
has also been demonstrated the necessity of Nrf2 for appropriate
activation of the NLRP3 inflammasome complex. In a study by
Freigang and coworkers, it was shown that Nrf2 positively
regulates NLRP3 inflammasome activation and exacerbates
atherosclerosis in mice fed with a high-cholesterol diet.
Furthermore, Nrf2 deficiency in the diet-induced atherosclerosis
model alleviated the production of IL-1b (101). In parallel, Zhao
et al. reported the essential role of Nrf2 in both NLRP3 and AIM2
inflammasome activation (102). In this study, Nrf2 was required to
sufficiently activate the NLRP3 inflammasome complex and the
IL-1b/caspase-1 processing. The deficiency of the Nrf2 gene also
negatively affected the ASC speck formation, another indicator of
the NLRP3 inflammasome activation.
NRF2 INDUCERS

Nrf2 activators could be categorized as electrophiles, protein-
protein interaction (PPI) inhibitors, and multi-target drugs.
Electrophiles are electrophilic molecules that alter cysteine
residues of the KEAP1 protein by certain modifications like
oxidation. Some electrophiles are triterpenoids like bardoxolone-
methyl and RTA-408 (103), fumaric acid esters such as dimethyl
fumarate (DMF) (104, 105), and monomethyl fumarate (106),
organosulfurs such as oltipraz (107) and biliary acids, ursodiol
(108), natural compounds including curcumin (109), resveratrol
(110), quercetin (111), sulforaphane (SFN) (112), and melatonin
(113). PPIs block the physical interaction of Nrf2 with KEAP1,
thus activating Nrf2 and offering more selectivity compared to
electrophiles like Tetrahydroisoquinoline (114), thiopyrimidine
(115), naphthalene (116). One KEAP1 independent activator is
GSK-3; it phosphorylates Nrf2, and thus, E3 ligase b-TrCP
ubiquitinates phosphorylated Nrf2, so it is degraded.
Therefore, GSK-3 inhibitors have the potential to activate Nrf2;
one example is tideglusib (117). Moreover, HRD1 is an E3
ubiquitin ligase that contributes to Nrf2 degradation in a
KEAP1-independent manner; LS-102 is another HRD1
inhibitor (118). There are two classes of Nrf2 inhibitors, the
agonists of nuclear receptors and the natural compounds.
Regarding the agonists of nuclear receptors, glucocorticoid
receptor ligands like Dexamethasone (119) and clobetasol
Frontiers in Immunology | www.frontiersin.org 6
propionate (120) suppress Nrf2 transcription. Additionally,
agonists of the retinoic acid receptor-a and retinoid X
receptor-a, i.e., bexarotene and trans-retinoic acid, display the
same effect and block Nrf2 transcription (121, 122). Several
natural compounds were shown to repress Nrf2, including
flavonoids luteolin (123) and wogonin (124), ascorbic acid
(125), mycotoxin ochratoxin A (126), camptothecin (127),
halofuginone (128), and coffee alkaloid trigonelline (129).
PRECLINICAL EXPERIENCE WITH
NRF2 INDUCERS AGAINST NLRP3
INFLAMMASOME ACTIVATION IN
CNS DISORDERS

Due to their anti-oxidative and anti-inflammatory nature, Nrf2
inducers have attracted attention for inhibiting NLRP3
inflammasome activation in numerous NLRP3 inflammasome-
related CNS disorders, especially the natural compounds that have
been studied comprehensively. SFN, an isothiocyanate, was proved
to inhibit NLRP3 inflammasome by upregulating Nrf2 in murine
microglial cells (130). Isoliquiritigenin, a phenolic compound
obtained from licorice, was shown to heal cognitive impairment
(131) and early brain injury (132) by blocking NLRP3
inflammasome through Nr2 upregulation. In another study on
the early brain injury model, mangiferin, a glucoside of norathyriol
found in mango trees, was also proved to exert neuroprotective
effects through Nrf2/HO-1 and NLRP3 pathways regulation (133).
Furthermore, Wang et al. showed that Dl‐3‐n‐butylphthalide
found in celery oil healed AD‐like pathology and suppressed
NLRP3 inflammasome activation through the Nrf2‐TXNIP‐TrX
signaling pathway in APP/PS1 mice (134). Celastrol, a pentacyclic
triterpene from Tripterygium wilfordi root extract, exhibited
neuroprotective properties in a MPTP-induced PD mouse model
and AAV-mediated human a-synuclein overexpression in a PD
model by inhibiting NLRP3 through the Nrf2 signaling pathway
(135). Luteolin, a flavone, exerted cerebroprotection after
subarachnoid hemorrhage (136) and neuroprotection after spinal
cord ischemia-reperfusion injury (137) by preventing activation of
NLRP3 inflammasome via the Nrf2 pathway. Astragaloside IV, a
saponin found in Astragalus membranaceus, was found beneficial
against cerebral ischemia-reperfusion injury (138), motor deficits,
and dopaminergic neuron degeneration in a MPTP PD mouse
model (139) via NLRP3/Nrf2 pathway regulation. A meroterpene
from the seeds of Psoralea corylifolia, or bakuchiol, displayed
similar effects by ameliorating cerebral ischemia-reperfusion
injury via NLRP3/Nrf2 pathway (140). Tao et al. indicated that
magnalol, biphenolic neolignane found in the bark of Magnolia
officinalis, stimulates microglia towards the M2 phenotype to heal
depressive-like behaviors through regulating Nrf2/HO-1/NLRP3
axis (141). Bixin, an apocarotenoid in the seeds of the achiote tree,
was proved to diminish neuroinflammation and demyelination in
an experimental autoimmune encephalomyelitis mouse model via
upregulating Nrf2 and suppressing TXNIP/NLRP3 Inflammasome
(142). Carvacrol found in the essential oil of oregano upregulates
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autophagy via the KEAP1/Nrf2/p62 axis and downregulates
NLRP3, thereby providing neuroprotection in the unilateral
sciatic nerve CCI model (143). Allicin, an organosulfur from
garlic, prevented depressive-like behaviors in chronic social
defeat stress model mouse by increasing the activities of the
superoxide dismutase (SOD) and Nrf2/HO-1 pathways and
blocking NLRP3 inflammasome (144). Asiatic acid is a
triterpenoid from Centella asiatica and exhibited neuroprotective
effects via NLRP3 inflammasome blocking and Nrf2 activation in
spinal cord injury model rats (145). Dihydrolipoic acid, a reduced
form of lipoic acid, remedied behavioral deficits and
neuroinflammation through the Nrf2/HO-1/NLRP3 axis in a
LPS rat model (146). Furthermore, saffron extract cured
neuroinflammation by stimulating SIRT1, Nrf2, and HMOX1,
while decreasing NLRP3 inflammasome activation in a repetitive
mild traumatic brain injury model mouse (147). Neopterin, a
catabolic product of guanosine triphosphate, blocks NLRP3
inflammasome activation via Nrf2 in human primary
astrocytes (148).

Alkaloids are natural compounds produced by many plants,
bacteria, fungi. Berberine, an alkaloid found in Berberis species,
reduced inflammation through the TXNIP/NLRP3/Nrf2 axis in
RAW 264.7 macrophages and rats (149). Another alkaloid,
ephedrine, derived from plants of the Ephedra genus, was
demonstrated to attenuate cerebral ischemia injury in the
middle cerebral artery occlusion rat model and BV2 microglial
cells via Akt/GSK3b/Nrf2 pathway regulation and NLRP3
suppression (150). HJ22 is a derivative of piperine, a black
pepper alkaloid, heals cognitive impairment and exert
cytoprotection through KEAP1/Nrf2/ARE activation and
NLRP3 inhibition (151). Another piperine derivative, HJ105,
recovered neuroinflammation and oxidative damage in Ab1-42
AD model rats through KEAP1-Nrf2-TXNIP regulation (152).
Other natural products tested against NLRP3 activation are
derived from Ginseng species; for example, Ginsenoside Re,
which is found in Panax ginseng, was shown to heal cognitive
deficits in the chronic restraint stress mouse model by
augmenting Nrf2 and suppressing NLRP3 (153). In addition,
Pseudoginsenoside-F11 present in American ginseng restored
cognitive impairment in APP/PS1 mice by regulating the Nrf2/
ARE/NLRP3 pathway (154).

In addition to the abovementioned natural compounds, several
hormones were demonstrated to have beneficial effects. Melatonin
is a circadian rhythm regulatory enzyme with additional anti-
inflammatory, antioxidant, anti-cancer functions (155). Melatonin
was shown to activate Nrf2/SIRT1 against NLRP3 in murine
microglial cells (113). Another study showed that melatonin
enhanced brain function in chronic Gulf War Illness model rats
via modulating the NLRP3 inflammasome through the BDNF-
ERK-CREB pathway and Nrf2 alteration (156). Another hormone,
adiponectin, regulated cerebral ischemia-reperfusion by blocking
the NLRP3 inflammasome through regulating AMPK and GSK-
3b phosphorylation and Nrf2 translocation (157). Moreover,
Cheng et al. indicated that the ghrelin hormone alleviated
secondary brain injury by upregulating the Nrf2/ARE pathway
and blocking the NLRP3 inflammasome (158). Luo and colleagues
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found that N-[2-(5-hydroxy-1H-indol-3-yl) ethyl]-2-
oxopiperidine-3-carboxamide, a derivative of N-acetylserotonin,
prevented NLRP3 inflammasome activation through PI3K/Akt/
Nrf2 signaling in a hypoxic-ischemic encephalopathy rat
model (159).

Not only natural compounds but also synthetic compounds
have been investigated as potential Nrf2 inducers. DMF, a
synthetic fumaric acid ester, was found to prevent NLRP3
inflammasome activation through the Nrf2/NF-kB axis in N9
murine microglial cells and a LPS-induced sickness model mouse
(105). Moreover, tert-butylhydroquinone (tBHQ), a synthetic
phenolic antioxidant, is a well-known Nrf2 inducer; tBHQ-
induced Nrf2 blocks NLRP3 inflammasome activation via
Trx1/TXNIP in middle cerebral artery occlusion/reperfusion
(MCAO/R) model rats (160). In addition, tBHQ abated
NLRP3 inflammasome activation by ROS via Nrf2/ARE
signaling in oxygen-glucose deprivation/reoxygenation
(OGDR) model BV2 microglial cells (161). Moreover,
multiple drugs, namely Ezetimibe (162), Ibrutinib (163),
Dexmedetomidine (164, 165), Tranilast (166), Probucol (167)
and various other synthetic compounds such as sodium butyrate
(168), diphenyl diselenide (169), 5-(3,4-Difluorophenyl)-3-(6-
methylpyridin-3-yl)-1,2,4-oxadiazole (170) and tert-
butylhydroquinone (94, 160, 161), were investigated against
NLRP3 inflammasome activation and Nrf2 upregulation in
several in vivo and in vitro models.
CLINICAL TRIALS WITH NRF2 INDUCERS
AGAINST NLRP3 INFLAMMASOME
ACTIVATION IN CNS DISORDERS

Given that inflammation, particularly NLRP3 inflammasome
activation, is considered as one of the factors underlying
disorders in CNS, the use of Nrf2 inducers and modulation of
NLRP3 inflammasome activation could be an effective
therapeutic approach against inflammatory conditions. The
studies revealed that the Nrf2 signaling is dysregulated in a
variety of CNS-related disorders, especially neurodegenerative
diseases, such as AD & PD (171), Friedreich’s Ataxia (172), and
Huntington’s disease (173). These neurodegenerative diseases
fundamentally share common pathologies; ROS formation,
mitochondrial dysfunction, inflammation, and disrupted
homeostasis (174). Previous studies have reported different
patterns of Nrf2 expression and its target antioxidant proteins
in AD. Nrf2-ARE activation may occur in the early stage of
disease and nuclear Nrf2 levels decrease in AD patients at a later
stage (175, 176). The demonstration that Nrf2 inducer SFN
provides an improvement in cognitive function and amyloid
pathology in PS1V97L‐Tg mice, has supported the importance of
the Nrf2/ARE pathway in Alzheimer’s disease. Postmortem
studies in PD exert higher Nrf2 nuclear translocation and
upregulated expression of Nrf2-regulated genes NQO1 and
HO-1 in the brain of patients. Nrf2 activators DMF and MMF
exerted neuroprotective effects against MPTP neurotoxicity in
wild-type but not Nrf2 null mice. Demonstration of
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neuroprotective effects of Nrf2 activators DMF andMMF against
MPTP neurotoxicity in wild-type but not Nrf2 null mice revealed
the importance of Nrf2 pathway in PD pathogenesis, and
stimulation of this pathway may be a therapeutic approach for
PD (177).

The mechanism of action by which these inducers modulate
Nrf2 may differ and primarily related to the group of Nrf2
inducers, namely electrophiles, PPI inhibitors, and multi-target
drugs (178). While electrophiles interact with cysteine residues
on KEAP1 by covalent bonding and cause prevention of KEAP1-
orchestrated ubiquitination and subsequent degradation of Nrf2,
the PPI inhibitors hinder the interaction between Nrf2-KEAP1
or KEAP1-CUL3 non-covalently (179). Lastly, multi-target drugs
participate in several pathways which activate or inactivate Nrf2.
In particular, GSK3 (76), which phosphorylates Nrf2 leading to
its ubiquitination, BACH1 (180), which decreases the
transcriptional activity of Nrf2 and subsequent expression of
ARE-genes, and SQSTM1/p62 (181), which stabilize Nrf2 and
assist its translocation, constitute multiple targets for Nrf2
activity. The modulation of these targets enhances Nrf2 activity
and expression of ARE-genes, underscoring their possible
clinical application. Numerous Nrf2 inducers with different
mechanisms of action have been tested in clinical trials.
Although the clinical trials have not focused on the effects of
Nrf2 modulators against NLRP3 inflammasome activation
parameters, the contribution of NLRP3 inflammasome
activation to pathogenesis and clinical outcomes of those CNS-
related disorders has been studied thoroughly (182). Among the
clinically tested Nrf2 inducers, there are natural compounds such
as SFN, curcumin, resveratrol, and synthetic ones such as DMF,
Bardoxolone-methyl, Omaveloxolone (178). Furthermore, these
compounds have been clinically tested for various disorders
ranging from cancers (183) to metabolic disorders (184). The
clinical trials where Nrf2 modulators were tested in different
CNS-related disorders described in this section are listed
in Table 1.

Among the clinically tested Nrf2 inducers, DMF, also known
as BG-12 or Tecfidera®, is the only drug approved for Relapsing-
Remitting Multiple Sclerosis (RRMS) by both Food and Drug
Administration and the European Medicines Agency (185).
DMF, a derivative of fumaric acid, exerts immunomodulatory,
anti-inflammatory, anti-oxidative, and neuroprotective effects
(186). Furthermore, Linker et al. reported that DMF acts on
the cysteine 151 on KEAP1 and thus activates Nrf2 (104). a pilot
study revealed that DMF could be used against RRMS (187).
After that, two separate clinical trials (DEFINE and CONFIRM)
demonstrated that DMF is safe for use and can effectively reduce
brain lesions and relapse rates in RRMS patients (188). A recent
trial which is an extension of DEFINE and CONFIRM, called
ENDORSE, supported the results of previous trials in terms of
efficacy and positive benefit/risk profile (189). DMF is mainly
converted to MMF by intestinal esterases and distributed
throughout the body (190). Therefore, an oral formulation of a
MMF derivative, ALKS-8700, which exhibits improved
bioavailability and efficacy, has also been tested in a phase III
trial for MS (191). Due to its cytoprotective and anti-
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inflammatory nature, DMF is used against acute ischemic
stroke and intracerebral hemorrhage, as well as glioblastoma.

Similarly, synthetic Nrf2 modulators, such as electrophilic
Omaveloxolone, multi-target drugs, Tideglusib, and
Terameprocol, have been developed so as to induce Nrf2 and
prevent disease or decrease the clinical symptoms (178). The
recently developed Omaveloxolone is another electrophilic Nrf2
inducer that modifies cysteine 151 on KEAP1 and activates Nrf2.
It has been shown that Omaveloxolone, clinically tested in
Friedreich’s Ataxia, can improve mitochondrial function in
vivo (192). Furthermore, multi-target drugs, Tideglusib,
Terameprocol, have also undergone clinical trials due to their
modulatory function on Nrf2 via GSK-3 inhibition in AD (193),
ALS, autism spectrum disorders (194), and CNS cancers (195).

Phytochemicals, a wide variety of chemical compounds,
constitute another group of Nrf2 inducers extracted from
medicinal plants and used for therapeutic purposes.
Considering the innumerable phytochemicals produced by
plants, these natural compounds have great potential to be
used as Nrf2 modulators. The most clinically used and tested
in clinical trials natural Nrf2 inducers are SFN, Curcumin,
Resveratrol, and Nordihydroguaiaretic acid (178). These
compounds are considered significant due to their accessibility
and fair price as compared to synthetic drugs. SFN, an
organosulfur compound abundantly found in cruciferous
vegetables like broccoli and cabbage, is a strong electrophile
modifying cysteine 151 on KEAP1. Due to its SFN’s
cytoprotective features, such as anti-inflammation and anti-
oxidation, it is applied in a wide range of disorders in vitro
and in vivo (196). SFN is being clinically tested for various CNS-
related disorders, including PD, schizophrenia, autism spectrum
disorder, and depression. Furthermore, Sulforadex, an SFN-
derived active compound, has been administered to patients
with subarachnoid hemorrhage (197). Likewise, electrophilic
polyphenolic compounds, curcumin extracted from turmeric
(Curcuma longa), and resveratrol derived from nuts and
berries are the most clinically tested compounds after SFN.
Because of their anti-oxidative and anti-inflammatory
properties, as well as their ability to react with KEAP1 via its
cysteine 151 residue, they could serve as potent Nrf2 modulators
(11, 185). They have been clinically tested in commonly
occurring neurodegenerative diseases such as AD, Mild
Cognit ive Impairment , ALS, Huntington ’s disease ,
neuropsychiatric disorders such as schizophrenia, depression,
MS, and Friedreich’s Ataxia.

Apart from being tested clinically, as mentioned before, DMF
is the only Nrf2 inducer approved exclusively for CNS-related
disorders. Although the safety and efficacy of DMF have been
shown with large cohorts and even in pregnant women (198), it
causes substantial side effects such as a reduced number of
lymphocytes (199). DMF or other electrophilic Nrf2 activators
induce off-target side effects, which has been explained by S-
alkylation of cysteine thiols non-specifically and subsequent
deficiency of anti-oxidative glutathione (200). These concerns
are valid for both synthetic and natural compounds as the active
compounds, electrophilic or other groups of Nrf2 inducers,
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especially when used at high doses, activate not only the Nrf2
signaling cascade but a considerable number of distinct signaling
pathways. However, there are ongoing studies, which require
great effort, time, and expenses, focusing on the modulation of
Nrf2 as a potential therapeutic approach against diseases with
improved efficiency and less off-target effects.
CONCLUDING REMARK

Since the discovery and molecular/biochemical elucidation of the
NLRP3 inflammasome by Tschopp and his colleagues in 2002,
Frontiers in Immunology | www.frontiersin.org 9
cumulative evidence acquired by preclinical (in vitro and in vivo)
and clinical studies indicates that the contribution of NLRP3
inflammasome activation to a wide variety of diseases remains
largely unelucidated. Furthermore, the ablation of NLRP3
inflammasome-related genes or small inhibitors against the
NLRP3 inflammasome complex alleviates the progress, severity,
or clinical outcomes of NLRP3-associated diseases. Therefore, the
need for developing therapeutic strategies targeting the structural
integrity or activity of the NLRP3 inflammasome complex is
indispensable. Although developing novel drugs or repurposing
currently used drugs might be effective in terms of specificity, the
pharmacological modulation of cytoprotective signaling pathways
TABLE 1 | The Nrf2 inducers in clinical trials.

Nrf2 Inducer Mechanisms of Action CNS Disorder Clinical Progress ClinicalTrials.gov Identifier

Dimethyl Fumarate (DMF) Electrophile Multiple Sclerosis Approved
Glioblastoma Phase I NCT02337426
Acute Ischemic Stroke Phase II NCT04891497

Phase II NCT04890353
Phase II NCT04890366

Intracerebral Hemorrhage Phase II NCT04890379
ALKS-8700 Electrophile Multiple Sclerosis Phase III NCT02634307

Phase III NCT03093324
Omaveloxolone Electrophile Friedreich’s Ataxia Phase II NCT02255435
Sulforaphane Electrophile Schizophrenia Phase II NCT02880462

Phase II NCT02810964
Phase II NCT01716858
Phase II NCT04521868

Autism Spectrum Disorder Phase II NCT01474993
Phase II NCT02909959
Phase II NCT02677051
Phase III NCT02654743
Phase I/II NCT02561481

Parkinson's Disease Phase II NCT05084365
Major Depressive Disorder Phase IV NCT05148169

Phase IV NCT05145270
Phase II NCT04246905

Cognitive Function Phase II NCT04252261
Sulforadex Electrophile Subarachnoid Hemorrhage Phase II NCT02614742
Curcumin Electrophile Schizophrenia/Psychosis Phase I/II NCT02104752

Chronic Schizophrenia Phase IV NCT02298985
Major Depression Phase IV NCT01750359
Mild Cognitive Impairment Phase II NCT01811381
Alzheimer’s Disease Phase I/II NCT00164749

Phase II NCT00099710
Amyotrophic Lateral Sclerosis Phase II NCT04654689
Multiple Sclerosis Phase II NCT01514370

Resveratrol Electrophile Friedreich Ataxia Phase I/II NCT01339884
Phase II NCT03933163

Mild Cognitive Impairment Phase II/III NCT01219244
Alzheimer’s Disease Phase I NCT02502253

Phase II NCT01504854
Phase III NCT00743743
Phase III NCT00678431

Huntington Disease Phase III NCT02336633
Depression Phase IV NCT03384329
Schizophrenia Phase II NCT02062190

Tideglusib GSK-3 inhibition Autism Spectrum Disorders Phase II NCT02586935
Alzheimer’s Disease Phase I/II NCT00948259

Phase II NCT01350362
Amyotrophic Lateral Sclerosis Phase II NCT05105958

Nordihydroguaiaretic acid GSK-3 inhibition CNS Tumors Phase I/II NCT00404248
Terameprocol GSK-3 inhibition High-grade glioma Phase I NCT02575794
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might be another therapeutic approach to suppress the NLRP3
inflammasome activation and subsequent cell death. Since NLRP3
inflammasome senses ROS, inflammatory cytokines, and
endogenous metabolites, which damage homeostasis as a
regulator of redox, metabolism, and inflammation, Nrf2
represents a powerful candidate for targeting the NLRP3
inflammasome signaling cascade.

Given that Nrf2 regulates more than 250 homeostatic genes,
Nrf2 plays a pivotal role in cytoprotection. This role is also
supported by the presence of a plethora of naturally derived and
designed Nrf2 inducers, which modulate Nrf2 and enhance its
cytoprotective effects. Furthermore, some Nrf2 inducers, such as
DMF and SFN, have undergone trials in preclinical and clinical
models of diseases with which NLRP3 inflammasome activation
is associated. As the recent advances and studies enhance our
knowledge on the NLRP3/Nrf2 crosstalk, the need to establish
specific therapeutic approaches with precision using Nrf2
Frontiers in Immunology | www.frontiersin.org 10
inducers increases. To achieve this, more comprehensive and
multidisciplinary research efforts are needed. Nevertheless, this
research will be translated and broaden our current insight into
the regulation of NLRP3 inflammasome and its related diseases.
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