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Abstract: The behavior of poly(sodium acrylate-co-acrylamide) copolymer hydrogels with varied
chemical compositions in artificial pore solutions with three different pH values is examined.
The absorption, chemical characteristics, mechanical stiffness, and desorption of the hydrogels
in contact with a porous cementitious material were investigated. It was observed that the surface
characteristics of the hydrogels play an important role in the desorption of hydrogels due to the
capillary forces. It was shown that in the hydrogel systems studied here, the bonding between
the hydrogels and the porous cementitious material is improved with an increase in the content of
acrylamide in the hydrogels, and this results in an increased desorption rate of the hydrogels.
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1. Introduction

Superabsorbent polymers (SAP) have gained significant interest as an internal curing agent
in the past several years due to their capability to mitigate autogenous shrinkage in cementitious
materials with low water to cement ratios [1–8]. Prior investigations found that the use of SAP can
potentially improve the hydration of cementitious materials [3,9]. The effect of SAP on the transport
properties of cementitious materials was studied by the researchers [9–11]. The potential of SAP for
self-sealing [12–14] and self-healing [15,16] applications have also been investigated by researchers.
SAP is considered a subcategory of hydrogels, which consist of hydrophilic polymeric networks that
possess a high capacity of water absorption up to 1500 times of their dry mass [5,17–19].

The SAP used in cementitious materials are primarily based on poly(acrylate-co-acrylamide)
copolymer hydrogels [2,17,20,21]. This type of hydrogels is polyelectrolyte and their behavior is
strongly dependent on the pH and ionic compositions of the environment [5,7,17,18,21,22]. When these
hydrogels come into contact with distilled water, the polymer networks of the hydrogels become
deprotonated and gain negative charges, which result in repulsive forces within the polymer networks.
The repulsive forces within the networks promote water absorption into the hydrogels [17]. When
cations exist in the solution, they screen the repulsive electrostatic forces within the polymer networks;
in addition, some divalents and trivalents have been shown to form complexes with the anionic groups
of the polymer networks [7,19,23]. Thus, the screening effect and complexation of cations cause a
reduction in the absorption capacity of the hydrogels [5,17–19].

The thermodynamics and kinetics dictating the behavior of hydrogels is influenced by the chemical
composition of the polymeric networks. Tuning the chemical composition of the hydrogels provides a
reliable means to adjust the absorption capacity and kinetics of hydrogels according to the chemistry
of the environment. Polymer networks stretching, mixing of the networks and solvent, and the ionic
interactions are the factors determining the free energy of hydrogels [24].
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The absorption capacity and rate of hydrogels play a critical role in determining the properties
of cementitious materials. The mechanical strength of cementitious materials can be adversely
affected when hydrogels with a large water retention ability, which create large macrovoids in
the microstructure, are used [5,10,25–28]. The rate of desorption of water from hydrogels during
hydration is an important factor for proper internal curing and mitigation of autogenous shrinkage in
cementitious materials [5,7,29]. Thus, a comprehensive understanding of the behavior of hydrogels
taking into account the chemistry of cementitious materials is of utmost importance to ensure the
proper design of hydrogels to achieve desired characteristics.

In the early stage of hydration and before solid skeleton development in the microstructure
of cementitious materials, the behavior of hydrogels is primarily determined by the chemistry of
the pore solution, interaction with cement particles and mechanical constraint imparted by the
fresh cementitious matrix [5,7,17–19,21,30,31]. After setting and start of solid skeleton development,
self-desiccation results in creation of capillary forces in the microstructure. At this stage, the desorption
of hydrogels is primarily governed by the capillary forces.

Several previous studies investigated the link between hydrogel chemical compositions,
chemistry of the solution, and the absorption characteristics of hydrogels [5,7,17–19,21,30]. However,
the desorption behavior of hydrogels has not received adequate attention in the literature. A few recent
investigations examined the desorption of hydrogels in pore solutions or in air with controlled relative
humidity [32,33]. Neutron tomography [34] and neutron radiography [35] were also used to image
the desorption of hydrogels in hydrating cementitious materials. Using Nuclear Magnetic Resonance
(NMR), the water release from SAP towards cementitious matrix during the hydration reaction was
studied [29,36]. However, the underlying mechanisms affecting the desorption of hydrogels due to the
capillary forces have scarcely been examined in the past [31,37].

This paper examines the desorption of hydrogels in contact with a porous cementitious material
and its relationship with the chemical composition of the hydrogels. Hydrogels with three different
chemical compositions were synthesized and used in the experiments. The effect of pH of a synthetic
pore solution on the absorption, mechanical stiffness, chemical characteristics, and desorption of
the hydrogels was investigated. The influence of the capillary action on hydrogel desorption was
compared to hydrogel desorption without the capillary effect.

2. Results and Discussion

2.1. Hydrogel Absorption in Synthetic Pore Solutions

The absorption results of the hydrogels with different compositions swollen in synthetic pore
solutions with pH of 12, 13, and 13.7 are shown in Figure 1. The absorption of H-1, H-2, and H-3
in distilled water is 398, 313, and 165 (g/g), respectively. The images of the swollen hydrogels are
shown in Figure 2. The formation of a thin skin on the surface of the hydrogels at pH = 13.7 can be
seen from the images. More discussion regarding this skin and its influence on the desorption of the
hydrogels will be provided later in the paper. It is seen that the absorption of hydrogels in distilled
water increases with an increase in the concentration of acrylic acid (AA). However, the absorption
of the hydrogels decreases with increasing concentration of AA in the synthetic pore solutions at all
pH values studied here. It is noted that H-3 and H-2 showed an increase in the final absorption with
increasing pH from 12 to 13.7. However, a different behavior is observed in the absorption of H-1.
At pH of 13, H-1 exhibited a small decrease in absorption compared to that at pH of 12, but then
showed an increase at pH of 13.7.

At high pH values (more than 12), the amide groups of acrylamide (AM) hydrolyze to carboxylic
acid groups; thus, an increase in the anionic carboxylic groups promotes the electrostatic repulsion
within the polymer networks resulting in an increase in the water absorption of the hydrogels.
In addition, at high pH values studied here, the amide groups of the primary crosslinks can hydrolyze
resulting in the breakage of the primary crosslinks and a reduction in the elastic stiffness of the
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polymer networks [33]. As a result of a reduction in elastic stiffness, more water can be absorbed
within the polymer networks. However, it should be noted that with increasing reduction of stiffness,
there may be a limit beyond which the structural integrity of the polymer networks is significantly
reduced and the polymer networks are no longer able to retain water; in that case, a reduction in the
absorption of the hydrogels is expected. In the presence of ions, such as Ca2+, Na+, and K+ in the
solution, the absorption is reduced due to the screening effect of the positively charged ions as well as
complexation between anionic groups and primarily divalent ion Ca2+ [38–40]. It has been suggested
that the presence of divalent ions reduces the hydrolysis of primary crosslinks at high pH [33] and this
could reduce the influence of hydrolysis on the hydrogel absorption.

Figure 1. Absorption of the different hydrogels in synthetic pore solutions with varied pH values.

Figure 2. (a) Images of the hydrogel disks after absorption in synthetic pore solutions with pH = 12
and pH = 13.7. (b) Image showing the formation of a skin on the surface of a hydrogel disk swollen in
the synthetic pore solution with pH = 13.7.
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It appears that in H-2 and H-3 with a high concentration of AM monomers, the absorption
promoting effects outweighed that of the absorption reducing effects and the increase in pH from 12
to 13 and to 13.7 resulted in a continuous increase in the absorption of these hydrogels. However,
in H-1 with a high concentration of AA monomers, the competition between the above interactions
favored a slight reduction in absorption at pH of 13 compared to that at pH of 12. Since almost all
carboxylic acid groups of AA monomers are expected to be deprotonated at pH values greater than
5, carboxylic acid groups are not expected to influence the absorption in the pH range studied here.
Thus, the absorption behavior of H-1 is primarily affected by the competition between the hydrolysis
of the primary crosslinks and ionic crosslink formation, as a result of complexation.

It should be noted that the kinetics associated with these mechanisms is dependent on the size of
hydrogels, and as a result, the size of hydrogels is anticipated to affect the time dependent behavior of
the hydrogels. The discussion provided above relates to the equilibrium state of the hydrogels after
48 h.

2.2. Mechanical Behavior

The shear modulus of the hydrogels after absorption in the synthetic pore solutions is shown
in Figure 3. It is observed that all hydrogels maintained their overall mechanical integrity and did
not show any indication of dissolution, at least at the macroscale, in the solutions examined in this
study. A decrease in shear modulus with increasing pH in H-2 and H-3 can be noted; however, in H-1,
a different behavior is realized. The shear modulus of H-1 was similar at pH = 12 and pH = 13, and
then decreased at pH = 13.7.

Figure 3. Shear modulus of hydrogels swollen in the synthetic pore solutions.

The mechanical response of hydrogels is affected by the primary covalent crosslink density and
the ionic crosslink density of the polymeric networks [41–43]. Thus, the mechanical response of
hydrogels is intimately dependent on the water absorption of hydrogels as the number of crosslinks
per unit volume of hydrogels decreases with increasing water content [17,44]. It is seen that there is a
close correlation between the shear modulus and the absorption of each hydrogel in different solutions.

It is interesting to note the concurrent increase in absorption and shear modulus in the hydrogels
with increasing concentration of AA at pH of 12. In general, shear modulus is inversely related
to absorption [17,44]; thus the observed increase in shear modulus at pH of 12 is unlikely to be
attributed to the density of crosslinks given the same composition of the primary crosslinking agent
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(N,N′-methylenebisacrylamide, MBA) was used in the synthesis of the hydrogels. It is probable that
the structural characteristics of the polymer networks are responsible for the observed trend in the
shear modulus of the hydrogels at pH of 12.

2.3. FTIR Analysis

The FTIR spectra of H-1 and H-3 swollen in the synthetic pore solutions with a pH of 13.7 and 12
are shown in Figure 4a,b. The spectra of the skin and the bulk are included in the figures. It can be seen
from Figure 4a that general features are observed in the spectra of the interior bulk of H-1 and H-3 [45].
A broad peak between 3000 and 3600 cm−1 is observed in all spectra; this peak is attributed to the
O–H stretching indicative of hydrogen bonds in the hydrogel molecular structure due to high water
content. Bands at about 1400 and 1560 cm−1 correspond to carboxylate group stretching [18,33,46].
At 1635–1645 cm−1, a stretching of the C=O group from the acrylamide unit appears in all spectra [47].
An interesting observation is made of a peak at about 873 cm−1 appearing only in the skin spectra, as
shown in Figure 4a. This peak is attributed to calcium carbonate (CaCO3) [48] and appears stronger
in H-1 than in H-3. The formation of CaCO3 provides evidence for the complexation between Ca2+

and the anionic carboxylic groups on the hydrogel polymer networks. The occurrence of carbonation
during swelling of SAP hydrogels in a cement filtrate was also observed in a previous study [49].
The appearance of the CaCO3 peak only on the surface of the hydrogels could be due to a higher density
of Ca2+ complexes on the surface compared to the bulk or a higher concentration of carbonate ions on
the surface; the latter seems to be a more plausible reason for this observation as the CO2 diffusion
occurs from the surface. The stronger peak of CaCO3 in H-1 compared to H-3 can be attributed to a
higher density of complexes in H-1 than H-3, which is to be expected due to a higher concentration of
AA monomers in the composition of H-1 than H-3.

The spectra of the skin of H-1 and H-3 at pH of 12 are also shown in Figure 4b. No significant
difference was observed between the skin and bulk spectra in H-1 or H-3 at pH of 12. It is worth noting
the absence of the CaCO3 band in the skin spectra of H-1 and H-3. An explanation for this could be
increased Ca2+ complexation in the hydrogels at pH of 13.7 compared to pH of 12.

Figure 4. Cont.
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Figure 4. FTIR spectra of the skin and interior bulk of H-1 and H-3 after absorption in synthetic pore
solutions with (a) pH = 13.7 and (b) pH = 12.

2.4. Desorption with Contact with Cement Paste Blocks

The desorption of hydrogels, H-1 and H-3, swollen at pH of 13.7 is depicted in Figure 5. The results
shown in this figure correspond to the hydrogels with contact with the blocks (sandwiched) and
without contact (in air). It is noted that contact with the cement paste blocks increased the desorption
rate of the hydrogels compared to the case without contact. The difference in the rate of desorption of
hydrogels as a result of contact with the blocks is more pronounced in H-3 compared to H-1 in the first
8 h. The enhanced rate of desorption is attributed to the effect of the capillary forces at the interface
between the hydrogels and the porous blocks. As a result of the capillary suction, a thin layer of the
soft hydrogel adjacent to the interface is pulled against the hard surface of the block squeezing the
water out of the thin layer [37,50]. This mechanism is thought to be responsible for the faster release of
water from the hydrogels when they are in contact with the blocks compared to when they are not.

It is interesting to note that while the desorption rate of the two hydrogels when there is no
contact with the blocks is close to each other, as seen from Figure 5, a difference exists in the desorption
rate when there is contact. When there is no contact with the blocks, the similar water loss behavior of
the two hydrogels points to their similar bulk diffusion rate, considering the small difference in the
initial water content at the beginning of desorption of the two hydrogels.

A potential explanation for the observed behavior of the hydrogels when there is contact with
the blocks could be offered by examining the characteristics of the hydrogel surface swollen in pH of
13.7. As discussed previously, visual observations as well as the FTIR analysis of the hydrogel surface
suggested a more pronounced formation of a skin, potentially made of a Ca2+ rich compound on the
surface of H-1 rather than H-3. It is expected that the relatively hard thin skin of Ca2+ compound could
affect the contact surface between the hydrogel and the capillary pores on the surface of the cement
paste blocks. Previous investigations related to the contact adhesion due to the capillary forces at the
interface between an elastomer and a hard solid with surface asperities showed a decrease in adhesion
forces when the elastic stiffness of the elastomer was increased [51]. A soft elastomer can be pulled into
a closer contact with the hard solid surface; therefore, with decreasing elastic stiffness, the contact area
is increased between the soft solid and the hard surface. Therefore, it is speculated that the capillary
effect on the surface of H-1 is expected to be reduced compared to that on the surface of H-3 due to a
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more pronounced skin formation on H-1. It seems logical that the more pronounced formation of the
skin on the surface of H-1 than H-3 is responsible for the slower desorption of H-1 than H-3.

Figure 5. Desorption of H-1 and H-3 hydrogel disks with contact and without contact (control) with a
cement paste block.

2.5. Desorption Test with a Fixed Gap

In this section, the desorption of H-1 and H-3 sandwiched between cement paste blocks with a
fixed gap is discussed. As mentioned previously, this experiment was performed to broadly mimic the
desorption condition of hydrogels enclosed by a constant sized macrovoid. The images depicting the
desorption of H-1 and H-3 swollen at pH of 13.7 are presented in Figure 6. At pH of 13.7, debonding
over a large portion of the interface between H-1 and the top block occurred; on the other hand,
a fracture is seen inside H-3. The weak adhesion due to a more pronounced hard surface skin formed
on H-1 rather than H-3, as discussed previously, could be the reason for the interface debonding in
H-1. The debonding results in a reduction in the contact surface between the hydrogel and the cement
paste block and as a consequence, the capillary suction on the hydrogel is decreased. On the other
hand, the desorption of H-3 revealed a contrasting mechanism; H-3 remained bonded to the blocks; in
this case, volume reduction as a result of water loss caused tensile stresses within H-3. With continued
desorption, at a critical tensile stress, a fracture was nucleated and developed inside H-3.

The distinct mechanisms observed in the desorption behavior of H-2 and H-3 play an important
role in their desorption. The strong bonding between H-3 and the blocks is expected to have improved
the rate of desorption compared to H-2, which experienced debonding. Additionally, the effective
diffusion length is reduced when a fracture occurs and the hydrogel is broken into smaller parts.

It should be noted that the processes related to debonding and fracture formation in the hydrogels
are dependent on the size and geometry of hydrogels and the surrounding macrovoids; however, the
focus of the experiments was to highlight the basic effect of debonding and fracture formation on
the desorption behavior of hydrogels. It is realized that the mechanical response, such as stiffness
and fracture toughness, of hydrogels could play an important role in the desorption of hydrogels in a
cementitious matrix. Further investigations are necessary to elucidate the individual and combined
effect of other relevant factors on the desorption of hydrogels in cementitious materials.

It is worth noting that the physical characteristics and chemical composition of hydration products
could greatly influence the interaction between hydrogels and the cementitious matrix. For example,
in a previous study [4], the growth and intrusion of hydration phases including calcium hydroxide
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and calcium carbonate towards the SAP macrovoids has been noted. Nonetheless, the primary focus of
the current paper was to provide insights into the underlying mechanisms influencing the desorption
behavior of hydrogels interacting with an unsaturated porous solid. Such insights will increase our
knowledge of hydrogel desorption in cement-based material systems.

Figure 6. Images showing (a) debonding between H-1 and the cement paste block and (b) a fracture
in H-3 in the desorption experiment setup with a fixed gap between the top and bottom cement
paste blocks.

3. Conclusions

The effect of chemical composition of hydrogels on their behavior in artificial pore solutions with
varied pH and their desorption in contact with a porous cementitious material were studied. It was
shown that hydrogels with a higher concentration of AA showed a lower desorption rate when in
contact with a porous cementitious material. A potential reason for this observation was related to the
effect of the pore solution on the surface characteristics of the hydrogels. A skin was observed to form
on the surface of hydrogels swollen in high pH pore solutions and this skin was more pronounced in
hydrogels with a higher concentration of AA. The presence of this skin at the interface between the
hydrogels and the cementitious matrix influenced the contact at the interface, and as a result, the effect
of capillary forces on the hydrogel desorption. The interface bonding with the cementitious matrix is
expected to influence the desorption rate of hydrogels. The results from this study help elucidate the
fundamental processes affecting the desorption behavior of hydrogels in cementitious materials.

4. Experiments

4.1. Materials

4.1.1. Hydrogels

The chemicals used in the synthesis of the hydrogels were purchased from Sigma–Aldrich
(St. Louis, MO, USA) and used as received. Poly(sodium acrylate-co-acrylamide) copolymers with
three different chemical compositions were used in this study and their compositions are listed in
Table 1. Hydrogels were synthesized using the free radical polymerization method, as described in
Horkay et al. [52]. Main monomers were AA and AM. Hydrogels with three different AA/AM ratios
were synthesized. A solution of AA in 50 mL distilled water was first partially neutralized with a 13.5%
sodium hydroxide (NaOH) solution. Then, AM and 0.025 g of N,N′-methylenebisacrylamide (MBA),
which served as the crosslinking agent, were added to the solution, stirred for 30 min, and degassed
with argon for 3–5 min. In order to initiate the polymerization, 0.064 g of ammonium persulfate was
added to the solution, stirred for 5 min, and then poured in thin layers using specific glass molds.
The solutions were gelated in an oven at 60 ◦C for 3 h. After gelation, the surface of the hydrogel layers
was cleaned using alcohol to remove residual/unreacted monomers. In order to remove wrinkles
or creases from the hydrogel surface, the hydrogels were soaked in distilled water for 1–3 h, and
then placed on a plastic mesh. The next day, the hydrogels were surface cleaned with alcohol and
punched into 16 mm diameter disks. Hydrogel disks with varied thicknesses were prepared and
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used in different experiments. All disks were dried overnight on a plastic mesh in an oven at 60 ◦C.
The plastic mesh was treated with silicone oil to prevent any adhesion with the hydrogel disks and
to allow for uniform drying of the hydrogel disks to achieve non-deformed dried hydrogel disks.
All hydrogel disks had the same initial dry dimensions of 9 mm in diameter. Hydrogel disks with a
thickness of 1.8 mm in the dry condition were prepared to be used in the absorption, FTIR and shear
modulus measurements, and thin hydrogel disks with a 0.25–0.28 mm dry thickness were prepared to
be used in the capillary desorption experiment, as described in section 2.4. Thin hydrogel disks were
used in the capillary desorption experiment so that their thickness was comparable to the SAP particle
size used in the internal curing applications.

Table 1. Compositions of the hydrogels used in the experiments.

Monomers Crosslinker Initiator

Hydrogel Acrylic
Acid (g)

Acrylamide
(g)

Sodium
hydroxide (g) MBA (g) Ammonium

Persulfate (g)
Distilled
Water (g)

H-1 9 1 1.215 0.025 0.064 50
H-2 5 5 0.675 0.025 0.064 50
H-3 1 9 0.135 0.025 0.064 50

4.1.2. Cement Paste Blocks

Cement paste blocks were prepared in order to examine the desorption of hydrogels due to
the capillary effect. 50 mm cement paste cubes with a water/cement ratio of 0.45 and addition of
a lignosulfonate-based superplasticizer at a concentration of 0.5%, by cement mass, were prepared.
At the age of 7 days, the cement paste cubes were soaked in acetone for 12 h to stop hydration, and
then saw cut into three blocks. The surface of the blocks was polished using sand papers of 80, 180,
320, 600, 1200 grit sizes. After ultrasonication in ethanol for 20 min and drying in an oven at 40 ◦C for
two days, the blocks were placed in a drybox with a relative humidity of 75% for more than 30 days.
A saturated solution bath of sodium chloride was used to maintain the relative humidity of the drybox.

4.1.3. Synthetic Pore Solutions with Varied pH

In order to examine the effect of pH on the behavior of hydrogels, synthetic pore solutions with
varied pH levels of 12, 13, and 13.7 were prepared using Ca(OH)2, NaCl, and KCl. All solutions were
saturated with Ca(OH)2 to simulate conditions in ordinary Portland cement concrete [53]. The synthetic
pore solutions were prepared with concentrations of [Na+] = 400 mM and [K+] = 400 mM. Ca(OH)2

was oversaturated at 2.24 g/L as suggested by [54]. The pH of the solution was adjusted using NaOH
and HCL solutions. The absorption of hydrogels in the synthetic pore solutions with varied pH levels
was measured after about 48 h in solutions to allow samples to reach equilibrium. The solutions were
initially purged and kept sealed during the experiments. The absorption was measured using the
following equation:

Q =

(
msaturated −mdry

)
mdry

(1)

where msaturated is the mass of swollen hydrogel and mdry is the mass of the dry hydrogel. The average
of two replicates was calculated and reported.

4.2. Mechanical Measurement

The compressive tests were utilized to measure the mechanical stiffness of the hydrogels after
swelling in varied artificial pore solutions. Fully swollen hydrogels were subjected to uniaxial
compression under a displacement controlled condition at a rate of 0.0195 mm/s. Silicone oil was
applied to the interface between the hydrogel surfaces and the loading plates to remove any friction.
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The shear modulus (G) of the hydrogels was calculated using the force-displacement measurements
assuming a rubber elasticity constitutive behavior as follows [52,55]:

σ = G
(

λ− λ−2
)

(2)

where σ is nominal stress and λ is the ratio of deformed thickness to undeformed thickness.
Two replicates were used in the compressive test and the average value was reported.

4.3. FTIR Analysis

In order to elucidate the chemical effect of the pore solutions on the hydrogels, FTIR was employed.
Both the surface and the interior bulk of the hydrogels were subjected to the FTIR analysis using a
PerkinElmer Paragon 1000 FTIR with the ATR accessory. This is motivated by the changes observed
on the surface of hydrogels in contact with alkaline solutions [17,31,56]. The surface of the hydrogels
was placed directly on the instrument; in order to scan the interior of the hydrogels, the hydrogel disks
were notched from the edge using a blade and the top layer was peeled off to obtain a smooth surface.

4.4. Desorption of Hydrogels with Contact with Cement Paste Blocks

In order to gain insights into the effect of the composition of hydrogels on desorption when in
contact with cementitious materials, hydrogels at the swollen state were removed from the synthetic
pore solutions and sandwiched between two cement paste blocks. The sandwiched hydrogels were
then stored in a drybox with a relative humidity of 75%. The change in the distance between the top
and bottom blocks was used to determine the change in the thickness of the hydrogels, which can
be used to calculate desorption. The images of the sandwiched hydrogels were taken with a camera
with a resolution of 640 × 480 pixels. Figure 7 depicts the setup used in the desorption experiments.
The water loss of the sandwiched hydrogels was measured as (1 − Hi/H0) × 100 where Hi and H0 are
the height of hydrogel at different times and at start of the desorption, respectively. It should be noted
that the volumetric change of sandwiched hydrogels occurred primarily in the thickness direction;
however, the volumetric changes in the planar dimensions could also take place but this was not able
to be measured using the setup adopted in the experiments. Therefore, the actual desorption of the
sandwiched hydrogels is slightly higher than that estimated based on the thickness changes.

Figure 7. Image of the setup used in the desorption experiments with contact with cement paste blocks.

In order to compare the desorption of the hydrogels with and without contact with cement paste
blocks, hydrogels were also placed in the same drybox and the change in the mass of the hydrogels
was monitored to obtain an estimate of water loss per initial hydrogel mass at the start of desorption.
Assuming a small variation in the density of the hydrogels during desorption, at least in the initial stage
of desorption, the desorption measurements based on volume change or mass change are comparable.
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