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Analysis of entropy production 
in a bi‑convective magnetized 
and radiative hybrid nanofluid flow 
using temperature‑sensitive base 
fluid (water) properties
Tapas Barman 1, S. Roy 1* & Ali J. Chamkha 2

The heat transport characteristics, flow features, and entropy‑production of bi‑convection buoyancy 
induced, radiation‑assisted hydro‑magnetic hybrid nanofluid flow with thermal sink/source effects 
are inspected in this study. The physical characteristics of hybrid nanofluids (water‑hosted) are 
inherited from the base liquid (water) and none has considered the physical characteristics of base 
liquid (water) in the study of temperature‑sensorial hybrid nanofluid investigations, though the water 
physical characteristics are not constants in temperature variations. So, the temperature‑sensorial 
attributes of base liquid (water) are taken into account for this hybrid nanofluid ( Cu + Al2O3 +water ) 
flow analysis. The mathematical forms of the flow configuration (i.e., the set of coupled, nonlinear 
PDE form of governing equations) are solved by utilizing the subsequent tasks: (i) congenial 
transformation; (ii) quasilinearization; (iii) methods of finite differences to form block matrix system, 
and (iv) Varga’s iterative algorithm. The preciseness of the whole numerical procedure is ensured by 
restricting the computation to follow strict convergence conditions. Finally, the numerically extracted 
results representing the impacts of various salient parameters on different profiles ( F,G,H ), gradients, 
and entropy production are exhibited in physical figures for better perception. A few noticeable results 
are highlighted as: velocity graph shows contrast behaviour under assisting and opposing buoyancy; 
temperature ( G(ξ , η) ) is dropping for heightening heat source ( Q ) surface friction remarkably declines 
with the outlying magnetic field ( St ); thermal transport confronts drastic abatement under radiation 
( R1 ), and St ; the characteristics Reynolds and Brinkman numbers promote entropy. Furthermore, the 
bounding surface acts as a strong source of S

G
‑production. Summarizations are listed at the end to 

quantify percentage variations.

List of symbols
B0  Outlying magnetic field
Cp  Specific heat capacitance
g  Gravity
k  Conductivity (thermal)
L  Reference length
qr  Radiation heat flux
Q0  Heat sink/source
β  Coefficient of volumetric expansion (thermal)
ǫ  Velocity ratio
ρ  Density
σ  Conductivity (electrical)
φ  Nanoparticle volume percentage
ψ  Streamfunction
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Abbreviations
EG  Entropy generation
BL  Boundary layer
HTI  Heat transfer irreversibility
FFI  Fluid friction irreversibility

Nondimentional functions
f, F  Streamfunction and velocity, respectively
G  Temperature

Subscripts
e  Condition at BL edge
w, ∞  Conditions at surface and outside of the BL edge, respectively
hnf   Hybrid nanofluid
f   Fluid
s  Solid particles (nano)
sf   Nano-sized particles’ shape factor
s1, s2  Cu And Al2O3 nanoparticles

The study of boundary layer (BL) flow along an inclined surface is enriched with real-life engineering applica-
tions like material processing, making glass fibres, solar energy systems, etc. Not only for its’ wide application, 
but this particular geometric flow has also been a challenge to interested researchers to enumerate the flow phe-
nomenon and heat-mass transport characteristics. In early studies, pioneer  researchers1–3 studied this geometry 
with different aspects of non-constant wall temperature, different inclination angle, different Prandtl numbers, 
etc. An experimental study of naturally convective flow for an inclined plate is presented by Al-Arabi and  others4. 
 Lewandowski5 studied naturally convective flow along an inclined plate with a new approach.  Jayaraj6 inspected 
the thermophoretic effects on the flow for inclined plates. Later, a naturally convective flow was investigated for 
particulate suspension for inclined (isothermal) and vertical permeable plates by Ramadan and  Chamkha7,8. A 
study of radiative MHD flow with variable porosity along an inclined plate was carried out by Chamkha and 
 others9. Alam et al.10 reported the MHD effect in combination with variable suction, radiation effect on a per-
meable flow over inclined plate (semi-infinite). The study of boundary layer (BL) flow for vertical and inclined 
surfaces is further continued by several  researchers11–16 considering different fluids (nanofluids, micro-polar 
fluids, etc.), and salient influencing factors like radiation, thermal injection/suction, outlying magnetic field, etc. 
An outlying magnetic field situating near an electrically conducting BL flow has numerous industrial engineering 
 applications17–22. For example, in material processing, MHD effect may be used to get desired material  structure23. 
Furthermore, the above-mentioned impactful factors in hybrid nanofluid flow encountered numerous applica-
tions in solar power technology, industrial areas, nuclear engineering, etc.,24,25. Recent  studies26,27 showed that 
hybrid nanofluid is the most sensitive one in thermal transport means than ordinary fluid and nanofluids. Many 
studies on radiation, thermal source/sink, and MHD effects on hybrid nanofluid flow are available in current lit-
erature and a few of them are referred in the following  texts28–33. Moreover, in any thermo-dynamical system, the 
engineering efficiency of the system degrades due to irreversible heat loss. The enumeration of irreversibility i.e., 
entropy generation (EG) of a system may help to minimize the irreversible heat loss. The application and impor-
tance of the EG-study of radiative MHD hybrid nanofluid flow affected by thermal sink/sources from biomedical 
point of view is explored by P.B.A.  Reddy34.  Researchers35 have found significant contributions of EG analysis in 
the studies of brain dynamics. Few more remarkable studies on this context are added as  references36–40.

It is a common practice to use water as a base liquid but water and water-hosted nanofluids are temperature-
sensitive. Besides the thermos physical nanofluid characteristics are inherited from the hosted liquid, those 
properties are enhanced, advanced and empowered by the properties (thermos-physical) of emerging nanopar-
ticles. But in recent studies, it is observed that base fluid properties have been ignored in temperature-sensitive 
nanofluid flow investigations. So, authors have investigated the temperature-sensorial characteristics (thermos-
physical) of hybrid nanofluids in the light of temperature-sensorial water characteristics. That is, this study is 
taking account the temperature-sensorial properties of water into the  model41 for thermal relations utilizing 
empirical  data42 and used them to analyze the hybrid nano-liquid flow. Furthermore, the equations presenting 
the physical meaning of the considered physical system in mathematical form are solved using the following 
complicated numerical  tasks43,44: (i) congenial transformation; (ii) quasilinearization; (iii) methods of finite-
differences to form block matrix system, and (iv) Varga’s iterative algorithm. The preciseness of the numerical 
approach is preserved by employing a strict convergence criterion.

Governing equations
From Table 1, µf  and (Pr)f   can be approximated at different temperatures  as41,42,44

(1)µf (T) =
1

a1 + a2T
,
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where constant coefficients obtained from the curve fitting of thermos-physical data of water at various tem-
peratures are b1, b2, c1 and c2 defined as:

The hybrid nanofluid-base liquid correlations for various physical characteristics are given  below46

Here sf
(

= 3
�

)

 stands for nanoparticles’ shape factor ( � is the sphericity) (see Table 2) and the other terms 
φ,µhnf , ρhnf ,βhnf ,

(

Cp

)

hnf
, khnf , σhnf ,µf , ρf ,βf ,

(

Cp

)

f
, kf , σf ,φs1 , ρs1 ,βs1 ,

(

Cp

)

s1
, ks1 , σs1 ,φs2 , ρs2 ,βs1 ,

(

Cp

)

s2
, ks2 , σs2 are all given 

in the Nomenclature.
Table 2 shows that the variation in ρf ,

(

Cp

)

f
 with respect to temperature is less than 1% . Combining this fact 

with the correlations (Eqs. 4–5) can be easily prove that the variation in ρhnf ,
(

Cp

)

hnf
 is also less than 1% . So, 

from practical point of view, these two physical quantities can be considered as constant (see Table 3).
Consider a 2-D bi-convective (incompressible and steady) water-based hybrid-nanofluid flow for an arbitrarily 

inclined plate with vertical inclination γ and let the axes x and y are along the surface and perpendicular to it, 
respectively (see Fig. 1). The convective variation in temperature from the wall to the ambient fluid is deemed 
moderate ( < 40 °C) and an outer magnetic field normal to x-axis is applied under thermal sink/source and radia-
tion effects. Using Oberbeck–Boussinesq approximation, the equations representing the physical characteristics 
of the flow  become10,51,52

(2)(Pr)f (T) =
1

b1 + b2T
,







b1
b2
c1
c2






=







53.41
2.43
0.068
0.004






.

(3)µhnf (T ,φ) =
µf (T)

√

(1− φ)5
;φ = φs1 + φs2 ,

(4)
ρhnf (T ,φ)

ρf (T)
= (1− φ)+

ρs1

ρf (T)
φs1 +

ρs2

ρf (T)
φs2 ,

(5)
(ρβ)hnf (T ,φ)

(ρβ)f (T)
= (1− φ)+

(ρβ)s1
(ρβ)f (T)

φs1 +
(ρβ)s2

(ρβ)f (T)
φs2 ,

(6)
(Cpρ)hnf (T ,φ)

(Cpρ)f (T)
= (1− φ)+

(Cpρ)s1
(Cpρ)f (T)

φs1 +
(Cpρ)s2

(Cpρ)f (T)
φs2 ,

(7)
σhnf (T ,φ)

σf (T)
= 1+

3φ
(

�1 − φσf
)

�2 −
(

�1 − φσf
)

φ
;�1 = (σφ)s1 + (σφ)s2 ;�2 = �1 + 2φσf ,

(8)
khnf (T ,φ)

kf (T)
=

(

sf − 1
)

kf (T)+ �3

φ
− (sf − 1)

(

φkf (T)−�3

)

(sf − 1)kf (T)+ φkf (T)+
(

�3

φ
−�3

) ;�3 = (φk)s1 + (φk)s2 .

(9)−→∇ .−→q = 0;−→q ≡ (u, v),

(10)−→q .
−→∇ u =

1

ρhnf

∂

∂y

(

µhnf
∂u

∂y

)

+
g(ρβ)hnf cosγ

ρhnf
(T − T∞)−

σhnf B
2
0

ρhnf
(u− U∞),

Table 1.  Water properties vs.  temperatures44,45.

T (C) ρ (g cm−3) Cp (J 107kg−1K−1) k (erg 105cm−1s−1K−1) µ ( g 10−2cm−1s−1) Pr

0 1.00228 4.2176 0.5610 1.7930 13.4

10 0.99970 4.1921 0.5800 1.3070 9.45

20 0.99821 4.1818 0.5984 1.0060 7.03

30 0.99565 4.1784 0.6154 0.7977 5.12

40 0.99222 4.1785 0.6305 0.6532 4.32

50 0.98803 4.1806 0.6435 0.5470 3.55



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11831  | https://doi.org/10.1038/s41598-022-16059-9

www.nature.com/scientificreports/

where ρs =
φs1ρs1+φs2ρs2

φs1+φs2
; (Cpρ)s =

φs1 (Cpρ)s1
+φs1 (Cpρ)s2

φs1+φs2
 ” and qr = − 4σ ∗

3k∗
∂T4

∂y  . The non-linear term T4 is approxi-
mated as 4T3

∞T − 3T4
∞ (Roseland approximation) and hence finally ∂qr

∂y  becomes − 16σ ∗T3
∞

3k∗
∂2T
∂y2

.
The constraints are given by:

The following conversion variables

(11)
−→q .

−→∇ T =
1

(ρCp)hnf

∂

∂y

(

khnf
∂T

∂y

)

+
Q0

(Cpρ)hnf

(T − T∞)−
1

(Cpρ)hnf

∂qr

∂y
,

(12)u = Uw;T = Tw; v = 0 at y = 0,

(13)u → U∞;T → T∞; as y → ∞.

Table 2.  Nanoparticles’ shape and  sphericity47,48.

Shape Sphericity ( �) Shape factor ( sf )

Spherical 1 3

Bricks 0.81 3.7

Cylindrical 0.62 4.9

Platelets 0.52 5.7

Blade 0.36 8.6

Table 3.  Nanoparticle  properties49,50.

Properties Copper Alumina

Cp(Jkg
−1 K−1) 385 765

ρ ( kg m−3) 8933 3970

k ( Wm−1 K−1) 400 40

β ×10−5 K−1 1.67 0.85

Figure 1.  Flow geometry.
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are utilized to convert the Eqs. (10)–(11) into non-dimensional form:

with

The non-dimensional parameters buoyancy ( � ), Reynolds number(Re ), Grashof number(Gr ), Stuart num-
ber(St ), radiation(R1 ), heat source(Q ) are defined, respectively, as follows:

All the other constants and coefficients are prescribed below:

ξ =
x

L
; η =

√

(

U

xν∞

)

y;U = Uw + U∞; ǫ =
U∞

Uw + U∞
,

ψ =
√
xν∞Uf (ξ , η);

∂ψ

∂x
= −v;

∂ψ

∂y
= u; fη = F; u = UF,

G =
T − T∞
�T

,�T = Tw − T∞;

v = −
1

2

√

Uν∞
x

[

2ξ fξ − ηF + f
]

(14)
∂

∂η

{

NFη
}

− ξK1St(F − ǫ)+ S1

(

1

2
fFη − ξ

(

FFξ − fξFη
)

)

+ �ξS2G = 0,

(15)
∂

∂η

{

N

(Pr)f
P5Gη

}

+
N

(Pr)f
R1Gηη + ξReQG + S3

(

1

2
fGη + ξ

(

fξGη − FGξ

)

)

= 0,

(16)
[

F
G

]

η=0

=
[

1− ǫ
1

]

;
[

F

G

]

η=η∞

=
[

ǫ
0

]

.

� =
Gr

Re2
;Re =

UL

ν∞
;Gr =

gβf�TL3

ν2∞
; St =

σf B
2
0L

ρf U
;R1 =

16σ ∗T3
∞

3k∗kf
;Q =

Q0ν∞
(Cpρ)f U

2
.

a1 =
b2�T

b1 + b2T∞
; a2 = b1 + b2T∞; a3 = a1a2; d1 = c1 + c2T∞; d2 = c2�T ,

N =
1

1+ a1G
; (Pr)f =

1

d1 + d2G
; P5 =

P1 + P2G

P3 + P4G
; P6 =

d2 − a1d1

(1+ a1G)
2
;

P1 = a2�s + 2Cpd1 − 2φ
(

Cpd1 − a2ks
)

; P2 = a3ks + 2Cpd2 − 2φ
(

Cpd2 − a3ks
)

,

P3 = a2ks + 2Cpd1 + φ
(

Cpd1 − a2ks
)

; P4 = a3ks + 2Cpd2 + φ
(

Cpd2 − a3ks
)

,

P7 =
P2P3 − P1P4

(P3 + P4G)
2
; P8 = −a1

(d2 − a1d1)

(1+ a1G)
3
; P9 = −P4

(P2P3 − P1P4)

(P3 + P4G)
3
,

S1 =

{

1−

(

1−
(ρ)s1
(ρ)f

)

φs1 −

(

1−
(ρ)s2
(ρ)f

)

φs2

}

√

(1− φ)5,

S2 =

{

1−

(

1−
(ρβ)s1
(ρβ)f

)

φs1 −

(

1−
(ρβ)s2
(ρβ)f

)

φs2

}

√

(1− φ)5,

S3 =

{

1−

(

1−

(

Cpρ
)

s1
(

Cpρ
)

s

)

φs1 −

(

1−

(

Cpρ
)

s2
(

Cpρ
)

s

)

φs2

}

,

K1 =

{

σf + 2σs − 2φ
(

σf − σs
)

σf + 2σs + φ
(

σf − σs
)

}

√

(1− φ)5 where σs = σs1 + σs2 .
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Salient gradients. Friction ( Cf x
). 

Heat transfer ( Nux). 

Generation of entropy
The EG model for MHD hybrid nanofluid can be written  as53:

The first brace (HTI) includes the terms representing irreversibility for heat transfer, terms inside second 
brace (FFI) conveys the irreversibility for fluid friction. The characteristics entropy rate  S0 =

�T2kf
L2T2

∞
 is utilized 

to get the dimensionless form ( SG ) of total entropy ( Sgen ) i.e.,  SG = Sgen
S0

= N1 + N2 where

Here the notations � = �T
T∞

, and Br = U2µf

kf�T stand for temperature ratio and Brinkman number, respectively. 
The comparative study of relative irreversibility sources can be accomplished with Bejan number (Be). Mathe-
matically, it is defined by

Numerical method and validation
The set of coupled non-linear Eqs. (14–15) has been made linear by employing the quasilinearization technique 
and the equations turned into

with the boundary constraints

Here the system (17–18) is linear for iterative indices (k + 1) as superscripts with the coefficients:

Cfx =
2µhnf

(

∂u
∂y

)

y=0

ρf u∗
2

e

,

∴

√
ReCfx =

2

(1+ a1)(1− φ)2.5
Fη(ξ , 0)√

ξ
.

Nux =
xqw

kf�T

[

whereqw = −khnf

(

∂T

∂y

)

y=0

]

,

⇒ Nux =
xkhnf

(

∂T
∂y

)

y=0

kf�T
,

∴

Nux√
Re

= −
√

ξP5Gη(ξ , 0).

Sgen =











1

T2
∞

�

khnf

�

∂T

∂y

�2

+
16σ ∗T3

∞
3k∗

�

∂T

∂y

�2
�

� �� �

HTI











+









µhnf

T∞

�

∂u

∂y

�2

+
σhnf B

2
0

T∞
� �� �

FFI

u









.

N1 =
HTI

S0
=

1

ξ
[P5 + R]ReG2

η ,

N2 =
FFI

S0
=

(

1
√

(1− φ)5

F2η

ξ
+ K1StF

2

)

ReBr

�
.

Be =
HTI

HTI + FFI
=

N1

N1 + N2
=

Irreversiblity due to heat transfer

total local entropy
.

(17)E
(k)
11 F

(k+1)
ηη + E

(k)
12 F

(k+1)
η + E

(k)
13 F

(k+1)
ξ + E

(k)
14 F

(k+1) + E
(k)
15 G

(k+1)
η + E

(k)
16 G

(k+1) = E
(k)
17 ,

(18)E
(k)
21 G

(k+1)
ηη + E

(k)
22 G

(k+1)
η + E

(k)
23 G

(k+1)
ξ + E

(k)
24 G

(k+1) + E
(k)
25 F

(k+1) = E
(k)
26 ,

(19)

[

F(k+1)

G(k+1)

]

η=0

=
[

1− ǫ

1

]

;

[

F(k+1)

G(k+1)

]

η=η∞

=
[ ǫ

0

]

.
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At this point, the following finite difference (implicit) schemes

transform Eqs. (17–18) into a set of algebraic equations as:

for fixed m, where N  is the number intervals of this mesh system and the vectors, coefficient matrices are:

where the entries of An , Bn , Cn , and Dn are defined as:

E11 = N;E12 = −a1GηN
2 + S1

[

f + ξ fξ
]

;E13 = −S1ξF,

E14 = −ξS1Fξ − ξK1St;E15 = −a1FηN
2;

E16 = −a1FηηN
2 + 2a21FηGηN

3 + ξ�S2;

E17 = −a1FηηGN
2 − a1FηGηN

2 + 2a21FηGηGN
3 − S1ξFFξ − ǫξK1St;E21 =

N

(Pr)f
[P5 + R1],

E22 = 2Gη

[

P5P6 +
N

(Pr)f
P7

]

+ S3

(

1

2
f + ξ fξ

)

;E23 = −S2ξF,

E24 = Gηη

[

P6(P5 + R1)+
N

(Pr)f
P7

]

+ G2
η

[

2P6P7 + P5P8 +
N

(Pr)f
P9

]

+ ξQ;

E25 = −S2ξGξ ;

E26 = GGηη

[

(P5 + R1)P6 +
N

(Pr)f
P7

]

+G2
η

[

P5P6 +
N

(Pr)f
P7

]

−S2ξFGξ+GG2
η

[

2P6P7 + P5P8 +
N

(Pr)f
P9

]

;

Fηη =
(

Fm,n−1 − 2Fm,n + Fm,n+1

)

(h)2
,

Fη =
(

Fm,n+1 − Fm,n−1

)

2h
,

Fξ =
(

Fm,n − Fm−1,n

)

k
,

(20)AnWm,n−1 + BnWm,n + CnWm,n+1 = Dn;
(

2 ≤ n ≤ N
)

,

Wm,n =
[

F
G

]

m,n

;Dn =
[

d1
d2

]

n

;An =
[

a11 a12
a21 a22

]

n

;

Bn =
[

b11 b12
b21 b22

]

n

;Cn =
[

c11 c12
c21 c22

]

n

,

a11 = E11 −
h

2
E12, a12 = −

h

2
E12,

a21 = 0, a22 = E21 −
h

2
E22,

b11 = −2E11 +
h2

k
E13 + h2E14, b12 = h2E16,

b21 = h2E25, b22 = −2E21 +
h2

k
E23 + h2E24,

c11 = E11 +
h

2
E12, c12 =

h

2
E15,
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W1 and WN+1 at the boundaries (at η = 0 and η = η∞ ) become:

Hereafter, Varga’s  algorithm34, as defined below, is used to solve Eqs. (20) with constraints given by Eq. (21).

where En = {Bn − AnEn−1}−1Cn;

The numerical solutions are reached under the strict convergence criterion

and compared in Table 4 with previously published  works54–56 and found in a friendly match-up (see Table 4).

Results and discussion
The investigation of bi-convective MHD flow in light of temperature-sensorial water properties with radiation, 
thermal suction/injection effects is accomplished in this manuscript considering Cu+ Al2O3/water hybrid nano-
fluid as working fluid. The acquired outcomes are featured out graphically to analyse the flow features, transport 
characteristics and energy distribution in comprehensive approach.

Velocity. Figure 2 is plotted to display the variable behaviour of the flow intensity ( F(ξ , η) ) against the buoy-
ancy force � . It may be noted that F(ξ , η) increases with � , sometimes overshoot occurs. In the physical aspect, 
assisting buoyancy force always surpluses pressure gradient in flow and enhances flow intensity. As numerical 
supporting evidence, it is seen for � = 1 and � = 2 at ξ = 0.5, η = 1.40 that the velocity overshoots are 15% and 
33% , respectively. In contrast, F(ξ , η) decreases for � < 0 , and in this case, for � = −1.0 backflow is recorded 
within the region 0.0 < η ≤ 0.85, ξ = 0.5.

Temperature. The changes in temperature-profile (G(ξ , η)) against the variations of thermal sink/source 
(Q) is elaborated graphically in Fig. 3. Since the heat source ( Q > 0 ) is kept in the BL to enhance heat energy, 
G(ξ , η)-enhancement concerning Q > 0 is unambiguous. Specifically, at ξ = 0.45, η = 0.5 , varying Q from 0.0 to 
0.3 and 0.0 to −0.3, G(ξ , η)-profile increases and decreases, respectively, by 8% and 39%.

Gradients. Skin friction. The variation characteristics of friction coefficient ( 
√
ReCfx ) against different 

magnitudes of St and φ are demonstrated in Fig. 4, which reflects that 
√
ReCfx is a decreasing function of St 

but an increasing function of φ . The Lorentz’s force associated with St is active to detract the BL region’s flow 
intensity, and thus friction gets dissipated. On the other hand, enhancement of tiny nanoparticles in the fluid 
causes richer mass density and thus increases hybrid nanofluid’s friction forces and finally, 

√
ReCfx increases. At 

the instant ξ = 0.5 with φ = 0.025 enhancing St of strengths 0.3 and 0.6 from 0 , 
√
ReCfx  reduces by 48% and 

87% , respectively.
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2
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Table 4.  Comparison of current results with available  works54–56 in literature for the case of steady-state with 
ǫ = 0,φ = 0, γ = 0, � = 0,B0 = 0, qr = 0,Q0 = 0 for −Gη(0) at η = 0.

Pr 2 5 7 10 100

Soundalgekar and  Murty54 0.6831 – – 1.6808 –

Chen55 0.68324 – 1.38619 1.68008 5.54450

Singh et al.56 0.6830 1.151 1.386 1.6801 5.5450

Present results 0.6831 1.1512 1.3861 1.6801 5.5448
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Nusselt number. The corresponding impact of St on thermal transport performance ( Nux√
Re

 ) in combination with 
nanoparticles’ shape effects are portrayed in Fig. 5. The results indicate that the outlying force field ( St ) has a 
destructive impact on Nux√

Re
 , and among all the considered shapes, spherical-shaped nanoparticles affect most. In 

particular at ξ = 0.5, the decrement in sphericity � (i.e., increment in sf = 3
�

 ) from 1.0 to 0.36 enhances Nux√
Re

 
almost by 7%.

Figure 6 depicts the effects of thermal radiation ( R1 ) on local thermal transport coefficient ( Nux√
Re

 ) and it is 
clearly visible in the graph that Nux√

Re
 is a decreasing function of R1 . Basically, the increasing magnitude of R1 

directly enhances systems’ temperature, and the fluid in BL tries to become thermally equipoise. Hence tempera-
ture gradient gets reduced, which results in less thermal transport. At the instant ξ = 1.0 , reduction in Nux√

Re
 is 

35% for imposing R1 of strength 1.0.

Figure 2.  � effect on F.

Figure 3.  Q effect on G.
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Entropy production and Bejan lines. Figures 7, 8, 9, 10, 11 and 12 illuminate the contributions of dif-
ferent salient parameters on the productions of irreversible heats (entropy production SG ) and their respective 
shares on gross entropy. Figure 7 indicates that the rate of SG-production increases with Re , but Re ’s contribu-
tion on SG is immensely high at the surface proximity. Physically, augmentation of Re increases the entropy 
generation SG due to fluid friction and heat transport (via inertia). For higher Re , fluid inertia augments thermal 
transport, i.e., HTI takes over the other irreversibility sources. In contrast for lower Re , as viscous force is high, 
FFI dominates the total SG close to the wall. Thus, the friction force gets mitigated within the boundary layer 
and HTI takes over the dominant place. Hence, Bejan lines for lower Re intersect the lines for higher Re within 
the boundary layer.

Moreover, all the Bejan lines converge to zero at the boundary layer edge since HTI gradually reduces to zero 
at the edge of the boundary layer. It is also noticed that the surface plays a high intense SG-production source 
and is evidenced by the following specific calculation: at η = 0.0 , SG elevates by 46% for varying Re in 10− 12.5 
while the change is only 20% at η = 1.5 for the same variation of Re.

Figure 4.  Friction coefficient ( 
√
ReCfx ) graph for different St and φ.

Figure 5.  Nusselt number 
(

Nux√
Re

)

 graph for different St and nanoparticles’ shape factor ( sf ).
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Figures 9 and 10 manifested the SG-production and Bejan line regarding different magnitudes of viscous 
heating ( Br ). As exhibited in Fig. 12, higher Br boosts SG at the wall’s proximity but discloses an opposite trend 
away from the surface. Lifting up the Br value causes added viscous force to the fluid and enhances frictional 
heating. This frictional heating turns up excessive SG-production. This fact is also evidenced in Fig. 10, which 
shows lifted down Bejan lines for higher Br , which physically represents that most SG-productions are due to 
frictional heating (FFI), the associated entropy produced in other modes (i.e., HTI and DI) are comparatively 
less. Analysing the result data, 32% enhancement in SG is noticed for changing Br from 0.01 to 0.2 at η = 0.5.

Figures 11 and 12 demonstrate how SG and Be get affected under the forces of buoyancy ( � ). As one can point 
out from Fig. 11 that SG shows a growing trend for the increase of � . The earlier discussions proclaimed that larger 
� pushes the fluids to move faster generates excessive friction at the wall and hence the irreversibility enhances 
(via FFI, as shown in Fig. 12). Since the buoyancy effect is induced by the thermal imbalance between the wall and 
neighbouring fluids, the effect of � is predominantly noticeable at the wall proximity. Hence, the irreversibilities 
due to � variation vanish at the boundary layer edge and all SG-lines converge at the edge of the boundary layer.

Figure 6.  Nusselt number 
(

Nux√
Re

)

 graph for different R1.

Figure 7.  Re effect on SG.
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Conclusions
This paper performs an analysis on a hybrid nano-liquid flow for an inclined surface under various realistic and 
practical physical situations by considering the basic temperature-sensorial inheriting characteristics (thermos-
physical) of base fluid water. The bearings of flow features, thermal transport characteristics, and EG of magnet-
ized bi-convective hybrid nano-liquid flow with nanoparticles’ sphericity, radiation and thermal source/sink 
effects are studied in this investigation. The immensely nonlinear PDEs are changed into suitable form and then 
into linear form utilizing compatible transformation and quasilinearization techniques, respectively. Hereafter, 
implicit difference methods changed the resulting equations into a matrix system which was further solved by 
Vargas’ block matrix iterative method. The acquired results of this study are manifested in graphs and discussed 
in details. The concluding remarks from the investigated results are summarized and expressed with numerical 
percentile calculations as observed in this specific study:

Figure 8.  Re effect on Be.

Figure 9.  Br effect on SG.
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 i. The trend of F(ξ , η)-profiles shows increment for assisting ( � > 0 ) and decrement for opposing buoyancy 
( � < 0 ). In particular, for � = 2 , almost 33% overshoot is observed when at η = 1.40, ξ = 0.5 but in con-
tradiction almost 25%  backflow is noticed at η = 0.4, ξ = 0.5 when � = −1.0.

 ii. Temperature-profile ( G(ξ , η) ) rising along with the heat source strength Q.
 iii. Significant reduction in friction is happened under the effect of MHD parameter St . In particular, at 

ξ = 1.0 , imposing St of magnitude 0.6 on 
√
ReCfx deduces it almost by 87%.

 iv. Friction 
(√

ReCfx

)

 escalates for increasing the amount of nanoparticles, specifically, 
√
ReCfx enhances 

approximately by 40% for increasing φ from 0.0 to 0.05.
 v. Thermal transport coefficient mitigates under the effect of MHD parameter St . Particularly, at ξ = 1.0 , 

imposing St of magnitude 1.0 on Nux√
Re

 deduces it almost 30%.
 vi. The heat transport is enhanced by 7% as the nanoparticles’ sphericity ( � = 3

sf  ) goes down from  � = 1 to 
� = 0.36.

Figure 10.  Br effect on Be.

Figure 11.  � effect on SG.
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 vii. The thermal transport rate Nux√
Re

 is drastically affected by radiation (R1) . Numerical enumeration on Nux√
Re

 at 
ξ = 1.0 exposes 35% redution for applying R1 of strength 1.0.

 viii. The rate of entropy production (SG) is cumulative for enhancing estimations of Re,Br and �.
 ix. Irreversibility owing to frictional heating (FFI) takes the dominant place over the other sources (HTI, DI) 

as Br and � increases.
 x. Irreversibility due to HTI plays the major role in SG-production over other sources (FFI, DI) for higher 

Re and lower magnitudes of Br and �.
 xi. The bounding surface acts as a strong source of SG-production.
 xii. The enhancing variation in SG is 58% for changing � in the range 1.0− 4.0.

Data availability
All data generated or analyzed during this study are included in this published article. Also, the datasets used 
and/or analyzed during the current study are available from the corresponding author on reasonable request.
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