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Abstract: Skin pigment disorders are common cosmetic and medical problems. Many known
compounds inhibit the key melanin-producing enzyme, tyrosinase, but their use is limited due to
side effects. Natural-derived peptides also display tyrosinase inhibition. Abalone is a good source of
peptides, and the abalone proteins have been used widely in pharmaceutical and cosmetic products,
but not for melanin inhibition. This study aimed to predict putative tyrosinase inhibitory peptides
(TIPs) from abalone, Haliotis diversicolor, using k-nearest neighbor (kNN) and random forest (RF)
algorithms. The kNN and RF predictors were trained and tested against 133 peptides with known
anti-tyrosinase properties with 97% and 99% accuracy. The kNN predictor suggested 1075 putative
TIPs and six TIPs from the RF predictor. Two helical peptides were predicted by both methods and
showed possible interaction with the predicted structure of mushroom tyrosinase, similar to those of
the known TIPs. These two peptides had arginine and aromatic amino acids, which were common
to the known TIPs, suggesting non-competitive inhibition on the tyrosinase. Therefore, the first
version of the TIP predictors could suggest a reasonable number of the TIP candidates for further
experiments. More experimental data will be important for improving the performance of these
predictors, and they can be extended to discover more TIPs from other organisms. The confirmation
of TIPs in abalone will be a new commercial opportunity for abalone farmers and industry.

Keywords: anti-tyrosinase peptides; bioinformatics; machine learning; random forest; k-nearest
neighbor; abalone

1. Introduction

Melanin is the primary determinant of skin, hair, and eye color, and helps protect
against UV radiation [1]. Two types of melanin are produced in mammals; eumelanin
(brownish black) and pheomelanin (reddish yellow) [2]. The production of melanin is
catalyzed by a key enzyme, tyrosinase, known to be associated with pigmentation disor-
ders [3]. Accumulation of this enzyme results in an excess amount of melanin and can
cause freckles, lentigo, age spots, and skin cancer [4].

Many tyrosinase inhibitors have been used as skin whitening agents in the cosmetic
industry, e.g., hydroquinone, kojic acid (KA), or arbutin. Their use remains limited due
to the side effects of skin irritation, low stability in oxygen and storage, cytotoxicity, and
insufficient skin penetration ability [5,6]. Investigation of new natural compounds has
provided alternative opportunity for the industry. Several non-cytotoxic natural tyrosi-
nase inhibitory peptides have been identified in the last 10 years, including proteins and
peptides from milk, wheat, honey, and silk [6–12]. A diverse array of peptides have ty-
rosinase inhibitory functions such as cyclic peptides [13,14], N-acetyl-pentapeptides [15],
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mimosine-tetrapeptides [16], kojic acid-peptides [5,17], and dipeptides [10]. These tyrosi-
nase inhibitory peptides (TIPs) are hypothesized to reduce the melanogenesis process by
inhibiting tyrosinase activity. Free amino acids, like cysteine, are also known to be one of
the best tyrosinase inhibitors [18]. Strong tyrosinase binding peptides normally contain at
least one arginine or phenylalanine with valine, alanine, and/or leucine, as well as those
with hydrophobic properties [7].

Abalone is a highly valued nutritious food and luxurious cuisine [19–21] and has
valuable bioactive molecules with anti-thrombotic, anticoagulant, anti-inflammatory, an-
tioxidant, and anticancer properties [22]. However, the anti-tyrosinase property of abalone
peptides has never been reported. Experimental identification of TIPs is costly and time
intensive. Computational methods thus provide a preliminary solution to this hypothe-
sis. Nithitanakool et al. [23] used molecular docking to examine the effect of compounds
from Thai mango seed kernel extract on tyrosinase binding and predict anti-tyrosinase
ability. Many studies have used machine learning (ML) methods to create prediction
tools for various peptide properties such as MLACP for anticancer [24], AIPpred for anti-
inflammatory [25], anti-biofilm [26], AmPEP for antimicrobial [27], and cell penetrating [28].
These tools were developed by extracting properties including amino acid composition
(AAC), dipeptide composition (DPC), and physiochemical composition (PCP), from the
amino acid sequences and used them as input features to train random forest (RF), k-nearest
neighbors (KNN), and support vector machine (SVM) algorithms. Currently there are no
anti-tyrosinase prediction tools. This study aimed to develop the TIP prediction tool based
on the integration of k-nearest neighbor (kNN) and random forest (RF), and to predict the
TIPs from abalone peptides of Haliotis diversicolor. Our previous study identified thousands
of the abalone peptides from proteomic experiments. Discovering abalone putative anti-
melanogenesis peptides and further characterizing them will be interesting for application
in the pharmaceutical and nutraceutical industries.

2. Results

One-hundred and thirty-three known anti-tyrosinase peptides were obtained from
literature mining of 13 published research articles. These peptides were successfully used
to develop kNN and RF-based TIP predictors. Performance measurement of these two
predictors on the test dataset showed high accuracy, sensitivity, specificity, precision, recall,
and receiver operating characteristic curve (ROC) scores (Table 1). However, the area under
the curve (AUC) scores were 0.08 for the kNN model and 0.02 for the RF model. The kNN
classifiers predicted 1075 TIPs and the RF classifiers predicted six TIPs from 8330 abalone
peptides (Table S1). Fifty-eight peptides (5.4%) had a kNN predictive probability score of
1.0 and 758 peptides (70.5%) had scores more than 0.9. Two of six peptides identified from
the RF classifier were also predicted by the kNN classifier with probability scores of 0.77
and 0.5. The first peptide (TIP1) had nine amino acids with double serine residues, two
aromatic residues (tryptophan and tyrosine), one negatively charged aspartic acid, and
one positively charged arginine (TASSDAWYR). The second peptide (TIP2) was 13-amino
acids long with double phenylalanine residues, one negatively charged aspartic acid, and
one positively charged arginine (SAPFMPDAFFRNV). Peptide sequence alignment of all
predicted TIPS showed frequent patterns of positively charged residues (arginine and
lysine) similar to those of the known TIPs, which showed frequent occurrence of arginine,
lysine, cysteine, and serine (Figure 1). On the other hand, the non-TIPs had a frequent
pattern of glycine in addition to the arginine and lysine appearance.
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Table 1. Performance measurement of kNN and RF-based TIP predictors on the test dataset evaluated by the confusionMa-
trix() function of the caret R package.

Machine Learning Prediction Algorithms
Performance Measurement

Precision Recall Accuracy Sensitivity Specificity ROC 1

kNN 0.89 1.00 0.97 1.00 0.96 1.00
RF 0.97 1.00 0.99 1.00 0.99 1.00

1 Receiver operating characteristic curve.
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Figure 1. Multiple sequence alignment of known tyrosinase inhibitory peptides (TIPs), predicted 
TIPs and non-TIPs represent by the logo character plot. (a) predicted TIPs; (b) known TIPs; and (c) 
non-TIPs. Height of the amino acid characters showed the frequency that they appeared in the pep-
tide sequences at a particular position. 

Predicted structure of TIP1 and TIP2 showed alpha helical conformation. Molecular 
docking of these two TIPs to the predicted structure of mushroom tyrosinase demon-
strated that TIP1 and TIP2 were similarly localized closer to the active site of the mush-
room tyrosinase structure (as referenced by the position of the small ligand of the inhibitor 
tropolone in the structure) compared to those of the non-TIP, GKGLIAR (Figure 2). TIP1 
could interact with eight residues near the active site of the mushroom tyrosinase by hy-
drogen bonding, while TIP2 interacted with six residues in the site (Figure 2 and Table 2). 
The non-TIP only interacted with six residues further out of the active site area (Figure 3). 
When compared with the interaction of the known TIPs (Seq_76, Seq_119, and Seq_125), 
the TIP1 and TIP2 showed binding positions in a similar manner to the known TIPs, and 
the non-TIP was clearly shown to be further away (Figure 3). 

Figure 1. Multiple sequence alignment of known tyrosinase inhibitory peptides (TIPs), predicted
TIPs and non-TIPs represent by the logo character plot. (a) predicted TIPs; (b) known TIPs; and
(c) non-TIPs. Height of the amino acid characters showed the frequency that they appeared in the
peptide sequences at a particular position.

Predicted structure of TIP1 and TIP2 showed alpha helical conformation. Molecular
docking of these two TIPs to the predicted structure of mushroom tyrosinase demonstrated
that TIP1 and TIP2 were similarly localized closer to the active site of the mushroom
tyrosinase structure (as referenced by the position of the small ligand of the inhibitor
tropolone in the structure) compared to those of the non-TIP, GKGLIAR (Figure 2). TIP1
could interact with eight residues near the active site of the mushroom tyrosinase by
hydrogen bonding, while TIP2 interacted with six residues in the site (Figure 2 and Table 2).
The non-TIP only interacted with six residues further out of the active site area (Figure 3).
When compared with the interaction of the known TIPs (Seq_76, Seq_119, and Seq_125),
the TIP1 and TIP2 showed binding positions in a similar manner to the known TIPs, and
the non-TIP was clearly shown to be further away (Figure 3).
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tyrosinase inhibitory peptide (non-TIP (c)) to the crystal structure of mushroom tyrosinase (PDB ID: 
2Y9X). Structure of the mushroom tyrosinase is shaded in gray and the peptide sequences are col-
ored as labeled above. The hydrogen bonds are shown as black lines. 

 

 

Figure 2. Molecular docking of two tyrosinase inhibitory peptides (TIP1 (a) and TIP2 (b)) and non-
tyrosinase inhibitory peptide (non-TIP (c)) to the crystal structure of mushroom tyrosinase (PDB ID:
2Y9X). Structure of the mushroom tyrosinase is shaded in gray and the peptide sequences are colored
as labeled above. The hydrogen bonds are shown as black lines.
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Table 2. List of hydrogen bonds observed from molecular docking of three peptides (TIP1, TIP2, and
non-TIP) to the crystal structure of mushroom tyrosinase (PDB ID: 2Y9X).

Peptides Peptide Residues Tyrosinase Residues Distance (Å)

TIP1 SER 3 GLU 160 1.981
SER 5 ASN 173 2.402
SER 4 GLN 43 2.053
TRP 7 GLN 132 1.901
ARG 9 GLN 132 2.023
ARG 9 GLN 132 1.939
ARG 9 GLU 97 1.898

TIP2 ASP 7 LEU 34 1.952
ARG 11 GLN 132 1.991
ASN 12 GLN 132 2.096
ASN 12 ARG 19 1.857
ASN 12 GLU 97 2.035

Non-TIP GLY 1 ILE 12 1.832
GLY 1 GLY 11 1.924
GLY 1 THR 359 1.980
LYS 2 PRO 13 1.903
LEU 4 ILE 16 1.746
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found frequent amino acid patterns of these peptides consistent with those described by 
Schurink et al. [7]. This study observed that peptides containing at least one arginine, ly-
sine, and phenylalanine would favor strong binding to the tyrosinase because of their 
charge properties, enabling the peptide–enzyme interaction (Figure 1). The finding could 
potentially support the predictive effort of the kNN and RF predictors, which attempted 
the preliminary prediction of the TIPs from limited amount of known data. The kNN al-
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Figure 3. Comparative molecular docking of three known tyrosinase inhibitory peptides (Seq_76, Seq_119, and Seq_125)
with those of the non-tyrosinase inhibitory peptide (non-TIP) and the putative tyrosinase inhibitory peptides (TIP1 and
TIP2) on the crystal structure of mushroom tyrosinase (PDB ID: 2Y9X) shown with (a) and without (b) the enzyme structure.
Structure of the mushroom tyrosinase is shaded in gray and the peptides are labeled with different colors.

3. Discussion

Bioinformatics prediction of the tyrosinase inhibitory peptides is challenging due
to lack of the TIP predictors available. This study has gathered the TIP information and
found frequent amino acid patterns of these peptides consistent with those described by
Schurink et al. [7]. This study observed that peptides containing at least one arginine,
lysine, and phenylalanine would favor strong binding to the tyrosinase because of their
charge properties, enabling the peptide–enzyme interaction (Figure 1). The finding could
potentially support the predictive effort of the kNN and RF predictors, which attempted
the preliminary prediction of the TIPs from limited amount of known data. The kNN
algorithm is one of the simplest methods to classify the TIPs and non-TIPs by k nearest
datapoints, in this case, the physicochemical properties and amino acid patterns. The
peptides with similar feature patterns to those of the known TIPs would be expected
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to be closer than the distinct ones. For the RF predictors, multiple decision trees were
generated from our features. Some features could contribute to building a set of decision
trees specific for classifying TIPs from non-TIPs. Combination of one simple and another
complex machine learning algorithm allowed us to gather possible TIPs at first by the
kNN classifier and then finely narrowed with the RF. A thousand of the kNN-predicted
TIPs were reduced to a manageable number of six peptides by the RF classifier. The
classification performance of these two algorithms were also recommended to use with
various data types over Naïve Bayes algorithm by Singh et al. [29]. Despite the low
AUC values of these two predictors, they might have been disregarded as giving more
chance to the false positive predicted TIPs and deriving from an unbalanced dataset
and effect of the oversampling method, leading to overfitting of one classifier to the
data. However, the classifiers of this study had only the TIP and non-TIP group, and the
performance for separating the TIPs was reasonably high based on other parameters, as
shown in Table 1. Having bias towards one or another group would remain beneficial to
the prediction because the authors have to interpret the predicted results by comparing
the peptides with known properties from different experimental results. Fortunately, the
predicted TIPs in this study had shared some sequence patterns with the known TIPs,
although some might be lost as false negatives. These kNN and RF predictors proposed
a few TIP candidates from nearly 8500 abalone peptides. These candidates will be easily
examined by peptide synthesis and in vitro experimental treatment with tyrosinase or
tyrosinase-producing cell lines. Further experimental results will assist the improvement
of the TIP predictors. Successful detection of putative TIPs from the abalone peptides
has raised a possible hypothesis on how the peptides performed the inhibitory function.
Several organic compounds have been shown to be tyrosinase inactivators and inhibitors,
scavengers of intermediate compounds, and denaturants [30]. From our molecular docking
result in Figure 2, TIP1 and TIP2 were likely to be either competitive or non-competitive
inhibitors of the tyrosinase, which bound to the external helixes and perhaps affected
conformational change of the enzyme during the reaction, resulting in a reduction in
melanin production. This study also compared the predicted TIPs and non-TIP to the
interaction of the known TIPs (seq_76 (IC50 of 1.7 mM for monophenolase and 4.0 mM for
the diphenolase activity) [12], seq_119 (IC50 of 40 µM) [8], and seq_125 (IC50 of 0.1 mM) [6].
Docking positions closer to the active site of the mushroom tyrosinase structure were
very similar between the known TIPs and our predicted TIP1 and TIP2, compared to the
non-TIP. The similar binding area of TIP1 and TIP2 to those of the three known TIPs could
be further in silico evidence suggesting possible tyrosinase inhibition of our predicted
peptides. Shen et al. [31] examined the inhibitory reaction of the similar peptide ECGYF
(with two aromatic residues of tyrosine and phenylalanine) on tyrosinase activity, and their
CD spectrometric analysis suggested that the peptide could bind to the non-active site of
tyrosinase and alter the enzyme conformation, hence interfering with melanin synthesis.
Therefore, the first version of the TIP predictors could suggest a reasonable number of
TIP candidates for further experiments. More experimental data will be important for
improving the performance of these predictors, and they can be extended to discover more
TIPs from other organisms. The confirmation of TIPs in abalone will be a new commercial
opportunity for abalone farmers and industry.

4. Materials and Methods

The overall workflow of this study is summarized in Figure 4. Peptides with known ty-
rosinase inhibitory properties were collected from previously published research [6–12,29,32]
and the peptide sequences were prepared before using the predictor development. The
peptide sequences were used as input for the in-house written R scripts to calculate amino
acid (20 features) and di-amino acid composition (20 × 20 features), hydrophobicity, pep-
tide length and mass, and numbers of positive charge and negative charge residues, and
convert to a numeric matrix of 425 features.
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The amino acid composition (AAC) of amino acid i was calculated in the equation
below [26,33].

AAC(i) =
Amino acid f requency(i)

Peptide length
(1)

Di-amino acid composition (DAA) represented the total number of dipeptides divided
by 400 possible dipeptides in the given peptide sequence. The DAA of dipeptide i was
calculated using the following equation [25,34,35].

DAA(i) =
Total number o f dipeptdes (i)

Total number o f all possible dipeptides
(2)

Physicochemical properties of the peptides were calculated from the percentage
composition of hydrophobic (C, F, I, L, M, V, W), positively charged (K, R, H), and negatively
charged (D, E) amino acid residues [24]. A new column was added to label the known TIPs
as antimelanogenesis and non-TIPs as non-antimelanogenesis.

The k-nearest neighbor and random forest-based predictors were created by using the
R scripts. The kNN performed a pairwise computation of a certain distance or similarity
measure (k-value) for each unknown sample on every training sample [36]. This method
classified the samples into groups by choosing the nearest group to the unknown samples
based on the k-value [37]. The RF algorithm is suited for large datasets and has multi-model
classification [34,35]. It consists of hundreds or thousands of decision trees that are called
forests. Each forest randomly selects the feature at each node to determine the split and
choose one or two features frequently given near the optimum results [25,38].

As the dataset was unbalanced, the oversampling method was used to balance the
data with the ovun.sample() function of the ROSE package. The TIP/non-TIP dataset was
split into 75% training and 25% test sets using the createDataPartition() function of the caret
package. The training dataset was given to the knn3() function of the caret package with the
optimized k value, k = 2 (from the optimization against the test dataset between k = 2 and
k = 10), and randomForest() functions of the randomForest packages using ntree = 1000.
The created predictors were tested against the test dataset using the predict() function and
setting the type argument to “prob” for recording the predictive probability. Performance
of the prediction was measured by calculating accuracy, sensitivity, specificity, precision,
recall, receiver operating characteristic curve (ROC), and area under the curve (AUC) using
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the confusionMatrix() function, and the twoClassSummary() and prSummary functions of
the MLmetrics package. These scores were calculated by the following equations.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Sensitivity/recall =
TP

TP + FN
(4)

Speci f icity =
TN

FP + TN
(5)

Precision =
TP

TP + FP
(6)

The ROC was a plot between false positive rate (FPR) as an X axis and true positive
rate (TPR) as a Y axis. FPR and TPR were calculated by the following equations.

FPR =
TP

TP + FN
(7)

TPR =
FP

FP + TN
(8)

where TP = true positive, TN = true negative, FP = false positive, and FN = false negative.
The AUC score was the measurement of the area underneath the ROC curve.

The TIP candidates were subjected to three-dimensional structure prediction using
the PEP-FOLD program [39]. Peptide sequences of the known TIPs, predicted TIPs, and
non-TIPs were multiply aligned using the ClustalW algorithm in the MEGA-X program
version 10.2.2 [40]. The aligned sequences were visualized by plotting the logo graph
using the WebLogo program version 2.8.2 [41]. Protein crystal structure of the mushroom
tyrosinase (PDB ID: 2Y9X) was obtained from the PDB databank [42]. The predicted
structures of known TIPs (Seq_76, Seq_119, and Seq_125), predicted TIPs and non-TIPs
were docked to the mushroom tyrosinase enzyme using the GalaxyPepDock (http://galaxy.
seoklab.org/pepdock/ (accessed on 12 May 2021)) and the observed interactions were
compared [43]. The docking results of the best model and hydrogen bond finding were
visualized by the UCSF Chimera program to ascertain the putative predicted TIPs [44].

5. Conclusions

In conclusion, this study proposed using the first version of the kNN and RF-based
TIP predictors to obtain two TIP candidates from 8330 abalone peptides for further experi-
ments. TIP1 and TIP2 shared similar in silico binding activities to the known TIPs. The
predictors can be extended to discover more TIPs from other organisms. The experimental
validation of the abalone TIPs will provide novel commercial opportunity for abalone
farmers and industry.

Supplementary Materials: The following are available online. Table S1: Abalone predicted anti-TIPs
by kNN and RF-based predictors.
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