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INTRODUCTION
Before the 1980s, outcomes of liver transplant recipients 
(LTRs) were discouraging primarily because of nonspecific 
immunosuppression therapy (IST) and high rates of acute 
rejection (AR) graft injury and related complications. This 
changed with the institution of calcineurin inhibitor (CNI) 

therapies that lowered AR rates resulting in significant 
improvements in graft and patient survival.1-4 Recent data 
have however continued to show the impact of AR on sur-
vival, stimulating a resurgence of interest in rejection types, 
management, and outcomes.5-7 Thus, this ongoing concern 
may influence clinicians to maintain a higher level of IST 
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to mitigate this risk. Conversely, IST poses significant risk 
even at standard doses, compounded by a rising demo-
graphic of older recipients with multiple comorbidities. 
Malignancy, cardiovascular events, infections, and chronic 
kidney disease, all exacerbated by IST, are the leading 
causes of death in this patient population.8-10 Importantly, 
CNIs specifically contribute to the development of chronic 
kidney disease, observed in a high percentage of LTRs.11

Therefore, LTR outcomes could be enhanced if IST expo-
sure in general, and CNI in particular, could be safely mini-
mized early post-LT when the potential benefit is greatest. 
In essence, patients should be given “just enough” IST to 
prevent AR and not “too much” to increase complications 
(ie, optimized IST). Unfortunately, given narrow therapeu-
tic windows, achieving this tight control of IST has become 
more art than science in clinical practice. Routine serial 
monitoring with IST drug levels and liver function tests 
(LFTs) constitute nonspecific, insensitive tools to assess 
or predict immune status, specifically the onset of early 
immune activation preceding AR versus sustained immune 
quiescence.12-15 Consequently, transplant clinicians prac-
tice “trial-and-error” IST adjustments, informed by their 
own center-specific protocols or reactive to complications 
from either under- or over-immunosuppression.

Thus, there is a clear need to improve our ability to 
achieve the delicate balance of safety and efficacy through 
informed, proactive IST optimization in LTRs. Recent 
developments in molecular biomarkers in transplantation 
have brought us closer to the long-standing objective to 
better assess and predict alloimmune reactivity before the 
onset of AR graft injury. Several genomic biomarkers have 
been reported to distinguish various causes of graft dys-
function in LTRs but until recently have not been subjected 
to validation or analyzed before events.16-29

With this in mind, we have reported a 36-gene biomarker 
of AR distinct from healthy graft function (Transplant 
eXcellence [TX]) in LTRs.30 This gene model performed 
well in serially predicting AR versus TX but did not include 
patient phenotypes with other causes of liver injury (acute 
dysfunction no rejection [ADNR]) in the discovery phase. 
Extending the profile to include all patients not experienc-
ing rejection (non-AR: TX + ADNR) would provide further 
certainty in confirming immune quiescence versus activa-
tion (pre-AR) during IST tapering. To this end, we used a 
novel modeling approach early in the discovery phase to 
further enhance the clinical and biological specificity of the 
gene expression profile for AR. In essence, we have devel-
oped a model that is inclusive of the at-risk LT population 
as a whole, broadening its utility in tailoring IST.

MATERIALS AND METHODS

Cohorts and Subjects
LT patients and samples included in this study were simi-

lar to the single-center discovery (Northwestern University 
[NU] biorepository, 2010–2015) and multicenter vali-
dation (Clinical Trials in Organ Transplant [CTOT-14, 
NCT01672164], 2012–2014) cohorts reported in our 
previous study.30 Written informed consent was obtained 
from each patient included in the study and the study 
protocol conformed to the ethical guidelines of the 1975 
Declaration of Helsinki as reflected in a priori approval 

by the human research committee of the institution. The 
cohorts were merged and randomly split 70:30 into train-
ing and testing sets given their differences—single-center, 
later post-LT (NU) versus multicenter, earlier post-LT 
(CTOT-14). Inclusion and exclusion criteria were identical 
and consisted of adult (≥18 y old) recipients of the first LT 
from either a deceased or living donor. Prior or multiorgan 
transplants, HIV-infected recipients, and viremic hepatitis 
B and C virus patients were excluded. Blood samples were 
collected at the time of “for cause” graft biopsies and, in 
CTOT-14 only, serially at week 2 and months 1, 2, 3, 6, 
9, 12, 15, 18, 21, and 24 following LT. All biopsies were 
read locally for clinical care and later sent for independent, 
blinded central review using Banff criteria, as previously 
reported.30,31 Nonrejection causes, such as steatohepatitis, 
cholestasis, ischemia, or other, were grouped together as 
ADNR.

We also collected samples from LTRs with long-standing 
normal liver tests (Clinical Phenotypes [CPs] below) and 
labeled them TX (“virtual biopsy”).30 We recognize this 
as a limitation as the centers participating do not perform 
surveillance biopsies in patients with normal liver tests 
that could be paired with blood samples to most accu-
rately define TX. While recent studies have demonstrated 
subclinical graft injury in LTRs,32,33 few LT centers actu-
ally perform such surveillance biopsies as standard prac-
tice. Thus, despite the limitation, we had to use a clinical 
definition that would parallel a healthy “normal” recipient 
generalizable and relevant to current clinical practice.

Clinical Phenotypes
As previous, we used clinical, biochemical, and biopsy 

criteria to define 4 diagnostic CPs in both cohorts: AR, 
ADNR, TX, and non-AR (ADNR + TX): (1) AR: “for cause 
biopsy” consistent with AR. (2) ADNR: “for cause biopsy” 
consistent with nonrejection cause. (3) TX: normal LFTs at 
the time of and 3 mo before and after “virtual biopsy” (total 
bilirubin ≤1.5 mg/dL, direct bilirubin [DB] <0.5 mg/dL, alka-
line phosphatase [AP] ≤200 U/L, and alanine transaminase 
[ALT] ≤60 U/L in males ≤36 U/L in females). (4) Non-AR: 
ADNR and TX combined. For the serial prediagnosis analy-
sis before each CP (CTOT-14 only), we used pre–non-AR 
samples as controls for pre-AR samples to enhance the spec-
ificity of detecting AR. Importantly, we required at least 2 of 
the 3 liver tests (DB, AP, and ALT) to be normal at each pre-
sample collection, and ALT >100 U/L were excluded even 
if AP and DB were normal. For postdiagnosis, we focused 
only on gene expression changes following AR therapy.

Biomarker Development
Discovery and validation phases were performed in 

accordance with Institute of Medicine guidelines.34 Blood 
samples in PAXgene tubes (BD BioSciences, San Jose, 
CA) were processed, as described previously.30,35,36 Raw 
expression (.CEL) data files from Affymetrix GeneChip 
HT HG-U133 + PM Array plates were used as input for 
normalization using a custom frozen robust multiarray 
analysis37 vector from a cohort of 560 CEL files previously 
generated from LTRs.30 To maintain the distribution of the 
phenotypes and pertinent metadata in the cohorts, the NU 
and CTOT-14 samples were merged and then split into the 
70% training and 30% testing groups. This split-sample 



1006 Transplantation  ■  May 2022  ■ Volume 106  ■  Number 5 www.transplantjournal.com

approach provides accurate estimations of phenotypic 
gene expression profiles while retaining a sufficiently large 
validation cohort to have confidence in the performance 
metrics.38 Thus, we generated the final discovery model 
from the 70% training set and then applied it to the 30% 
testing set reserved for validation purposes.

All probes on the GeneChip were filtered to retain the 
genes with median expression >6 in 50% of the samples 
and in the top 40th percentile of variance across all sam-
ples. Five independent classification algorithms (nearest 
shrunken centroid,39 partial least squares discrimination 
analysis,40 support vector machine,41 random forest,42 and 
elastic net43) were used to calculate a multivariate score for 
each probe in the filtered data set based on metrics (unique 
for each algorithm) that reflect the relative contribution 
of a probe toward classification of out of bag samples for 
a total of 1000 resamplings.44 As mentioned above, the 
final discovery model was generated from the training set 
using random forest, and a performance threshold was 
selected favoring negative predictive value (NPV) over 
positive predictive value (PPV), which was then locked 
in validation on the 30% testing cohort. Analyses were 
performed using R version 3.5.1 (RStudio, Boston, MA). 
Ingenuity Core Analysis (Qiagen, Inc., Hilden, Germany) 
was used to generate enriched pathways and comparison 
with the literature. A detailed methodology is provided in 
the Supplementary Methods (SDC, http://links.lww.com/
TP/C268).

RESULTS

Patient Cohorts
Forty-six AR, 38 ADNR, and 45 TX patients in NU 

and 14 AR, 28 ADNR, and 50 TX patients in CTOT-14 

were analyzed at the diagnostic time points, similar to our 
initial study but now including ADNR.30 ADNR biopsies 
consisted of the following: 23 biliary obstruction/choles-
tasis, 16 nonspecific minimal inflammation, 14 steatosis, 
6 ischemia/reperfusion injury, and 7 other causes. Table 1 
displays comparisons of the merged cohorts (60 ARs ver-
sus 161 non-ARs). AR subjects were more often female and 
had LFT differences compared with non-AR, as expected.

Discovery and Validation of AR Versus Non-AR 
Genomic Model (at Diagnosis)

In the initial 70% training set (n = 156), random for-
est modeling generated a classifier on the training set 
distinguishing AR versus non-AR (Figure  1—area under 
the curve 0.825; accuracy 0.78, sensitivity 0.70, specific-
ity 0.81, PPV 0.54, NPV 0.89; F-score 0.61). Using the 
same locked probability threshold, the final 59-gene probe 
model performed well on the 30% testing set (accuracy 
0.72, sensitivity 0.67, specificity 0.73, PPV 0.48, NPV 
0.86; F-score 0.56.) Given that the NU cohort was not a 
prevalent population being enrolled only at biopsies later 
after LT, we used the overall rejection prevalence averaged 
from the literature (25%) to report an adjusted PPV and 
NPV.5,45-47

Serial Analysis of the AR Versus Non-AR Genomic 
Model (Pre- and Post-diagnosis)

To test the ability of the 59 gene probes to detect AR 
versus non-AR before these diagnoses, 33 and 179 CTOT-
14 serial samples were analyzed before 12 AR and 58 non-
AR diagnoses, respectively. To compare changes in gene 
expression over time prediagnosis, we compared the slopes 
of each line of scores between the phenotypes. This dem-
onstrated opposing directions of the line slopes before AR 

TABLE 1.

Patient characteristics

 AR (n = 60) Non-AR (n = 161) P

Age at transplant (y) 51.69 (30.42, 63.05) 56.37 (46.00, 62.00) 0.199
Caucasian race (%) 43 (71.7) 132 (82.0) 0.092
Male sex (%) 27 (45.0) 101 (62.7) 0.026
Primary liver diagnosis (%)    
 Hepatitis C (nonviremic) 5 (8.5) 4 (3.1) 0.248
 Alcohol 8 (13.6) 30 (23.4)
 Nonalcoholic fatty liver or cryptogenic 10 (16.9) 50 (39.1)
 Immune-mediated (PSC, AIH, PBC) 10 (16.9) 18 (14.1)
 Other 26 (44.1) 26 (20.3)
 Months from LT 11.62 (5.44, 29.91) 10.43 (5.70, 34.37) 0.977
Immunosuppression    
 CNI therapy 47 (78.3) 131 (81.4) 0.752
 Mycophenolic acid therapy 37 (61.7) 91 (56.5) 0.592
Laboratory values    
 ALT (U/L) 201.00 (136.00, 369.75) 27.00 (18.00, 76.00) <0.001
 Alkaline phosphatase (U/L) 205.00 (142.25, 381.00) 95.00 (67.00, 164.00) <0.001
 Total bilirubin (mg/dL) 1.20 (0.50, 4.40) 0.70 (0.40, 1.10) 0.001
 Creatinine (mg/dL) 1.21 (0.57) 1.26 (0.61) 0.562
Rejection characteristics    
 Mild (RAI 3–4) (%) 26 (43%) — —
 Moderate–severe (RAI 5–9) (%) 34 (57%) — —

AIH, autoimmune hepatitis; ALT, alanine aminotransferase; AR, acute rejection; CNI, calcineurin inhibitors; LT, liver transplant; PBC, primary biliary cholangitis; PSC, primary sclerosing cholangitis; RAI, 
rejection activity index.

http://links.lww.com/TP/C268
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(positive—increasing) versus non-AR (negative—decreas-
ing) (Figure  2A). The slopes were statistically different 
in the mixed model (P = 0.0002). We performed a simi-
lar analysis for 53 samples following treatment of 12 AR 
cases. All responses to treatment were defined by normali-
zation of LFTs within 90 d. The results showed that the 
slope following treatment of AR was negative (decreasing 
scores) (P = 0.0001) (Figure 2B) even more abruptly in our 
AR versus TX model.30

Ingenuity Pathway Analysis and Differential Gene 
Expression Plots

To evaluate the biological relevance, we tested the 59 
probes using Ingenuity Pathway Analysis. Table 2 displays 
the fold changes and identifications of the 59 genes and 
the direction and magnitude of gene expression. Canonical 
pathways analysis (Supplemental Table S1, SDC, http://
links.lww.com/TP/C268) displays the biological pathways 
that appear most significantly affected by the genes in 
the test set. Nearly half of the significant pathways were 
associated with immune responses and liver-related func-
tion including allograft rejection signaling, T-cell receptor, 
and liver X receptor-retinoid X receptor. Toxicity analy-
sis (Supplemental Table S1, SDC, http://links.lww.com/
TP/C268) indicated that the highest percentage of genes 
were previously reported to be involved in liver toxicity, 
including liver X receptor-retinoid X receptor activation, 
liver necrosis/cell death, and hepatic fibrosis. The differen-
tial gene expression between AR and non-AR based on the 
random forest probes is also displayed in a 3-dimensional 
principal component analysis plot (Figure 3) showing dis-
tinct clustering in the training and testing sets, as well as an 
overall hierarchical clustering plot (Supplemental Figure 
S1, SDC, http://links.lww.com/TP/C268).

DISCUSSION
In this report, we have used a novel modeling approach 

to augment the clinical and biological specificity of blood-
based genomic biomarkers of AR in LTRs. This resulted 
in discovery and validation of a 59-gene biomarker that 
can distinguish LTRs with AR from essentially all other 
recipients—those with either a stable course or with other 
causes of graft injury. Similar to our earlier work analyz-
ing well-curated serial samples at time points with no evi-
dence of impending liver graft injury (normal LFTs),30 we 
have shown that this biomarker signature is detectable 
long before the AR event (Figure 2A—threshold crossed 
~day −120 and error bars fully above at ~day −25) and 
importantly not seen in LTRs never developing rejection 
(non-AR).

Other groups have also identified biomarkers of rejec-
tion in LTRs.16,17,19,21,22,28,48 Most have had limited sam-
ple sizes, lack of validation cohorts, and lack of serial 
samples preceding graft dysfunction. More recent studies 
using serial samples have demonstrated increasing lev-
els of microRNAs, donor-specific antibodies, and blood 
CXCL10 gene expression before rejection, mainly during 
the course of full IST withdrawal.28,29,49,50 These may have 
a role in predicting AR in highly select LTRs enrolled in 
tolerance studies, but they have not been validated in the 
broader LT population as in our study.

FIGURE 1. The ROCs—AR vs non-AR. The AUC is displayed 
as well as the performance characteristics (25% AR prevalence 
adjustment) at the 0.34 threshold. AR, acute rejection; AUC, area 
under the curve; ROC, receiver operating curve.

FIGURE 2. Serial changes in AR vs non-AR gene expression 
scores using line slopes. A, Pre-AR vs pre–non-AR (P = 0.0002). 
B, Pre-AR vs post-AR (P = 0.0001). AR, acute rejection.

http://links.lww.com/TP/C268
http://links.lww.com/TP/C268
http://links.lww.com/TP/C268
http://links.lww.com/TP/C268
http://links.lww.com/TP/C268
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TABLE 2.

AR vs non-AR 59-gene probe model—gene name and expression values

Model probe Symbol Gene name
Log FC  

(AR/non-AR)
Average 
log exp

224588_PM_at XIST X inactive-specific transcript 1.606 6.363
227671_PM_at XIST X inactive-specific transcript 1.492 5.951
208792_PM_s_at CLU Clusterin 0.428 7.688
201005_PM_at CD9 CD9 molecule 0.342 8.017
206150_PM_at CD27 CD27 molecule 0.286 7.91
205849_PM_s_at UQCRB Ubiquinol-cytochrome c reductase-binding protein 0.259 7.937
236422_PM_at Unmapped  0.251 7.543
211372_PM_s_at IL1R2 Interleukin 1 receptor type 2 0.211 9.116
206804_PM_at CD3G CD3g molecule 0.184 8.777
221558_PM_s_at LEF1 Lymphoid enhancer-binding factor-1 0.182 9.098
216950_PM_s_at FCGR1A Fc fragment of IgG receptor Ia 0.176 9.248
200859_PM_x_at FLNA Filamin A 0.109 7.927
209480_PM_at HLA-DQB1 Major histocompatibility complex, class II, DQ beta 1 0.074 6.263
1552583_PM_s_at ABCC13 ATP-binding cassette subfamily C member 13 0.06 7.283
222139_PM_at Unmapped  0.057 7.813
205033_PM_s_at DEFA1 Defensin alpha 1 0.055 11.816
219799_PM_s_at DHRS9 Dehydrogenase/reductase 9 0.043 8.197
235157_PM_at Unmapped  0.04 8.846
205863_PM_at S100A12 S100 calcium-binding protein A12 0.03 11.579
205789_PM_at CD1D CD1d molecule 0.011 8.07
203936_PM_s_at MMP9 Matrix metallopeptidase 9 −0.003 9.743
206110_PM_at H3C10 H3 clustered histone 10 −0.025 7.681
224558_PM_s_at MALAT1 Metastasis-associated lung adenocarcinoma transcript 1 −0.044 10.18
202912_PM_at ADM Adrenomedullin −0.054 8.963
242943_PM_at ST8SIA4 ST8 α-N-acetyl-neuraminide α-2,8-sialyltransferase 4 −0.064 7.794
218066_PM_at SLC12A7 Solute carrier family 12 member 7 −0.064 8.147
225123_PM_at SESN3 Sestrin 3 −0.076 7.837
209374_PM_s_at IGHM Immunoglobulin heavy constant mu −0.089 7.851
204909_PM_at DDX6 DEAD-box helicase 6 −0.103 7.793
235693_PM_at Unmapped  −0.139 8.49
205171_PM_at PTPN4 Protein tyrosine phosphatase nonreceptor type 4 −0.146 8.887
214470_PM_at KLRB1 Killer cell lectin like receptor B1 −0.165 7.907
206061_PM_s_at DICER1 Dicer 1, ribonuclease III −0.167 7.794
225177_PM_at RAB11FIP1 RAB11 family interacting protein 1 −0.172 9.754
1555446_PM_s_at TRAPPC10 Trafficking protein particle complex 10 −0.172 8.125
220000_PM_at SIGLEC5 Sialic acid-binding Ig like lectin 5 −0.173 8.574
236685_PM_at Unmapped  −0.182 8.43
243395_PM_at Unmapped  −0.188 8.674
208003_PM_s_at NFAT5 Nuclear factor of activated T-cells 5 −0.191 7.928
1552480_PM_s_at PTPRC Protein tyrosine phosphatase receptor type C −0.199 7.79
206170_PM_at ADRB2 Adrenoceptor beta 2 −0.209 7.786
1555745_PM_a_at LYZ Lysozyme −0.211 11.702
230332_PM_at ZCCHC7 Zinc finger CCHC-type containing 7 −0.216 8.29
244414_PM_at Unmapped  −0.224 8.551
243819_PM_at Unmapped  −0.225 8.904
236545_PM_at Unmapped  −0.232 8.352
1556185_PM_a_at STEAP4 STEAP4 metalloreductase −0.234 8.007
203021_PM_at SLPI Secretory leukocyte peptidase inhibitor −0.237 8.437
243109_PM_at MCTP2 Multiple C2 and transmembrane domain-containing 2 −0.24 10.006
223578_PM_x_at TALAM1 TALAM1 transcript, MALAT1 antisense RNA −0.247 7.963
242827_PM_x_at Unmapped  −0.264 7.803
233690_PM_at Unmapped  −0.264 8.266
224681_PM_at GNA12 G protein subunit alpha 12 −0.271 8.391
242197_PM_x_at CD36 CD36 molecule −0.289 7.963
221675_PM_s_at CHPT1 Choline phosphotransferase 1 −0.29 10.188
237330_PM_at Unmapped  −0.295 8.403
204467_PM_s_at SNCA Synuclein alpha −0.395 10.037
211781_PM_x_at Unmapped  −0.44 10.706
209728_PM_at HLA-DRB4 Major histocompatibility complex, class II, DR beta 4 −0.624 5.766

AR, acute rejection; ATP, adenosine triphosphate; FC, fold change; IgG, immunoglobulin G.
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The proposed clinical context of use for this current 
biomarker is to provide reassurance to the clinician con-
templating a preemptive or “for cause” reduction in IST 
that a patient’s immune status is “quiescent,” reducing the 
risk of triggering AR. As protocols of immunosuppression 
minimization are becoming more common in LTRs to mit-
igate complications from over-immunosuppression, they 
increase the risk of AR as a consequence and can impact 
survival.11,49–50 While the most likely cause of graft dys-
function during IST minimization is AR, the current bio-
marker further reduces the possibility that a positive test 
indicates causes other than AR and also reduces the likeli-
hood that a negative test indicates AR. Thus, knowing at 
each IST adjustment consideration whether the immune 
status is quiescent or activated could help inform safer 
IST reduction decisions. This is important in terms of the 
need for the most specificity for detecting immune activa-
tion preceding rejection and thus moving toward increas-
ing the number of patients successfully and appropriately 
minimized. In addition, a signal of immune activation fol-
lowing IST reduction may inform the clinician to consider 
ceasing reductions until quiescent signals are present.

One of the unique key aspects of this biomarker signature 
is that it is enriched with immune response genes, particu-
larly those of allograft rejection and signaling pathways, as 
well as liver injury genes. The most upregulated gene in AR 
was X inactive specific transcript (XIST), which is a long 
noncoding RNA involved in X chromosome silencing.51 
XIST upregulation in AR may reflect the gender differ-
ences in the 2 cohorts and the role of XIST in modulating 
injury in organ transplantation. XIST silencing has been 
shown to protect against sepsis-induced acute liver injury 
via inhibition of the Bromodomain-containing protein 4 
expression.52 Bromodomain inhibitors are currently being 
evaluated in clinical trials for their anti-inflammatory and 
anticancer properties. The interaction of XIST with micro-
RNAs modulates acute kidney injury.53 Another immune 
response gene in the panel is alpha-synuclein, which is 
highly expressed in monocytes and hematopoietic precur-
sor cells, which could reflect impaired hematopoiesis in 
liver rejection.54 Similarly, protein tyrosine phosphatase 
receptor type C (CD45), a tyrosine phosphatase required 

by T, B, and natural killer cells for optimal signal transduc-
tion after stimulation, has been shown to be modulated 
in acute kidney rejection.55 CD9 and CD27 were down-
regulated in the AR subjects. CD9, a tetraspanin, has been 
targeted for modulating inflammation, and CD27 has been 
shown to promote survival and expansion of activated T 
cells.56 In addition, the rapid resolution of the signature 
along with LFT normalization with corticosteroid therapy 
further suggests its specificity for immune-related graft 
injury and its potential to track disease status as a com-
panion diagnostic.

These findings are important because having a classifier 
that clinically predicts and has biological relevance to the 
outcome (eg, AR) provides further validation for its use 
in clinical practice as a functional biomarker.57 Biological 
pathway mapping of our previously reported AR versus 
TX profile revealed less specific hepatic proliferation genes, 
which is consistent with liver injury (elevated LFTs) being 
the main difference between these phenotypes.30 In studies 
of other organ transplant recipients, blood/graft biomark-
ers of rejection have not reliably demonstrated biological 
relevance to immune or inflammatory pathways.36,58-62 
Even in cancer, the most widely studied disease, there are 
hundreds of genetic variants that might predict response to 
radiation, yet the correlation with these markers does not 
mean causation or represent actionable targets for cancer 
therapeutics.63 Some biomarkers may be indirectly related 
to the disease process or dependent on another causative 
factor. While not representing determinants of disease, they 
still may be connected to the causal pathway.64 Ultimately, 
biological relevance can be an important consideration for 
using functional biomarkers in clinical practice. We submit 
that our unbiased approach uncovered novel genes and 
pathways for further validation.

We believe there are reasons our approach identified 
genes with higher biological relevance. First, using a cus-
tom vector,37 we bioinformatically used previously gen-
erated LT-specific gene expression profiles to select the 
most relevant genes to increase confidence in classifica-
tion accuracy. This approach is ideal for this highly tar-
geted clinical application in comparison with the standard, 
nonspecific normalization technique that may skew data 

FIGURE 3. Three-dimensional principal component analysis score plots for sample clustering, using 59 probes from the random 
forest classifier between AR and non-AR. The left plot is for training (n = 156) and the right plot is for testing (67) sample sets. AR, acute 
rejection.
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for homogenous samples such as ours. Second, adding 
in ADNR phenotypes likely improved the separation of 
immune (AR) and nonimmune genes. Finally, we chose 
to combine the populations and divide them 70:30 into 
training and testing sets because the cohorts had signifi-
cant clinical differences (NU = single center, late post-LT; 
CTOT-14 = multicenter, early post-LT) despite being phe-
notyped the same way clinically and histologically. This 
issue supported our approach to combine them to enhance 
the distinction of AR versus non-AR and allow generation 
of a signature that spanned both the early and late post-LT 
period. The split-sample approach with bootstrapping is 
an established methodology that still allows for sufficient 
discovery and validation of a biomarker in the absence of 
large sample sizes and gives reasonably valid estimates of 
the predictive performance of a given model.38,65-67 That 
said, we recognize that additional external cohorts would 
be of use in further validation.

Limitations of this study include a relatively modest 
number of AR and non-AR phenotypic samples, despite 
emanating from independent single and multicenter stud-
ies with prospectively collected samples. These numbers 
do however reflect the natural prevalence of the pheno-
types.5,45-47 As in our previous study,30 in the absence of 
protocol surveillance biopsies in LTRs, TX was defined 
clinically by long-term normal LFTs and not by histol-
ogy. While we recognize that subclinical graft inflamma-
tion despite normal LFTs is increasingly being reported in 
LTRs,32,33 it is unclear if this is normal trafficking (perhaps 
regulatory T/B cells) controlling alloimmune responses 
or low-grade immune activation, that is, T cell–, plasma 
cell–, or antibody–mediated rejection.6 We did not test for 
donor-specific antibodies, and, given emerging data, they 
should be included in future immune monitoring studies 
predicting or diagnosing different rejection types.50,68-70 
That said, there were no CPs of AR or ADNR evident for 
90 d before and after the TX sample, and the phenotypes 
all were validated by an NIH Data Coordinating Center 
(CTOT-14). We do plan to test our profiles in LTRs who are 
undergoing surveillance biopsies—pediatrics, autoimmune 
liver disease, and tolerance protocols. Finally, we did not 
include clinical variables, such as age, gender, cause of liver 
disease, severity of AR, etc, into our modeling approach as 
we sought to validate a classifier that could be universally 
applied to AR rather than specific patient phenotypes. The 
70:30 approach combining single and multicenter cohorts 
randomized the samples to distribute these variables as 
equally as possible to reduce their potential bias.

In summary, we have developed a blood-based biologi-
cally relevant gene expression profile that has focused on 
detecting an immune quiescent state to advance the suc-
cess of immunosuppression optimization (mainly mini-
mization) in LT practice. Use of these gene expression 
biomarkers could enhance patient outcomes by proac-
tively detecting and avoiding adverse events related to 
both under- and over-immunosuppression.
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