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Abstract: An electrocatalyst with high oxygen reduction reaction (ORR) activity and high stability
during start–stop operation is necessary. In this paper, hollow-structure Pt-Ni electrocatalysts are
investigated as ORR catalysts. After synthesis via sacrificial SiO2 template method, the electrocatalyst
exhibits much higher specific activity (1.88 mA/cm2) than a commercial Pt/C catalyst. The mass
activity (0.49 A/mg) is 7 times higher than the commercial Pt/C catalyst. The kinetics of the ORR
is evaluated using Tafel and K-L plots. It also exhibits a higher durability than commercial Pt/C
catalyst during accelerated durability test (ADT). Moreover, the electrocatalyst shows good resistance
against accelerated durability test for start–stop, the specific activity and mass activity drops 34.6%
and 40.8%, respectively, far better than the commercial catalyst.

Keywords: electrocatalyst; oxygen reduction reaction; PEMFC; hollow structure; carbon-free

1. Introduction

Hydrogen has attracted much attention as a kind of clean energy. Moreover, it is
expected to become the next generation of new energy [1]. Proton exchange membrane
fuel cell (PEMFC) is a device which converts hydrogen into electricity. However, the
sluggish kinetics of the oxygen reduction reaction (ORR) process at the cathode and the
high price of noble metal catalysts have limited the commercialization of PEMFC [2,3].
In this regard, many researchers have prepared electrocatalysts with different structures
to improve the ORR activity in the cathode, such as porous structure, hollow structure,
dodecahedral nanocrystal, nanowire, alloy nanoframe and nanoplate [4–9]. To a certain
extent, these structures of catalysts have improved ORR activity by modifying the geometric
and electronic structures of Pt, such as d-band center, surface strain effect and coordination
numbers composited with transition metals such as Fe, Co, Ni.

Even though the catalysts above have shown good performance, most of them were
supported by carbon. It is easy to cause carbon corrosion during start–stop operations
in PEMFCs [10]. When this happens, the electrocatalysts agglomerate due to the loss of
high-surface-area carbon, eventually leading to degradation failure of the catalyst. If the
carbon corrosion issue is solved, the durability of Pt-based catalyst can be greatly improved
while maintaining ORR activity. Moreover, the control system of PEMFC vehicles will
be simplified if there is no carbon corrosion occurs [11]. Therefore, the prevention of
carbon corrosion is an important research direction nowadays. Recently, the carbon-free
catalyst has given a new possibility to solve this problem [12–14]. For example, the Pt-based
carbon-free catalyst Pt/Ti3O5-Mo shows a good performance with specific activity (SA)
about 1.1 mA/cm2 at 0.9 V vs. RHE, and there was only 11.2% electrochemical surface
area (ECSA) loss after 5000 potential cycles [12]. However, PtCo core-shell nanoparticles
based on carbon reached 30% ECSA loss after 5000 potential cycles, with a similar SA to

Molecules 2022, 27, 2524. https://doi.org/10.3390/molecules27082524 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27082524
https://doi.org/10.3390/molecules27082524
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules27082524
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27082524?type=check_update&version=1


Molecules 2022, 27, 2524 2 of 11

the carbon-free catalyst [15]. This proved that the durability can be improved effectively by
using a carbon-free catalyst.

Therefore, hollow-structure Pt-Ni nanoparticle electrocatalysts were synthesized by
sacrificial template method as the carbon-free catalyst on the cathode of PEMFCs. The
high surface area of the hollow structure can guarantee the ORR activity of the catalyst.
In addition, the structure can effectively avoid the loss of performance caused by carbon
corrosion, since no carbon is needed. Then, its structure is evaluated and its electrochemical
activity toward ORR is studied in detail.

2. Results and Discussion
2.1. Structure and Characterization of Pt-Ni Electrocatalyst

Figure 1a,b shows the TEM image of the Pt-Ni electrocatalyst. Most of Pt-Ni nanopar-
ticles are spherical with a diameter of about 370 nm. It is calculated that the thickness of the
catalytic layer is about 35 nm because the average diameter of the silica sphere template is
300 nm. It can also be proven in Figure 1b by the TEM image. In addition, Figure 1c shows
that nanoparticles are hollow structures composed of Pt and Ni. The Pt-Ni weight ratio is
about 1.2:1 and the Pt and Ni are uniformly distributed in the nanoparticle. In addition, the
EDS result is shown in Figure 1d. The results show that the content of Pt in the nanoparticle
is 54.82 wt%, and the rest is Ni. For comparison, the TEM image of 20% Pt/C is shown
in Figure 1e.
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Figure 1. (a,b) TEM image of the Pt-Ni electrocatalyst, (c) SEM image of the Pt-Ni electrocatalyst and
the composition of the electrocatalyst determine by EDS, (d) EDS result of the Pt-Ni electrocatalyst,
(e) TEM image of 20% Pt/C catalyst, (f) XRD pattern of hollow-structure Pt-Ni electrocatalyst.

The XRD pattern of the Pt-Ni electrocatalyst is shown in Figure 1f. The pattern shows
that Pt-Ni hollow-structure electrocatalyst exhibits a face-centered cubic (fcc) phase, without
the formation of ordered phase. The 2 theta degree of Pt-Ni (111) peak is 42.5◦, which is
between Pt (111) and Ni (111), and the lattice constant of Pt-Ni catalyst is 0.367 nm while
the lattice constants of metal Pt and Ni are 0.392 nm and 0.352 nm, respectively. When Ni
is added, lattice contraction occurs due to Ni atoms entering Pt lattice, which shifts the
peak toward a higher angle. The rules of the lattice constant and peak obtained by XRD are
consistent with previous work on core-shell PtNi catalyst [16]. The crystallite size of the
Pt-Ni electrocatalyst, calculated using Scherrer formula, is approximately 6.5 nm.

Figure 2 shows the surface characteristics of the Pt-Ni electrocatalyst. The Pt 4f XPS
spectra and Ni 2p XPS spectra of Pt-Ni electrocatalyst are shown in Figure 2a,b. The XPS
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spectra patterns indicate that the surface Pt is mainly in the metallic state and that the
surface Ni is mainly in the oxidized state. These results are consistent with Pt-Ni catalysts
studies [17,18]. It has been shown in previous studies that nickel and oxygen have a higher
affinity [19,20]. This indicates that the oxidation of Ni takes precedence over Pt during
Pt-Ni electrocatalyst preparation. As a result, more Pt will exist in metallic state to ensure
catalytic performance of the electrocatalyst. The Pt 4f XPS spectra of Pt/C catalyst is shown
in Figure 2c. The surface Pt of Pt/C is mainly in the metallic state which has the similar
tendency of Pt-Ni catalyst, while the peaks of Pt 4f7/2 are quite different. In Figure 2d,
the binding energy of metallic state of two catalysts for Pt 4f7/2 peaks are 71.14 eV for
Pt-Ni hollow-structure catalyst and 71.7 eV for Pt/C catalyst. The results show that the
binding energy of metallic state of Pt-Ni hollow-structure catalyst Pt 4f7/2 peak is negatively
shifted. It indicates that the addition of Ni causes electron orbital overlap and changes
the electron density on the surface of Pt [21,22]. The binding energy is 0.56 eV negatively
shifted indicates that increases the electron density of Pt atom on the surface and reduces
the binding energy of O adsorption [22–25]. This promotes the oxygen reduction reaction
performance of catalyst.
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Figure 2. (a) surface Pt 4f XPS spectra pattern of hollow-structure Pt-Ni electrocatalyst, (b) surface Ni
2p XPS spectra pattern of hollow-structure Pt-Ni, (c) surface Pt 4f XPS spectra pattern of 20% Pt/C
catalyst, (d) comparison of Pt 4f7/2 peaks of Pt-Ni and 20% Pt/C catalysts.

2.2. Electrochemical Characterization Analysis

Cyclic voltammograms of 20% Pt/C and hollow-structure Pt-Ni are shown in Figure 3a.
As it shown, the hydrogen adsorption region of hollow-structure Pt-Ni is obviously smaller
than Pt/C. The electrochemical active surface area (ECSA) of 20% Pt/C is calculated to
be 58.8 m2/g, within the range of the values for commercial Pt/C catalysts [26,27]. ECSA
of hollow-structure Pt-Ni is 25.9 m2/g, which is only 44.1% of commercial Pt/C. This is
because commercial Pt/C has highly dispersed 3–5 nm Pt nanoparticles on the carbon
support [28], it is also shown in Figure 1e. While the hollow-structure Pt-Ni is about 370 nm
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and the Pt nanoparticles is 6.5 nm calculated by Scherrer formula, which is larger than
commercial Pt/C.
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Figure 3. (a) cyclic voltammetry curves of hollow-structure Pt-Ni electrocatalyst and 20% Pt/C
catalyst, (b) LSV polarization curves of hollow-structure Pt-Ni electrocatalyst and 20% Pt/C catalyst,
(c) Tafel plot of hollow-structure Pt-Ni electrocatalyst and 20% Pt/C catalyst, (d) LSV polarization
curves of hollow-structure Pt-Ni electrocatalyst with various rotation speeds, the corresponding
Koutechky–Levich plots at various voltages are shown in the inset.

To evaluate the ORR activities, the LSV curves are obtained by rotating disk electrode
in 0.1 M HClO4, as shown in Figure 3b. The values of current density at 0.9 V vs. RHE are
1.02 mA/cm2 and 2.89 mA/cm2 for Pt/C and hollow-structure Pt-Ni, respectively. The
kinetic current (Ik) of Pt/C and hollow-structure Pt-Ni are calculated by Formula (2). In
order to evaluate the performance of electrocatalyst, and to compare the mass activity (MA)
and specific activity (SA) with different catalysts, the Ik is normalized to both the loading
amount of metal and ECSA, respectively. The specific activity of Pt/C is 0.1 mA/cm2,
which is a little lower than the reported values for commercial Pt/C catalysts [29,30]. The
experiment has been repeated several times, but with similar results. Therefore, it is most
probable that the commercial catalysts purchased have low performance. The hollow-
structure Pt-Ni exhibits a higher specific activity of 1.88 mA/cm2 than that of the Pt/C.
Furthermore, the hollow-structure Pt-Ni shows a mass activity of 0.49 A/mg, which is also
greater than that of the Pt/C catalyst (0.07 A/mg). The results show that the ORR activity
of hollow-structure Pt-Ni is better than that of Pt/C catalyst. The most possible reason for
the improvement is that the hollow structure helps expand the surface of the catalyst and
promotes the ORR process.

Furthermore, the Tafel plot of the 20% Pt/C and hollow-structure Pt-Ni are shown in
Figure 3c. As the result shown, the Tafel slope of the hollow-structure Pt-Ni is 65.85 mV/dec,
which is lower than that of the 20% Pt/C (72.56 mV/dec, similar with the results in Ref-
erences [31,32]). Generally, the Tafel slope can be lowered due to the accelerated ORR
kinetics [33]. Therefore, referring to the previous LSV experiment, it is further proved that
the hollow-structure Pt-Ni electrocatalyst has a better ORR activity than 20% Pt/C.
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As is shown, the O2 is reduced to H2O2 via two-electron process and H2O via four-
electron process [34]. H2O2 formed on the electrodes can diffuse into the membrane,
leading to the gradual loss of membrane materials, so the four-electron ORR pathway is
desired [35]. Therefore, to evaluate the number of electrons transfer, a further analysis
of kinetics of the hollow-structure Pt-Ni electrocatalyst for ORR activity is obtained by
Koutecky-Levich (K-L) theory. The LSV at various rotation speeds and the K-L plots are
shown in Figure 3d. The formula and the constants for calculation are detailed in Section 3.4.
The slopes of K-L plots for the hollow-structure Pt-Ni electrocatalyst are approximately
in the voltage range from 0.2 V to 0.6 V vs. RHE. It reveals that the number of electrons
transferred for ORR at various voltages are similar, which are 3.37, 3.67, 3.8, 3.69, and
3.34, respectively. It suggested that the electron transfer of ORR process is controlled by a
combination of two-electron and four-electron transfer pathway.

2.3. Electrocatalysts Durability Analysis by Electrochemical Method

In order to evaluate the durability of the hollow-structure Pt-Ni electrocatalyst, an
accelerated durability test (ADT) is employed. The results of before and after 5000 cycles
ADT for both Pt/C and hollow-structure Pt-Ni are shown in Figure 4a,b. After 5000 cycles
ADT, the ECSA of hollow-structure Pt-Ni is similar to that before ADT. While the Pt/C
(57.1 m2/g) shows a loss of 2.8% during the same process. For SA and MA, the activity of
hollow-structure Pt-Ni drops by 13.8% and 28.5% respectively, but the ORR activities of
commercial catalyst can hardly be measured at 0.9 V vs. RHE. Thus, the hollow-structure
Pt-Ni shows more stability than the Pt/C catalyst. The reason is that the Pt/C with ultrafine
nanoparticles will occur movement, aggregation and Ostwald ripening during the ADT
process [36,37]. When the Pt particles in Pt/C grow up, the ORR activity of Pt/C decreases
obviously. On the contrary, the hollow structure shows more stability against the ADT to
avoid movement, aggregation and Ostwald ripening, so that the ORR activity still remains
at a good level after ADT.
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In addition, hollow-structure Pt-Ni electorcatalysts are designed to resist the carbon
corrosion in the start-stop operation in PEMFC, so the start–stop durability test by square
wave potential cycles (ADT-SWC) is employed. The results of before and after 5000 of
ADT-SWC for both Pt/C and hollow-structure Pt-Ni are shown in Figure 5a,b. After
5000 cycles of ADT-SWC, the ECSA of hollow-structure Pt-Ni is 23.4 m2/g, a drop of about
9.6%. However, the ECSA of Pt/C is dropped to 38.3 m2/g, even lower than the Pt/C
after 5000 cycles of ADT. The possible reason for this is that carbon corrosion during the
start-stop process will promote particle growth and aggregation [38]. Furthermore, the
ORR activity is seriously affected by particle size and distribution, so the Pt/C exhibits
severely worse activity after 5000 cycles of ADT-SWC. The SA and MA of hollow-structure
Pt-Ni after 5000 cycles of ADT-SWC are 1.23 mA/cm2 and 0.29 A/mg, respectively; these
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are only slightly different from the initial SA and MA value of the hollow-structure Pt-
Ni electrocatalyst, but still better than those of the commercial catalysts. It shows the
hollow-structure Pt-Ni electrocatalyst owns better stability against start–stop operation.
All the data about the LSV of Pt/C and hollow-structure Pt-Ni electrocatalyst before and
after ADT and ADT-SWC are detailed in Table 1. To evaluate the activities of the as-
prepared hollow-structure Pt-Ni electrocatalyst, a comparison is made with some previous
works (the MA of these works are from 0.19 to 0.85 A/mg, and the SA are from 0.56 to
2.27 mA/cm2) [4,16,39–42]. Compared to these works, the ORR activities of the as-prepared
electrocatalyst is at a good level.
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Table 1. Current density at 0.9 V vs. RHE, Ik , half-wave potential, MA and SA of Pt/C and
hollow-structure Pt-Ni electrocatalyst before and after 5000 cycles of ADT and ADT-SWC.

Catalyst
Current Density
at 0.9 V vs. RHE

(mA/cm2)
Ik (A) Half-Wave

Potential (V) MA (A/mg) SA (mA/cm2)

Pt/C 1.02 2.39 × 10−4 0.847 0.07 0.10

Pt/C (ADT) 0.01 1.86 × 10−4 0.719 0.04
(0.8 V vs. RHE)

0.08
(0.8 V vs. RHE)

Pt/C (ADT-SWC) 0.1 2.03 × 10−5 0.662 0.03
(0.8 V vs. RHE)

0.09
(0.8 V vs. RHE)

Hollow-structure
Pt-Ni 2.89 1.94 × 10−3 0.906 0.49 1.88

Hollow-structure
Pt-Ni (ADT) 2.75 1.39 × 10−3 0.914 0.35 1.62

Hollow-structure
Pt-Ni (ADT-SWC) 2.62 1.15 × 10−3 0.891 0.29 1.23

3. Materials and Methods
3.1. Materials

Platinum (II) acetylacetonate (Pt(acac)2), Nickel (II) acetylacetonate (Ni(acac)2), poly
dimethyl diallyl ammonium chloride (PDDA), tetraethylene glycol and isopropanol alcohol
were purchased from Rhawn. (Shanghai, China). Silica spheres were purchased from
Shuangying Alloy Material (Shanghai, China). Ethanol and sodium hydroxide (NaOH)
were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Deionized
water was used in all cases. Those chemicals were of analytical grade and used without
further purification.

For the electrochemical evaluation, analytical grade perchloric acid (HClO4) was
purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). 5% Nafion
solution was obtained from Dupont (Wilmington, DE, USA). In addition, 20% Pt/C was
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used as standard electrocatalysts for the comparison in this paper and purchased from
Jiping New Energy Technology Co., Ltd. (Shanghai, China).

3.2. Synthesis of Hollow-Structure Pt-Ni Nanoparticles

The hollow-structure electrocatalysts were synthesized via sacrificial template
method [43,44]. The details of the synthesis are as follows: 32 mg of silica spheres with
diameters of about 300 nm were dispersed in 5 mL water and 10 mL PDDA solution. The
mixture was ultrasonic dispersed at room temperature for 10 min. PDDA-modified silica
spheres were centrifuged three times with deionized water. Then the modified silica spheres
were dispersed in 80 mL tetraethylene glycol. After that, 125.8 mg Pt(acac)2 (0.32 mmol)
and 82 mg Ni(acac)2 (0.32 mmol) were added into tetraethylene glycol, transferred the
mixture to a 100 mL three-necked flask when stirred uniformly. The flask was heated with
a heating mantle. The mixture was heated from room temperature to 513 K at a heating
rate of 10 K per minute and then kept 513 K for 2 h by refluxing with constant stirring. The
mixture was cooled to room temperature after the reaction. Then, the compound attached
to the silica sphere was collected by centrifugation and washed by ethanol three times,
before being dried under room temperature as powder.

The powder was sealed in a glass tube filled with argon then heated to 623 K in a
resistance furnace for 4 h, and subsequently cooled to room temperature. Whereafter, the
powder was stirred in 3 mol/L NaOH aqueous solution for 1 h at 353 K to dissolve the
silica sphere then washed several times by deionized water. Lastly, hollow-structure Pt-Ni
electrocatalysts were centrifuged and dried at room temperature.

3.3. Electrocatalyst Physical Characterization

The size and morphology of the electrocatalyst was obtained by transmission electron
microscopy (TEM, JEM-2100F), in addition, the scanning electron microscopy (SEM, Sigma
300, ZEISS) and energy dispersive spectroscopy (EDS, Oxford, UK) were used for electrocat-
alyst composition analysis. The structural characterization was adopted X-ray diffraction
(XRD, D/MAX2200V) with Cu Kα radiation. The electrocatalyst surface characterization
was investigated by X-ray photoelectron spectroscopy (XPS, Escalab 250Xi).

3.4. Electrochemical Characterization

The electrochemical characterization of the electrocatalyst was tested by electrochem-
ical work station (Gamry Instruments Reference 600), to evaluate the ORR activity of
electrocatalyst. A typical three-electrode cell was used. A saturated calomel electrode
(SCE) and Pt wire were utilized as reference and counter electrodes, respectively. The ORR
activity was performed on a rotating disk electrode (RDE) as the working electrode. The
working electrode was prepared as follows. For the hollow-structure Pt-Ni electrocatalyst,
1 mg catalyst was dispersed in 1 mL 25% aqueous isopropyl alcohol solution and 10 µL
5% Nafion solution as the ink, before 7.2 µL ink was dropped on a mirror-polished glassy
carbon (GC) electrode with an area of 0.196 cm2 and dried at room temperature. The
working electrode preparation process for standard 20% Pt/C catalyst was roughly the
same. In particular, the formula for the ink was 2 mg 20% Pt/C, dispersed in 1 mL 20%
aqueous isopropyl alcohol solution and 10 µL 5% Nafion solution, then 9.8 µL ink was
dropped on GC. Since HClO4 electrolyte solution showed more similarity to the actual
environment of PEMFCs [15,17,45], all the electrochemical tests were carried out in 0.1 M
HClO4 electrolyte solution.

For the electrochemical process, the electrochemical active surface area (ECSA) was
associated with the active sites of the electrocatalyst surface [46]. It was measured by
cyclic voltammetry (CV) at 0.1 M N2-saturated HClO4 electrolyte solution. The potential
was swept between 0.05 V and 1.2 V vs. RHE at a sweep rate of 20 mV/s. Before CV
measurement, 50 cycles of activation were performed at sweep rate of 100 mV/s. Then,
ECSA was calculated by the underpotential deposited hydrogen adsorption (Qh) charge
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collected in the hydrogen adsorption region from 0.05 V to 0.4 V vs. RHE, which was
followed Formula (1) [26].

ECSA =
Qh

m× qh
(1)

where, m is the metal loading, and qh is the charge required for monolayer adsorption of
hydrogen on Pt surfaces as 210 µC/cm2.

ORR activity including mass activity (MA) and specific activity (SA) were measured
by liner sweep voltammetry (LSV) at 0.1 M O2-saturated HClO4 electrolyte solution. The
potential was swept from 0.05 V to 1.1 V vs. RHE at a sweep rate of 10 mV/s and a rotation
speed of 1600 rpm. Then the MA and SA of the electrocatalyst was calculated at 0.9 V vs.
RHE via the mass transport corrected kinetic current (Ik) in Formula (2) [27].

Ik =
Ilim × I
Ilim − I

(2)

Ilim is the limiting current measured at 0.4 V vs. RHE and I is the current measure at
0.9 V vs. RHE.

The Tafel analysis and Koutechky–Levich analysis were carried out in order to evaluate
the kinetics of the ORR. For Tafel curves, jk can be obtained by normalizing the RDE area
by Ik. Ik is calculated through Formula (2). Then, the Tafel slope is calculated by the curve
slope of E ~ log |jk|.

The number of electrons transfer can be evaluated by K-L formula [47,48].

1
j
=

1
jk
+

1
jd

(3)

where, j is the current density, jk is the kinetic current density and jd is the diffusion
current density.

jd = 0.2nFCO2 D2/3
O2

ν−1/6ω1/2 = Bω1/2 (4)

B = 0.2nFCO2 D2/3
O2

ν−1/6 (5)

where B is Levich constant, n is the number of electrons transferred per O2 molecule, F
is the Faraday constant (96500 C/mol), CO2 is the concentration of dissolved oxygen in
0.1 M HClO4 (1.26 × 10−6 mol/cm3), DO2 is the diffusion coefficient of dissolved oxygen
(1.93 × 10−6 cm2/s), ω is the RDE rotation speed (rpm) and ν is the kinematic viscosity of
the electrolyte (1.009 × 10−2 cm2/s) [49]. Then, the n can be calculated by Formula (5).

3.5. Electrocatalyst Durability Characterization

The accelerated durability test (ADT) was performed by cyclic potential sweeps
between 0.6 V and 1.1 V vs. RHE at sweep rate 100 mV/s for 5000 cycles in 0.1 M HClO4
electrolyte solution at room temperature. The same three-electrode system was used except
a carbon stick was utilized as the counter electrodes. Then, the ECSA and ORR activities
were obtained and compared with the performance of 20% Pt/C catalyst which after
durability test.

The accelerated durability test for start-stop was performed by square wave potential
cycles (accelerated durability test square wave cycling, ADT-SWC), stepped the potential
between 0.4 and 1.5 V vs. RHE for 5000 cycles and held the potential at each value for
1 s [38,50]. The whole test was in 0.1 M HClO4 electrolyte solution at room temperature.
The same three-electrode system was used except a carbon stick was utilized as the counter
electrodes. Then, the ECSA and ORR activities were obtained and compared with the
performance of 20% Pt/C catalyst which after ADT-SWC.

4. Conclusions

In this work, a hollow-structure Pt-Ni electrocatalyst is synthesized by sacrificial SiO2
template method. The structure of the electrocatalyst is a hollow sphere where the diameter



Molecules 2022, 27, 2524 9 of 11

is about 370 nm and the thickness is about 35 nm. It shows a higher ORR activity than that
of the commercial Pt/C catalyst. At 0.9 V vs. RHE, the specific activity is 1.88 mA/cm2,
which is higher than that of the Pt/C, the mass activity is 0.49 A/mg, which is about 7 times
that of the Pt/C. The Tafel slope is 65.85 mV/dec, lower than that of the Pt/C. Moreover,
it also shows that the electrocatalyst is controlled by a combination of two-electron and
four-electron pathway through the K-L analysis. These results indicate that the hollow
structure can improve the ORR activity of the catalyst effectively. Meanwhile, the XPS
spectra shows that the addition of Ni results in a negative Pt binding energy shift of 0.56 eV,
which promotes the oxygen reduction reaction activity of electrocatalyst.

More significantly, it has a higher durability than Pt/C against both ADT and the
start–stop process. The SA and MA after ADT only dropped by 13.8% and 28.5%, respec-
tively, indicating that the hollow structure can avoid movement, aggregation and Ostwald
ripening during the ADT process. The SA and MA after ADT-SWC dropped by 34.6% and
40.8%, respectively, which are far better than those of commercial catalysts, suggesting that
carbon-free electrocatalyst can avoid carbon corrosion during the start–stop process and
slow the degradation of activity.
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