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  The Michaelis–Menten equation is one of the best-known models describing the enzyme kinetics 
of in vitro drug elimination experiments, and takes a form of equation relating reaction rate (V) to 
the substrate concentration ([S]) via the maximum reaction rate (Vmax) and the Michaelis constant 
(Km). The current study was conducted to compare the accuracy and precision of the parameter es-
timates in the Michaelis–Menten equation from various estimation methods using simulated data. 
One thousand replicates of simulated [S] over serial time data were generated using the results of a 
previous study, incorporating additive or combined error models as a source of random variables 
in the Monte-Carlo simulation using R. From each replicate of simulated data, Vmax and Km were 
estimated by five different methods, including traditional linearization methods and nonlinear ones 
without linearization using NONMEM. The relative accuracy and precision of the estimated pa-
rameters were compared by the median values and their 90% confidence intervals. Overall, Vmax and 
Km estimation by nonlinear methods (NM) provided the most accurate and precise results from the 
tested 5 estimation methods. The superiority of parameter estimation by NM was even more evi-
dent in the simulated data incorporating the combined error model. The current simulation study 
suggests that NMs using a program such as NONMEM provide more reliable and accurate param-
eter estimates of the Michaelis-Menten equation than traditional linearization methods in in vitro 
drug elimination kinetic experiments.
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Introduction
  The characterization of drug elimination kinetic studies is an 
essential part of the development process, and it requires ac-
curate and precise estimation of the parameters of the relevant 
kinetic models. Michaelis–Menten kinetics is one of the best-
known models of enzyme kinetics in in vitro drug elimina-

tion or drug-drug interaction experiments. The Michaelis–
Menten equation (M-M equation) consists of two parameters, 
the maximum reaction rate (Vmax) and the Michaelis constant 
(Km) describing the rate of enzymatic reactions by relating re-
action rate (V) to the concentration of a substrate ([S]).[1] By 
definition, Km is equal to the concentration of the substrate at 
half Vmax. It can also be thought of as a measure of how well a 
substrate complexes with a given enzyme, otherwise known as 
its binding affinity. An equation with a low Km value indicates 
a large binding affinity, as the reaction will approach Vmax more 
rapidly. An equation with a high Km indicates that the enzyme 
does not bind as efficiently with the substrate, and Vmax will 
only be reached if the substrate concentration is high enough to 
saturate the enzyme. Therefore, Km is an intrinsic parameter of 
enzyme-catalyzed reactions and it is significant for its biological  
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functions.[2] 

  Two most commonly used methods for determining the pa-
rameters of the M-M equation are the Lineweaver-Burk plot and 
the Eadie-Hofstee plot, both of which are linearization methods 
transforming the original nonlinear M-M equation into a linear 
one, and the data is then fit by a linear regression, which can be 
displayed as a straight line in 2-dimensional graph. In spite of 
the simplicity and familiarity of linear regression method, these 
approaches have some pitfalls. The most common problem with 
these transformations is the fact that transformed data does not 
usually satisfy the basic assumptions of linear regression, that is, 
the distribution of data around the straight regression line fol-
lows a Gaussian distribution, and the standard deviation of the 
distribution is equal at each value of the independent variables. 
For this reason, there has been increased interest in fitting full 
time course kinetic data to nonlinear equations based on nu-
merical integration of rate equations without linearization.[3-5] 
  Simulation studies are useful for comparing various estima-
tion methods using virtual in vitro enzyme kinetic data. In this 
study, we compared the accuracy and precision of parameter 
estimation for the M-M equation determined by various esti-
mation methods, including traditional linearizing methods and 
nonlinear regression methods.

Methods 

Simulation Data Generation
  Invertase is the enzyme which catalyzes the reaction which 
results in the inversion of optical rotation from positive for 
sucrose to net negative for the sum of fructose plus glucose. 
Based on the M-M equation and the studied kinetics of inver-
tase (Vmax=0.76 mM/min and Km=16.7 mM), a set of virtual 
substrate concentration ([S]) data without considering residual 
errors was simulated for 5 initial substrate concentrations of 
20.8, 41.6, 83, 1667.7, and 333 mM and at pre-specified times 
thereafter using the deSolve package in R 3.3.3.[1]

where [S]pred is the predicted substrate concentration without 
error.

  The observation time points for each concentration in the 
simulation were as follows; 0, 17, 27, 38, 62, 95, and 1372 min 
for initial concentrations of 20.8 mM; 0, 10, 30, 61, 90, 112, 
132, and 154 min for 41.6 mM; 0, 50, 90, 125, 151, and 208 
min for 83 mM; 0, 8, 16, 28, 52, 82, and 103 min for 166.7 mM; 

and finally 0, 7,14, 26, 49, 75, 117, and 1052 min for 333 mM.  
  A set of final virtual experimental data was constructed from 
the error-free data set by incorporating an additive error model 
or a combined (additive + proportional) error model.

Additive error model: 

Combined error model: 

where [S]pred is an error free-substrate concentration calculated 
from the M-M equation, [S] is an error incorporating substrate 
concentration,              is a random variable following a normal 
distribution with a mean of 0 and a standard deviation of 0.04 
(calculated as approximately half of the lowest value of [S]pred ),   

is a random variable following a normal distribution with 
mean of 0 and standard deviation of 0.1 (an arbitrarily selected 
high value), and     is the index of simulation replicates.

  A Monte-Carlo simulation with 1,000 replicates for each  
scenario was carried out using R

M-M Parameter Estimation by Various Estimation Meth-
ods and Analysis of the Estimation Results

  The Vmax and Km values were estimated from the original simu-
lation dataset or the manipulated simulation data using the fol-
lowing 5 different estimation methods, which are summarized 
in Table 1.

1) Lineweaver-Burk plot (LB)

2) Eadie-Hofstee plot (EH)

3) ��Nonlinear regression to fit Vi-[S] data (NL), where Vi is the 
initial velocity.

4) �Nonlinear regression to fit VND-[S]ND (ND), where VND is 
the velocity calculated by the average rate of change for the 
substrate concentrations ([S]) at adjacent time points and 
[S]ND is the corresponding substrate concentrations to VND 
calculated from the averaged substrate concentrations ([S]) of 
adjacent time points.

5) Nonlinear regression to fit [S]-time data (NM)

  A dataset suitable for each estimation method was prepared 
from the original simulated dataset as follows.
  For the estimation methods using initial velocity, i.e. LB, EH, 
and NL, Vi values were calculated from the original simulated 
substrate concentration versus time ([S]-time) data using linear 
regression in R. For each [S], regressions were repeated using 
the first 3 points, then the first 4 points, and the first 5 points, 
etc. and the adjusted R2 was computed as follows:

Parameter estimation for Michaelis–Menten equation
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where    is the number of data points in the regression and 
R2 is the square of the correlation coefficient, respectively. The 
slope calculated from the regression with the largest adjusted R2 
value was selected. However, if the adjusted R2 did not improve, 
but was within 0.0001 of the largest adjusted R2 value, the re-
gression with the larger number of points was used. The slope 
was then transformed to a positive value to indicate the velocity 
of the reaction product as follows:

  For LB and EH, additional manipulation was performed after 
the Vi values were obtained. For LB, the reciprocal of Vi and 
[S] was taken and 1/Vi versus 1/[S] data was produced. For EH, 
Vi/[S] was computed and Vi versus Vi/[S] data was created. 
 
  For ND, a  velocity     (was computed from the 
average rate of change of [S] for adjacent time points and the 
corresponding substrate concentration    (was obtained 
averaging the substrate concentrations ([S]) of adjacent time 
points.

where  is the index of time points.

For NM, the original simulation dataset by itself was used with 

no data manipulation.

  After manipulating a dataset to a suitable form for each esti-
mation method, estimation was conducted by first order con-
ditional estimation with interactions in NONMEM (version 
7.3, ICON Development Solutions, Ellicott City, MD, USA). 
The models for each analysis methods were as follows and the 
residual variabilities were applied according to the error model 
used for the simulation.

For LB, 

For EH,

For NL,

For ND, 

For NM,

  The median estimated values and 90% confidence intervals 
(CIs) of Vmax and Km for a particular fitting method were subse-
quently calculated for the purposes of comparison.

Estimation Method Description Dataset  
(response variable-explanatory variable) Regression Model

LB Lineweaver-Burk plot Vi-[S]* Linear

EH Eadie-Hofstee plot Vi-[S] Linear

NL Nonlinear regression to fit Vi-[S] data Vi-[S] Nonlinear

ND Nonlinear regression to fit VND-[S]ND
‡ VND-[S]ND Nonlinear

NM
Nonlinear regression to fit [S]-time 

data
[S]-time Nonlinear

*Vi: the initial velocity calculated from substrate concentration versus time ([S]-time) data. For the detailed calculation of Vi, see the text; [S]: sub-
strate concentration ‡VND: the velocity calculated by the average rate of change for substrate concentrations ([S]) of adjacent time points, [S]ND: the 
corresponding substrate concentrations to VND calculated by the average of substrate concentrations ([S]) of adjacent time points †Km: the Michaelis 
constant §Vmax: the maximum reaction rate

Table1. Summary of estimation methods

(

(
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Results

Data Fitting by Various Estimation Methods
  One thousand replicates of simulated [S]-time data points-
were created for each error scenario, i.e., the additive error and 
combined error models. The profiles of randomly selected data 
are presented in Figure 1. Each set of simulation data was fitted 
by not only traditional estimation methods such as LB and EH 
but also by nonlinear fitting methods such as NL, ND, and NM 
using NONMEM. The results fitted by these estimation meth-
ods to the selected simulation data of Figure 1 are displayed in 
Figure 2 and 3. For the simulation data incorporating additive 
error, there was no minimization failures in all methods while 
17 simulations in EH, 14 simulations in NL, 22 simulations in 
ND, and 383 simulations in NM had minimization failure in 
the simulation data incorporating combined error. The causes 
of all failures were rounding errors associated with SIGDIGIT 
of NONMEM. Not only estimates with successful minimization 
but those with minimization failure due to rounding error were 
included in the posthoc analysis.
 

 

Comparison of M-M parameters determined by Various 
Estimation Methods

  Median values and 90% CIs of the M-M parameters estimated 
by 5 different methods for the simulation data using additive  
error and combined error models are presented in Table 2 and 3, 
respectively. The box-and-whisker plot of these parameters for 
the two error models are displayed in Figure 4 and 5. The rela-
tive accuracy and precision of the estimated parameters were 
assessed by the median values and 90% CIs. Overall, regard-
less of the error model used in the simulation data, the median 
values of both Vmax and Km estimated by NM were closest to 
the original parameters, and the 90% CIs of NM were also the 
smallest among the tested estimation methods.
  For the simulation data incorporating additive error, estimated 
Vmax values were generally unbiased and precise in all the 
tested methods, although estimation by ND was the most unre-
liable. With regard to Km, the estimation by NM was the closest 
to the true value, followed by ND, EH, LB, and NL. Estimations 
by NM and ND were also the most precise, and the other results 
were similar.
  For the simulation data incorporating combined error, both 
the estimated Vmax and Km showed a relatively poor accuracy 
and precision when compared the estimations of the simulation 
data incorporating additive error, except for the accuracy of 
estimation by NM. With regard to Vmax, the estimation by NM 
was the most accurate, followed by EH, NL, LB, and ND. With 
regards to Km, the estimation by NM was the most accurate and 
was followed by EH, LB, NL, and ND. The estimation by NM 
was also the most precise and was followed by LB, EH, ND, and 
NL for both parameters. Notably, for the simulation data incor-
porating combined error, while the methods other than NM 
exhibited considerably unreliable estimations, NM estimation 
represented a comparable accuracy to that of the additive error 
data, although the variability of the estimations was slightly in-
creased.

Discussion
  Undoubtedly, the M-M theory is the foundation upon which 
most current quantitative analysis of enzymes is built.[6] Ad-
vances have been made which describe more complex behavior, 
such as allosteric regulation or cooperativity in the framework 
of the M-M theory or outside it, but the basic model is still 
widely used for most single-substrate enzyme kinetics. The 
classical approach to deriving the parameters of M-M, i.e.,Vmax 
and Km, is through initial-rate measurements. Under the quasi-
steady state approximation, the M-M equation and correspond-
ing nonlinear differential equations collapse into a single hy-
perbolic function. The initial stages of an array of experiments 
can describe this relation between reaction speed and substrate 
concentration. This yields the maximal reaction rate, Vmax, and 
Michaelis constant, Km, which corresponds to the substrate 

Parameter estimation for Michaelis–Menten equation

Figure 1. The substrate concentration ([S])-time profiles of randomly 
selected simulation data incorporating additive error (a) or combined 
error (b). The simulated data is shown as differently shaped points for 
each initial [S].

(a)

(b)



Vol. 26, No.1, Mar 15, 2018
43

TCP 
Transl Clin Pharmacol

Yong-Soon Cho and Hyeong-Seok Lim

Figure 2. Curves fitted using 5 different fitting methods, a)-e), for the selected simulation data incorporating additive error in Figure 1. The simulated 
data are shown as points and the prediction using each fitting methods are shown as dashed lines in a)-e). LB is Lineweaver-Burk plot, EH is Eadie-
Hofstee plot, NL is nonlinear regression to the initial velocity (Vi) versus substrate concentration (Vi-[S]) data, ND is nonlinear regression to the 
velocity versus substrate concentration (V-[S]) data directly transformed from [S]-time data, and NM is nonlinear direct fitting method to substrate 
concentration ([S])-time data.

(a) LB (b) EH

(c) NL (d) ND

(e) NM
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Figure 3. Curves fitted using 5 different fitting methods, a)-e), for the selected simulation data incorporating combined error in Figure 1. The simu-
lated data are shown as points and the prediction using each fitting methods are shown as dashed lines in a)-e). LB is Lineweaver-Burk plot, EH is 
Eadie-Hofstee plot, NL is nonlinear regression to the initial velocity (Vi) versus substrate concentration (Vi-[S]) data, ND is nonlinear regression to 
the velocity versus substrate concentration (V-[S]) data directly transformed from [S]-time data, and NM is nonlinear direct fitting method to substrate 
concentration ([S])-time data.

(a) LB (b) EH

(c) NL (d) ND

(e) NM
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concentration at half of Vmax.[7] Unfortunately, an accurate  
estimation requires a large amount of data as well as substrate 
concentrations much higher than Km, which are often difficult 

to obtain. Thus, there is great value in directly determining 
the M-M constants from the [S]-time curve.[8] Here, we have 
conducted a simulation study to see if direct nonlinear fitting 

Yong-Soon Cho and Hyeong-Seok Lim

Figure 4. Box-and-whisker plot of Vmax (a) and Km (b) estimated by 5 
different fitting methods for simulation data incorporating additive error. 
Red dashed lines denote true parameter values. LB is the Lineweaver-
Burk plot, EH is the Eadie-Hofstee plot, NL is nonlinear regression to 
the initial velocity (Vi) versus substrate concentration (Vi-[S]) data, ND 
is nonlinear regression to the velocity versus substrate concentration 
(V-[S]) data directly transformed from [S]-time data, and NM is nonlin-
ear direct fitting method to substrate concentration ([S])-time data.

(a)

(b)

Figure 5. Box-and-whisker plot of Vmax (a) and Km (b) estimated by 5 
different fitting methods for simulation data incorporating combined er-
ror. Red dashed lines denote true parameter values. LB is Lineweaver-
Burk plot, EH is Eadie-Hofstee plot, NL is nonlinear regression to the 
initial velocity (Vi) versus substrate concentration (Vi-[S]) data, ND is 
nonlinear regression to the velocity versus substrate concentration (V-
[S]) data directly transformed from [S]-time data, and NM is nonlinear 
direct fitting method to substrate concentration ([S])-time data.

(a)

(b)

Estimation Methods*
Vmax Km

Median 90%CI Median 90%CI

LB 0.758 0.756~0.76 22.076 21.568~22.574

EH 0.758 0.756~0.76 22.089 21.59~22.576

NL 0.761 0.759~0.762 22.457 21.969~22.944

ND 0.733 0.731~0.735 16.659 16.566~16.748

NM 0.76 0.759~0.761 16.698 16.638~16.768

Table 2. Michaelis–Menten equation parameters estimated by different metods in the simulation data incorporating additive error

*LB is the Lineweaver-Burk plot, EH is the Eadie-Hofstee plot, NL is nonlinear regression to the initial velocity (Vi) versus substrate concentration (Vi-
[S]) data, ND is nonlinear regression to the velocity versus substrate concentration (V-[S]) data directly transformed from [S]-time data, and NM is 
nonlinear direct fitting method to the substrate concentration ([S])-time data.
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method is reliable compared to the classical approach or some 
other methods derived from the classical approach.
  In this study, 1000 replicates of simulation data were generated 
based on the original M-M data with assay errors according to 
2 different residual error models. The simulation data were fit-
ted by 5 different methods which consisted of 1 nonlinear direct 
fitting method for [S]-time data (NM) and 4 linear or nonlinear 
fitting method for transformed V-[S] data (LB, EH, NL, ND).
  During data generation process, we incorporated additive er-
ror or combined error model as the residual error model into 
the simulation data. This is because these two models generally 
reflect the assay errors arising from pharmacokinetic and phar-
macodynamic data and the errors originating from model mis-
specification of experiment data. For dense pharmacokinetic 
data, the combined error model broadly reflects assay errors, 
whereas for pharmacodynamic data, additive error model may 
be sufficient. Exponential and proportional models are gener-
ally avoided because of the tendency to overweight low concen-
trations.
  In posthoc analysis, estimates obtained with minimization 
failure as well as those with successful minimization were used. 
The causes of all failures were rounding errors associated with 
SIGDIGIT of NONMEM. Software programs other than NON-
MEM usually judge minimization success or failure regardless 
of SIGDIGIT. SIGDIGIT of NONMEM is calculated in the 
scaled and transformed parameter (STP) space and there are 
usually more actual significant digits in the original scale.[9] 
Additionally, the median values and 90% CI for the parameters 
estimated from the only minimization successful data were al-
most same as those of the parameters estimated from the whole 
data set including rounding errors. Considering this, estimates 
obtained from NONMEM runs with minimization failure due 
to rounding error seems to be reasonable.
  When comparing the median values and 90% CI of the pa-
rameters estimated from each fitting method, estimation by 
NM was the most accurate and precise among the 5 methods, 
for both error models. That is, the use of nonlinear regression 

and untransformed data yielded the most reliable estimation 
of enzyme kinetic parameters. In particular, the superiority of 
parameter estimation of nonlinear regression directly to [S]-
time data was clearly revealed in the simulated data incorporat-
ing combined error. When a combined error was applied, NM 
method performed fairly well and gave comparable answer to 
those of the simulation data incorporating additive error, espe-
cially for point estimates, whereas the other methods gave con-
siderably poorer answers. In the combined error model, % CV 
(coefficient of variation) is the greatest at the lowest concentra-
tion and decreases with the increment of concentration. In the 
in vitro experiments conducted at low initial concentration with 
larger assay variability, the difference of biases in the parameter 
estimation between NM method and the other method can be 
maximized, because NM method uses dense, serial concentra-
tion over time data, providing relatively unbiased estimates, 
whereas the other methods uses only one or few velocity data, 
resulting in more biased estimates (as shown in Figure 3). The 
combined error can represent complex scenarios in which ex-
perimental errors such as variation in the measured volume of 
substrates and enzymes, variations during substrate dilution 
and imprecisions in the instrumentation are mixed. Although 
this level of error was higher than is likely in practice, the dif-
ferences between the 5 methods are seen most clearly using this 
error model. In addition to reliable estimation, NM bypasses 
the need to subsequently fit the concentration dependence of 
the measured rate after fitting the primary kinetic data ([S]-time) 
to a simplified function, which is the process performed for the 
other methods.
  It was apparent from this study that the ND method gave an-
swers that were the least accurate and generally imprecise. The 
unreliable estimation of ND method can partly explained by the 
unequal variance of velocity and the correlated error between 
velocities induced by the unequal time intervals of the simula-
tion data.
  When comparing the linear transformation methods (LB and 
EH) using linearized Vi-[S] data, EH plots and LB plots gave 

Parameter estimation for Michaelis–Menten equation

Estimation Methods*
Vmax Km

Median 90%CI Median 90%CI

LB 0.49 0.405~2.398 9.077 0.167~93.829

EH   0.634 0.431~2.949 19.396   0.167~111.753

NL   0.632       0.438~60480.69 24.522    4.892~4934281

ND 3.67   0.844~26.508 164.313 45.15~205286.2

NM   0.764 0.616~0.972 16.762 14.046~22.281

Table3. Michaelis–Menten equation parameters estimated by different methods in the simulation data incorporating combined error

*LB is the Lineweaver-Burk plot, EH is the Eadie-Hofstee plot, NL is nonlinear regression to the initial velocity (Vi) versus substrate concentration (Vi-
[S]) data, ND is nonlinear regression to the velocity versus substrate concentration (V-[S]) data directly transformed from [S]-time data, and NM is 
nonlinear direct fitting method to the substrate concentration ([S])-time data.
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similarly reliable answers in the additive error model but the 
EH plot exhibited more accurate and similarly precise estima-
tion in the combined error model, which was consistent with 
previous investigations.[10] The LB plot has the disadvantage of 
compressing data points at high substrate concentrations into a 
small region and emphasizing the points at lower substrate con-
centrations, which may alter the slope of the line due to the long 
lever arm effect of the reciprocal plot, leading to a poor estima-
tion of Vmax and Km in the combined error model.[7] On the 
other hand, the EH plot bypasses the unequal weighting of er-
rors in the reciprocal plot, an implicit fault of LB plot, because it 
does not use a reciprocal plot and separates the two kinetic pa-
rameters, Vmax/Km and Vmax as 1/slope and intercept, respectively, 
thus giving more reliable answers than the LB plot. Although 
the EH plot produces more reliable estimates, the presence of 
the dependent variable, velocity, on both axes makes rigorous 
error analysis difficult. In all linear transformation methods, 
linear regression was used to estimate the slope and intercept 
of the straight line, and afterwards Vmax and Km were calculated 
from the straight line parameters. Although these methods are 
very useful for data visualization and are still widely employed 
in enzyme kinetic studies, linear transformation makes them 
prone to errors, as shown in this study.
  When comparing the linear transformation methods (LB and 
EH) and the nonlinear regression method using transformed 
Vi-[S] data (NL), NL generally gave similarly accurate but poor-
er answers than LB and EH, especially in the combined error 
model. This is likely to be result of the bias caused by transfor-
mation from [S]-time to Vi-[S] in which the only first 10-20% 
of the reaction data was used, although NL is more suitable for 
fitting to Vi-[S] data itself.
  For nonlinear regression, we used NONMEM, the estimation 
method of which is based on maximum likelihood estimation 
(MLE) and STP whereas other software packages usually used 
in enzyme kinetics, such as Excel and GraphPrism, perform fit-
ting based on least square estimation (LSE) and original scaled 
and untransformed parameters.[11,12] The latter require a good 
initial guess of parameters and there is no guarantee of conver-
gence to the global minimum.[13,14] The former is generally 
insensitive to initial values and reaches the global minimum in 
our experience. Thus, although we did not intensively compare 
NONMEM-like estimation software and the other software in 
this study, we recommend using NONMEM-like estimation 
software for nonlinear regression.
  In conclusion, estimating the actual parameters of the M-M 
equation from data is the aspiration of all researchers involved 
in enzyme kinetics research. This remains to be perfected 
though various estimation methods have been used. In this 
study, the superiority of direct nonlinear regression to [S]-
time data was clearly revealed through comparing the accuracy 
and precision of the parameters of the M-M equation, as de-

termined by various estimation methods from the simulated 
data, especially simulated data incorporating combined error, 
which might represent complex experimental situations. Our 
results suggest that direct nonlinear fitting of [S]-time data us-
ing program such as NONMEM can provide a better parameter 
estimation with regard to accuracy and precision in enzyme ki-
netics, which is the basis of in vitro drug-drug interaction study.
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